Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = 7α-dehydroxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4492 KB  
Article
Fabrication of High-Quality Er3+-Yb3+ Co-Doped Phosphate Glasses with Low Residual Hydroxyl Group Content
by Yonglong Liu, Siyu Zhu, Jianan Huang, Xinyu Ye, Chunxiao Liu and Liaolin Zhang
Solids 2025, 6(2), 21; https://doi.org/10.3390/solids6020021 - 8 May 2025
Viewed by 932
Abstract
Rare earth-doped phosphate glasses have found widespread application in the field of solid-state and fiber laser technologies. Nevertheless, the fabrication of high-quality rare earth-doped phosphate glasses with minimal residual hydroxyl groups remains a significant challenge. To address this, a two-step melting process was [...] Read more.
Rare earth-doped phosphate glasses have found widespread application in the field of solid-state and fiber laser technologies. Nevertheless, the fabrication of high-quality rare earth-doped phosphate glasses with minimal residual hydroxyl groups remains a significant challenge. To address this, a two-step melting process was utilized in this work to synthesize Er3+-Yb3+ co-doped phosphate glasses with low residual hydroxyl group content and improved optical quality. When re-melted under a N2 atmosphere at 900 °C for 12 to 16 h, the hydroxyl absorption coefficient (α-OH) decreased to ~1 cm−1. The structural and compositional characteristics of the glass remained essentially unchanged throughout the re-melting process. The weak broadband absorption in the visible range and the red-shift of the ultraviolet absorption edge were attributed to the reduction in residual hydroxyl group content rather than carbon contamination. The dehydroxylation mechanism was governed by the physical diffusion of hydroxyl groups within the glass matrix. Full article
Show Figures

Figure 1

22 pages, 1674 KB  
Article
Altered iso- and oxo-Fecal Bile Acid Concentrations in Dogs with Chronic Enteropathy
by Amanda B. Blake, Linda C. Toresson, Chih-Chun Chen, Patricia E. Ishii, Robert Kyle Phillips, Paula R. Giaretta, Joao P. Cavasin, Jonathan A. Lidbury and Jan S. Suchodolski
Pets 2025, 2(2), 18; https://doi.org/10.3390/pets2020018 - 18 Apr 2025
Cited by 3 | Viewed by 1554
Abstract
Bile acids (BAs) are important signaling molecules in the gastrointestinal (GI) tract and are associated with health and disease in humans and animals. Intestinal bacteria transform BA through deconjugation, dehydroxylation, and epimerization reactions, producing various isoforms, many of which have not been investigated [...] Read more.
Bile acids (BAs) are important signaling molecules in the gastrointestinal (GI) tract and are associated with health and disease in humans and animals. Intestinal bacteria transform BA through deconjugation, dehydroxylation, and epimerization reactions, producing various isoforms, many of which have not been investigated in companion animal diseases. We aimed to develop and analytically validate a novel liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of 30 BAs in dog feces, with a simple extraction procedure and on-line solid-phase extraction. Validation demonstrated good accuracy, precision, sensitivity, spiking recovery, dilution, and stability for 29 BAs. The method was applied to fecal samples from healthy dogs (H; n = 121) and dogs with chronic enteropathy (CE; n = 58). The immediate and downstream products of bacterial 7α-dehydroxylation reactions with cholic acid were lower in concentration in dogs with CE when compared to healthy dogs (deoxycholic acid, 3-oxo-deoxycholic acid, and 12-oxo-lithocholic acid; q < 0.001). Across all fecal samples, the products of hydroxysteroid dehydrogenase (including oxo- and iso-BA) made up an average of 30% of the total measured fecal BA pool (glycine-BA, 0.1%; taurine-BA, 2.2%; unconjugated BA, 53%). Full article
Show Figures

Figure 1

25 pages, 4505 KB  
Article
Pangenome Analysis of Clostridium scindens: A Collection of Diverse Bile Acid- and Steroid-Metabolizing Commensal Gut Bacterial Strains
by Kelly Y. Olivos-Caicedo, Francelys V. Fernandez-Materan, Steven L. Daniel, Karthik Anantharaman, Jason M. Ridlon and João M. P. Alves
Microorganisms 2025, 13(4), 857; https://doi.org/10.3390/microorganisms13040857 - 9 Apr 2025
Cited by 2 | Viewed by 1211
Abstract
Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized to any significant extent. The formation [...] Read more.
Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized to any significant extent. The formation of secondary bile acids is important in the etiology of cancers of the GI tract and in the prevention of Clostridioides difficile infection. We determined the presence and absence of bile acid inducible (bai) and steroid-17,20-desmolase (des) genes among C. scindens strains and the features of the pangenome of 34 cultured strains of C. scindens and a set of 200 metagenome-assembled genomes (MAGs) to understand the variability among strains. The results indicate that the C. scindens cultivars have an open pangenome with 12,720 orthologous gene groups and a core genome with 1630 gene families, in addition to 7051 and 4039 gene families in the accessory and unique (i.e., strain-exclusive) genomes, respectively. The pangenome profile including the MAGs also proved to be open. Our analyses reveal that C. scindens strains are distributed into two clades, indicating the possible onset of C. scindens separation into two species, as suggested by gene content, phylogenomic, and average nucleotide identity (ANI) analyses. This study provides insight into the structure and function of the C. scindens pangenome, offering a genetic foundation of significance for many aspects of research on the intestinal microbiota and bile acid metabolism. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

16 pages, 3115 KB  
Article
Probiotic Pediococcus pentosaceus Li05 Improves Cholestasis through the FXR-SHP and FXR-FGF15 Pathways
by Shengyi Han, Kaicen Wang, Jian Shen, He Xia, Yanmeng Lu, Aoxiang Zhuge, Shengjie Li, Bo Qiu, Shuobo Zhang, Xiangmin Dong, Mingfei Yao and Lanjuan Li
Nutrients 2023, 15(23), 4864; https://doi.org/10.3390/nu15234864 - 22 Nov 2023
Cited by 14 | Viewed by 3744
Abstract
Primary sclerosing cholangitis (PSC), a rare chronic cholestatic liver disease, is characterized by intrahepatic or extrahepatic strictures accompanied by biliary fibrosis. So far, there are no effective therapies to slow down the progression of this disease. Farnesoid X receptors (FXRs) are ligand-activated transcription [...] Read more.
Primary sclerosing cholangitis (PSC), a rare chronic cholestatic liver disease, is characterized by intrahepatic or extrahepatic strictures accompanied by biliary fibrosis. So far, there are no effective therapies to slow down the progression of this disease. Farnesoid X receptors (FXRs) are ligand-activated transcription factors involved in the control of bile acid (BA) synthesis and enterohepatic circulation. Therefore, targeting FXRs holds promise as a potential approach for treating PSC. Pediococcus pentosaceus Li05 is a probiotic that was isolated from healthy volunteers and has previously been shown to have an anti-inflammatory effect in DSS-induced colitis. In this study, we established a 3,5-diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-induced cholestasis mouse model and investigated the effects of Pediococcus pentosaceus Li05 on PSC. Our findings revealed that administration of Li05 significantly attenuated liver damage, hepatic inflammation, and fibrosis, as well as bile duct hyperplasia. Li05 activated the hepatic FXR-SHP and ileal FXR-FGF15 signaling pathways to decrease the expression of Cyp7a1. In addition, the Li05-modulated gut microbiota structure especially improved the abundance of 7α-dehydroxylation bacteria like Eubacterium. The intervention of Li05 also improved the intestinal barrier and reduced bacterial endotoxin translocation. Based on these findings, Li05 shows promise for future application as a therapeutic strategy for cholestasis. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

13 pages, 4149 KB  
Article
57Fe Mössbauer Spectroscopy and X-ray Diffraction of Annealed Highly Metamict Perrierite: Activation Energy and Recrystallization Processes
by Dariusz Malczewski, Agnieszka Grabias, Maria Dziurowicz and Tomasz Krzykawski
Minerals 2023, 13(11), 1395; https://doi.org/10.3390/min13111395 - 30 Oct 2023
Cited by 1 | Viewed by 1420
Abstract
This paper presents the results of 57Fe Mössbauer spectroscopy and X-ray diffraction analysis of highly metamict perrierite (REE,Ca,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4O22 after annealing in argon from 673 to 1273 K for one [...] Read more.
This paper presents the results of 57Fe Mössbauer spectroscopy and X-ray diffraction analysis of highly metamict perrierite (REE,Ca,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4O22 after annealing in argon from 673 to 1273 K for one hour. Radioactive elements in metamict minerals damage crystal structure on geologic time scales primarily due to recoil nuclei from α-decay of 238U, 232Th, 235U, and their daughter products. Metamict minerals are widely used in geochronology and can serve as natural analogs for the study of radiation effects in high-level nuclear waste. Analyses were performed on fragments of a perrierite sample collected from granitoids near Amherst, Virginia (USA). Electron microprobe and gamma-ray spectrometry recorded Fe concentrations of 4.7 wt.% and Th and U concentrations of 0.64 and 0.06 wt.%, respectively. The calculated total absorbed α-dose was 7.8 × 1015 α-decay mg−1. The Mössbauer spectrum of the untreated sample can be fitted to two Fe2+ and two Fe3+ doublets in octahedral coordination with a relative ΣFe2+/ΣFe of 0.63. For samples annealed at 1173 K and 1273 K, spectra show a decrease in the total contribution of Fe2+ to 0.58 due to dehydroxylation associated with the simultaneous oxidation of post-metamict Fe2+ to Fe3+. In the examined perrierite, Fe2+ occurs in structural positions B and C(1). The broad, predominant Fe3+ doublet observed in the spectrum of the unannealed sample splits into two components at 973 K interpreted to represented positions C(1) and C(2) in the perrierite structure. The Mössbauer spectra show a prominent decrease in the width of the high-energy absorption peak representing Fe2+ components with increasing temperature. The variation in the width of this peak versus the annealing temperature seems to be an indicator of thermally induced recrystallization. Based on the exponential dependence of the derivative function of the parameter with the inverse temperature and using an Arrhenius plot, an activation energy (EA) of 0.73 eV was determined for thermally-induced recrystallization. Corresponding XRD data show progressive recrystallization with increasing annealing temperature. The XRD pattern of the fragment annealed at 1273 K indicates that highly metamict perrierite recrystallized to the pre-metamict state that can be indexed to the C2/m space group. Full article
Show Figures

Figure 1

8 pages, 3257 KB  
Article
Na2S-Mediated One-Pot Selective Deoxygenation of α-Hydroxyl Carbonyl Compounds including Natural Products
by Xiaobo Xu, Leyu Yan, Zhi-Kai Zhang, Bingqing Lu, Zhuangwen Guo, Mengyue Chen and Zhong-Yan Cao
Molecules 2022, 27(15), 4675; https://doi.org/10.3390/molecules27154675 - 22 Jul 2022
Cited by 4 | Viewed by 3313
Abstract
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the [...] Read more.
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products. Full article
(This article belongs to the Special Issue Chemical Synthesis of Natural Products)
Show Figures

Scheme 1

21 pages, 7269 KB  
Article
Thermal Behavior of Ceramic Bodies Based on Estonian Clay from the Arumetsa Deposit with Oil Shale Ash and Clinker Dust Additives
by Tiit Kaljuvee, Igor Štubňa, Tomáš Húlan, Mai Uibu, Marve Einard, Rainer Traksmaa, Mart Viljus, Jekaterina Jefimova and Andres Trikkel
Processes 2022, 10(1), 46; https://doi.org/10.3390/pr10010046 - 27 Dec 2021
Cited by 8 | Viewed by 3592
Abstract
The thermal behavior of green clay samples from the Arumetsa and Füzérradvány deposits (Hungary) and the influence of two new types of Estonian oil shale (OS) ashes and cement bypass dust (clinker dust) additives on it were the objectives of this study. Thermal [...] Read more.
The thermal behavior of green clay samples from the Arumetsa and Füzérradvány deposits (Hungary) and the influence of two new types of Estonian oil shale (OS) ashes and cement bypass dust (clinker dust) additives on it were the objectives of this study. Thermal and thermo-dilatometric analysis methods were applied using a Setaram Setsys 1750 thermoanalyzer coupled with a Pfeiffer Omnistar spectrometer and a Setaram Setsys 1750 CS Evolution dilatometer. The kinetic parameters were calculated based on the differential isoconversional method of Friedman. The results of the thermal analysis of clays and blends indicated the emission of physically bound water at 200–250 °C. At temperatures from 200–250 °C to 550–600 °C the release of water is caused by oxidation of organic matter and dehydroxylation of different clay minerals like illite, illite-smectite, mica and kaolin. From blends, in addition, also from the decomposition of portlandite. The emission of CO2 at these temperatures was a result of the oxidation of organic matter contained in the clays. In the temperature range from 550–600 °C to 800–900 °C, the mass loss was caused by ongoing dehydroxylation processes in clay minerals but was mainly due to the decomposition of the carbonates contained in the OS ashes and clinker dust. These processes were accompanied by contraction and expansion of the ceramic bodies with the corresponding changes in the SSA and porosity values of the samples. Therefore, the decomposition of the clays took place in one step which blends in two steps. At first, dehydroxylation of the clay minerals occurs, followed by decomposition of the carbonates. The value of the conversion-dependent activation energy E along the reaction progress α varied for the Arumetsa and illitic clay between 75–182 and 9–206 kJ mol−1, respectively. For the blends based on Arumetsa and illitic clay, the activation energy of the first step varied between 14–193 and 5–205 kJ mol−1, and for the second step, it was between 15–390 and 135–235 kJ mol−1, respectively, indicating the complex mechanism of the processes. Full article
Show Figures

Figure 1

21 pages, 9542 KB  
Article
Comparative Genomic and Physiological Analysis against Clostridium scindens Reveals Eubacterium sp. c-25 as an Atypical Deoxycholic Acid Producer of the Human Gut Microbiota
by Isaiah Song, Yasuhiro Gotoh, Yoshitoshi Ogura, Tetsuya Hayashi, Satoru Fukiya and Atsushi Yokota
Microorganisms 2021, 9(11), 2254; https://doi.org/10.3390/microorganisms9112254 - 29 Oct 2021
Cited by 18 | Viewed by 4973
Abstract
The human gut houses bile acid 7α-dehydroxylating bacteria that produce secondary bile acids such as deoxycholic acid (DCA) from host-derived bile acids through enzymes encoded by the bai operon. While recent metagenomic studies suggest that these bacteria are highly diverse and abundant, very [...] Read more.
The human gut houses bile acid 7α-dehydroxylating bacteria that produce secondary bile acids such as deoxycholic acid (DCA) from host-derived bile acids through enzymes encoded by the bai operon. While recent metagenomic studies suggest that these bacteria are highly diverse and abundant, very few DCA producers have been identified. Here, we investigated the physiology and determined the complete genome sequence of Eubacterium sp. c-25, a DCA producer that was isolated from human feces in the 1980s. Culture experiments showed a preference for neutral to slightly alkaline pH in both growth and DCA production. Genomic analyses revealed that c-25 is phylogenetically distinct from known DCA producers and possesses a multi-cluster arrangement of predicted bile-acid inducible (bai) genes that is considerably different from the typical bai operon structure. This arrangement is also found in other intestinal bacterial species, possibly indicative of unconfirmed 7α-dehydroxylation capabilities. Functionality of the predicted bai genes was supported by the induced expression of baiB, baiCD, and baiH in the presence of cholic acid substrate. Taken together, Eubacterium sp. c-25 is an atypical DCA producer with a novel bai gene cluster structure that may represent an unexplored genotype of DCA producers in the human gut. Full article
(This article belongs to the Special Issue New Anaerobic Bacteria in Human Health and Disease)
Show Figures

Figure 1

8 pages, 961 KB  
Article
Thermal Degradation of Linalool-Chemotype Cinnamomum osmophloeum Leaf Essential Oil and Its Stabilization by Microencapsulation with β-Cyclodextrin
by Hui-Ting Chang, Chun-Ya Lin, Li-Sheng Hsu and Shang-Tzen Chang
Molecules 2021, 26(2), 409; https://doi.org/10.3390/molecules26020409 - 14 Jan 2021
Cited by 32 | Viewed by 4720
Abstract
The thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and the stability effect of microencapsulation of leaf essential oil with β-cyclodextrin were studied. After thermal degradation of linalool-chemotype leaf essential oil, degraded compounds including β-myrcene, cis-ocimene and trans-ocimene, were formed [...] Read more.
The thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and the stability effect of microencapsulation of leaf essential oil with β-cyclodextrin were studied. After thermal degradation of linalool-chemotype leaf essential oil, degraded compounds including β-myrcene, cis-ocimene and trans-ocimene, were formed through the dehydroxylation of linalool; and ene cyclization also occurs to linalool and its dehydroxylated products to form the compounds such as limonene, terpinolene and α-terpinene. The optimal microencapsulation conditions of leaf essential oil microcapsules were at a leaf essential oil to the β-cyclodextrin ratio of 15:85 and with a solvent ratio (ethanol to water) of 1:5. The maximum yield of leaf essential oil microencapsulated with β-cyclodextrin was 96.5%. According to results from the accelerated dry-heat aging test, β-cyclodextrin was fairly stable at 105 °C, and microencapsulation with β-cyclodextrin can efficiently slow down the emission of linalool-chemotype C. osmophloeum leaf essential oil. Full article
(This article belongs to the Special Issue Cyclodextrin Chemistry and Toxicology)
Show Figures

Graphical abstract

16 pages, 3573 KB  
Article
Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling
by Junliang Kuang, Xiaojiao Zheng, Fengjie Huang, Shouli Wang, Mengci Li, Mingliang Zhao, Chao Sang, Kun Ge, Yitao Li, Jiufeng Li, Cynthia Rajani, Xiaohui Ma, Shuiping Zhou, Aihua Zhao and Wei Jia
Metabolites 2020, 10(11), 475; https://doi.org/10.3390/metabo10110475 - 23 Nov 2020
Cited by 67 | Viewed by 5028
Abstract
Theabrownin is one of the most bioactive compounds in Pu-erh tea. Our previous study revealed that the hypocholesterolemic effect of theabrownin was mediated by the modulation of bile salt hydrolase (BSH)-enriched gut microbiota and bile acid metabolism. In this study, we demonstrated that [...] Read more.
Theabrownin is one of the most bioactive compounds in Pu-erh tea. Our previous study revealed that the hypocholesterolemic effect of theabrownin was mediated by the modulation of bile salt hydrolase (BSH)-enriched gut microbiota and bile acid metabolism. In this study, we demonstrated that theabrownin ameliorated high-fat-diet (HFD)-induced obesity by modifying gut microbiota, especially those with 7α-dehydroxylation on the species level, and these changed microbes were positively correlated with secondary bile acid (BA) metabolism. Thus, altered intestinal BAs resulted in shifting bile acid biosynthesis from the classic to the alternative pathway. This shift changed the BA pool by increasing non-12α-hydroxylated-BAs (non-12OH-BAs) and decreasing 12α-hydroxylated BAs (12OH-BAs), which improved energy metabolism in white and brown adipose tissue. This study showed that theabrownin was a potential therapeutic modality for obesity and other metabolic disorders via gut microbiota-driven bile acid alternative synthesis. Full article
(This article belongs to the Special Issue Metabolite Markers of Phytochemicals II)
Show Figures

Figure 1

14 pages, 3432 KB  
Article
Young’s Modulus of Different Illitic Clays during Heating and Cooling Stage of Firing
by Tomáš Húlan, Igor Štubňa, Ján Ondruška, Štefan Csáki, František Lukáč, Marek Mánik, Libor Vozár, Jurijs Ozolins, Tiit Kaljuvee and Anton Trník
Materials 2020, 13(21), 4968; https://doi.org/10.3390/ma13214968 - 4 Nov 2020
Cited by 12 | Viewed by 2913
Abstract
Dynamical thermomechanical analysis of 5 illite-based clays from deposits in Slovakia, Estonia, Latvia, and Hungary is presented. The clays consist of illite (37–80 mass%), quartz (12–48 mass%), K-feldspar (4–13 mass%), kaolinite (0–18 mass%), and calcite (0–3 mass%). Young’s modulus is measured during the [...] Read more.
Dynamical thermomechanical analysis of 5 illite-based clays from deposits in Slovakia, Estonia, Latvia, and Hungary is presented. The clays consist of illite (37–80 mass%), quartz (12–48 mass%), K-feldspar (4–13 mass%), kaolinite (0–18 mass%), and calcite (0–3 mass%). Young’s modulus is measured during the heating and cooling stages of firing (25 °C → 1100 °C → 25 °C). The liberation of the physically bound water increases Young’s modulus by ∼70% for all studied clays. By increasing the temperature, dehydroxylation and the α → β transition of quartz take place without a significant effect on Young’s modulus. Sintering, which starts at 800 °C, leads to an intensive increase in Young’s modulus up to the highest temperature (1100 °C). The increase remains also in the early stage of cooling (1100 °C → 800 °C). This increase of Young’s modulus is also the result of solidification of the glassy phase, which is finished at ∼750 °C. A sharp minimum of Young’s modulus is observed at around the β → α transition of quartz. Then, Young’s modulus still decreases its value down to the room temperature. The physical processes observed during heating and cooling do not differ in nature for the studied clays. Values of Young’s modulus vary at around 8 GPa, up to 800 °C. During sintering, Young’s modulus reaches values from 30 GPa to 70 GPa for the studied clays. The microstructure and composition given by the origin of the clay play a cardinal role for the Young’s modulus of the final ceramic body. Full article
(This article belongs to the Special Issue Thermophysical Properties of Materials)
Show Figures

Figure 1

12 pages, 6120 KB  
Article
The Influence of Fly Ash on Mechanical Properties of Clay-Based Ceramics
by Tomáš Húlan, Igor Štubňa, Ján Ondruška and Anton Trník
Minerals 2020, 10(10), 930; https://doi.org/10.3390/min10100930 - 21 Oct 2020
Cited by 16 | Viewed by 3743 | Correction
Abstract
Elastic properties of mixtures of illitic clay, thermal power plant fly ash (fluidized fly ash—FFA and pulverized fly ash—PFA), and grog were investigated during the heating and cooling stages of the firing. The grog part in the mixtures was replaced with 10, 20, [...] Read more.
Elastic properties of mixtures of illitic clay, thermal power plant fly ash (fluidized fly ash—FFA and pulverized fly ash—PFA), and grog were investigated during the heating and cooling stages of the firing. The grog part in the mixtures was replaced with 10, 20, 30, and 40 mass% of the fly ash, respectively. The temperature dependence of Young’s modulus was derived using the dynamical thermomechanical analysis, in which dimensions and mass determined from thermogravimeric and thermodilatometric results were used. Flexural strength was measured at the room temperature using the three-point bending test. The following results were obtained: (1) Bulk density showed a decreasing trend up to 900 °C and a steep increase above 900 °C. During cooling, the bulk density slightly increased down to the room temperature. (2) Young’s modulus increased significantly during heating up to ~300 °C. Dehydroxylation was almost not reflected in Young’s modulus. At temperatures higher than 800 °C, Young’s modulus began to increase due to sintering. (3) During cooling, down to the glass transformation, Young’s modulus slightly increased and then began to slightly decrease due to microcracking between phases with different thermal expansion coefficients. (4) Around the β→α quartz transition, radial stresses on the quartz grain altered from compressive to tensile, creating microcracks. Below 560 °C, the radial stress remained tensile, and consequently, the microcracking around the quartz grains and a decreasing Young’s modulus continued. (5) With a lower amount of PFA and FFA, a higher Young’s modulus was reached after sintering. The final values of Young’s modulus, measured after firing, show a decreasing trend and depend linearly on the part of fly ash. (6) The flexural strength measured after firing decreased linearly with the amount of the fly ash for both mixtures. Full article
(This article belongs to the Special Issue Clay Minerals and Waste Fly Ash Ceramics)
Show Figures

Figure 1

23 pages, 9119 KB  
Article
Monometallic Cerium Layered Double Hydroxide Supported Pd-Ni Nanoparticles as High Performance Catalysts for Lignin Hydrogenolysis
by Tibo De Saegher, Jeroen Lauwaert, Jorku Hanssen, Els Bruneel, Matthias Van Zele, Kevin Van Geem, Klaartje De Buysser and An Verberckmoes
Materials 2020, 13(3), 691; https://doi.org/10.3390/ma13030691 - 4 Feb 2020
Cited by 15 | Viewed by 4672
Abstract
Monometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N [...] Read more.
Monometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N2-sorption and XRF analyses revealed that by increasing the calcination temperature from 200 to 800 °C, the Ce-LDH material transforms to ceria (CeO2) in four distinct phases, i.e., the loss of intramolecular water, dehydroxylation, removal of nitrate groups and removal of sulfate groups. When loaded with 2.5 wt% palladium (Pd) and 2.5 wt% nickel (Ni) and calcined at 500 °C, the PdNi-Ce-LDH-derived catalysts strongly outperform the PdNi-CeO2 benchmark catalyst in terms of conversion as well as selectivity for the hydrogenolysis of benzyl phenyl ether (BPE), a model compound for the α-O-4 ether linkage in lignin. The PdNi-Ce-LDH catalysts showed full selectivity towards phenol and toluene while the PdNi-CeO2 catalysts showed additional oxidation of toluene to benzoic acid. The highest BPE conversion was observed with the PdNi-Ce-LDH catalyst calcined at 600 °C, which could be related to an optimum in morphological and compositional characteristics of the support. Full article
(This article belongs to the Special Issue Advances in Microporous and Mesoporous Materials)
Show Figures

Graphical abstract

10 pages, 2775 KB  
Article
Pharmacokinetics, Tissue Distribution, Plasma Protein Binding Studies of 10-Dehydroxyl-12-Demethoxy-Conophylline, a Novel Anti-Tumor Candidate, in Rats
by Chengjun Jiang, Jie Li, Xianghai Cai, Nini Li, Yan Guo and Dianlei Wang
Molecules 2019, 24(2), 283; https://doi.org/10.3390/molecules24020283 - 14 Jan 2019
Cited by 5 | Viewed by 3281
Abstract
10-Dehydroxyl-12-demethoxy-conophylline is a natural anticancer candidate. The motivation of this study was to explore the pharmacokinetic profiles, tissue distribution, and plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline in Sprague Dawley rats. A rapid, sensitive, and specific ultra-performance liquid chromatography (UPLC) system with a fluorescence (FLR) [...] Read more.
10-Dehydroxyl-12-demethoxy-conophylline is a natural anticancer candidate. The motivation of this study was to explore the pharmacokinetic profiles, tissue distribution, and plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline in Sprague Dawley rats. A rapid, sensitive, and specific ultra-performance liquid chromatography (UPLC) system with a fluorescence (FLR) detection method was developed for the determination of 10-dehydroxyl-12-demethoxy-conophylline in different rat biological samples. After intravenous (i.v.) dosing of 10-dehydroxyl-12-demethoxy-conophylline at different levels (4, 8, and 12 mg/kg), the half-life t1/2α of intravenous administration was about 7 min and the t1/2β was about 68 min. The AUC0→∞ increased in a dose-proportional manner from 68.478 μg/L·min for 4 mg/kg to 305.616 mg/L·min for 12 mg/kg. After intragastrical (i.g.) dosing of 20 mg/kg, plasma levels of 10-dehydroxyl-12-demethoxy-conophylline peaked at about 90 min. 10-dehydroxyl-12-demethoxy-conophyllinea absolute oral bioavailability was only 15.79%. The pharmacokinetics process of the drug was fit to a two-room model. Following a single i.v. dose (8 mg/kg), 10-dehydroxyl-12-demethoxy-conophylline was detected in all examined tissues with the highest in kidney, liver, and lung. Equilibrium dialysis was used to evaluate plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline at three concentrations (1.00, 2.50, and 5.00 µg/mL). Results indicated a very high protein binding degree (over 80%), reducing substantially the free fraction of the compound. Full article
Show Figures

Figure 1

Back to TopTop