Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,049)

Search Parameters:
Keywords = AA9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 310 KiB  
Article
Association Between Genetic Variants in TNF, IL6, and IL1B Genes and Severity of COVID-19: A Cross-Sectional Study of Patients from Southern Brazil
by Mariléa Furtado Feira, Renan Cesar Sbruzzi, Miriãn Ferrão Maciel-Fiuza, Vitória Carolina Griebeler, Tatiana Schaffer Gregianini, Letícia Garay Martins, Nathan Araujo Cadore, Jose Artur Bogo Chies, Thayne Woycinck Kowalski and Fernanda Sales Luiz Vianna
Diagnostics 2025, 15(11), 1403; https://doi.org/10.3390/diagnostics15111403 (registering DOI) - 31 May 2025
Abstract
Background/Objectives: Genetic variants in cytokine genes such as IL1B, IL6, and TNF may influence inflammatory responses to SARS-CoV-2 and affect disease severity. This study investigates the role of these variants in relation to COVID-19 outcomes, including hospitalization, ICU admission, and mortality. [...] Read more.
Background/Objectives: Genetic variants in cytokine genes such as IL1B, IL6, and TNF may influence inflammatory responses to SARS-CoV-2 and affect disease severity. This study investigates the role of these variants in relation to COVID-19 outcomes, including hospitalization, ICU admission, and mortality. Methods: A total of 500 unvaccinated individuals from southern Brazil diagnosed with COVID-19 via RT-PCR were analyzed. DNA was extracted from nasopharyngeal swabs and genotyped for functional variants selected based on evidence of regulatory function and prior associations with inflammatory outcomes—IL1B (rs4848306, rs1143623, rs16944, rs1143627), IL6 (rs1800795, rs2069832, rs2069840, rs2069845), and TNF (rs1799964, rs1800630, rs1799724, rs1800629, rs361525). Multivariate logistic regression analysis, adjusted for sex and age, was employed to assess the association between these genetic variants and severe clinical outcomes. Results: The results indicated that the IL1B rs16944-AG (OR: 1.98 [95% CI: 1.22–3.23], p = 0.006) and TNF rs1799964-CT (OR: 1.97 [95% CI: 1.22–3.22], p = 0.006) genotypes were associated with the need for hospitalization, while TNF rs1800630-AA (OR: 2.37 [95% CI: 1.08–5.33], p = 0.034) was associated with ICU admission. Additionally, the CC genotype of TNF rs1799964 was associated with a higher risk of mortality (OR: 3.73 [95% CI: 1.21–14.37], p = 0.034). Conclusions: Genetic variants—specifically IL1B rs16944 and rs1143627, and TNF rs1799964 and rs1800630—were associated with COVID-19 severity and should be further investigated in larger studies to evaluate their potential as predictive markers of severe outcomes in COVID-19. Full article
(This article belongs to the Special Issue New Diagnostic and Testing Strategies for Infectious Diseases)
18 pages, 3236 KiB  
Article
Biological Characteristics and Fungicide Screening of Bipolaris oryzae Causing Leaf Spot on Banana in China
by Yanxiang Qi, Hong Zhao, Zhaojing Zhang, Yanfei Ouyang and Xin Zhang
Microorganisms 2025, 13(6), 1285; https://doi.org/10.3390/microorganisms13061285 (registering DOI) - 30 May 2025
Viewed by 4
Abstract
Foliar diseases caused by various fungi severely affect the yield and quality of banana crops. This study was conducted to clarify the biological characteristics of Bipolaris oryzae (teleomorph: Cochliobolus miyabeanus), a pathogen reported in 2023 as a new etiological agent of leaf [...] Read more.
Foliar diseases caused by various fungi severely affect the yield and quality of banana crops. This study was conducted to clarify the biological characteristics of Bipolaris oryzae (teleomorph: Cochliobolus miyabeanus), a pathogen reported in 2023 as a new etiological agent of leaf spot in the banana variety ‘Pisang Mas’ (Musa acuminata, AA group) in Hainan Province, China, and to screen effective fungicides for its control. The results indicated that banana leaf extract agar (BLEA) and cornmeal agar (CMA) were the best media for the growth and sporulation of the pathogen, respectively. The pathogen grew best on a Czapek’s agar (CZA) medium with sucrose as a carbon source and yeast extract as a nitrogen source, while the optimal carbon and nitrogen sources for sporulation were lactose and beef extract, respectively. The pathogen could grow within a temperature range from 5 °C to 35 °C, and the optimal temperatures for growth and sporulation were 30 °C and 25 °C, respectively. Exposure to 50 °C for 10 min was lethal. Additionally, the pathogen could grow and sporulate within pH ranges of 4 to 10 and 4 to 9, respectively, and the optimal pH values for growth and sporulation were 5 and 8, respectively. The optimal photoperiods for growth and sporulation were 16 h light/8 h dark and 24 h light, respectively. Among the 12 tested fungicides, 500 g/L of iprodione SC showed the highest toxicity against B. oryzae, with an EC50 value of 0.08 μg/mL, followed by 30% difenoconazole–azoxystrobin SC and 125 g/L of epoxiconazole SC, with EC50 values of 0.13 μg·mL-1 and 0.20 μg/mL, respectively. A fungicide containing 40% chlorothalonil SC had the poorest fungicidal activity, with an EC50 value of 155.98 μg/mL. An artificial inoculation pot experiment showed that 125 g/L of epoxiconazole SC at 250 μg/mL, 500 g/L of iprodione SC at 1667 μg/mL, and 30% difenoconazole–azoxystrobin SC at 250 μg/mL provided a protective control efficacy of 100% against B. oryzae, while 125 g/L of epoxiconazole SC at 250 μg/mL and 500 g/L of iprodione SC at 1667 μg/mL provided a curative control efficacy of greater than 60%. This study clarified the optimal conditions for the mycelial growth and sporulation of B. oryzae isolated from banana and screened out fungicides with effective inhibitory activities. These results can provide guidance for field applications and the management of leaf spot caused by B. oryzae in banana. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions, 2nd Edition)
24 pages, 2681 KiB  
Article
Phenols Extraction from Sorghum Byproducts: Upcycling Strategies and Food Applications
by Tiziana Amoriello, Francesco Mellara, Roberto Ciorba, Danilo Ceccarelli, Monica Amoriello, Federica Taddei and Roberto Ciccoritti
Antioxidants 2025, 14(6), 668; https://doi.org/10.3390/antiox14060668 (registering DOI) - 30 May 2025
Viewed by 137
Abstract
In this research, ultrasound-assisted extraction (UAE) coupled with response surface methodology was used to identify the optimal process parameters (temperature, time, and solvent composition (ethanol–water ratio)) for bioactive compounds extraction from stalks and debranning products. Extraction efficiency was assessed in terms of total [...] Read more.
In this research, ultrasound-assisted extraction (UAE) coupled with response surface methodology was used to identify the optimal process parameters (temperature, time, and solvent composition (ethanol–water ratio)) for bioactive compounds extraction from stalks and debranning products. Extraction efficiency was assessed in terms of total phenolic compounds (TPCs) and antioxidant activity (AA), and phenolic profiles were identified using HPLC-DAD for the four samples of byproducts (two samples from stalks, C1 and C2, and two samples for debranning products, C3 and C4, from two different farms). The optimized extract containing the highest amount of TPC at different levels was used to enrich bread to evaluate the ability of extending their shelf life using a hyperspectral imaging device (935–1720 nm). Under the optimal conditions, the amounts of phenolics on average in stalk increased by about 79.5% and 47.0% in debranning products, whereas the relative AA increased by about 28.5% (C1 and C2 samples) and 63.0% (C3 and C4 samples) when UAE was applied with respect to the traditional technique. The characterization of stalk phenolic acids profile revealed that gallic, ferulic, and 4-coumaric acids were the prevalent ones. Otherwise, caffeic, syringic, and 3-coumaric acids were the most abundant in debranning products. As expected, enriched bread showed a significant increase in TPC and AA values without influence on organoleptic characteristics. Finally, enriched bread showed a shelf-life increase of about five days. Full article
Show Figures

Figure 1

15 pages, 2024 KiB  
Review
Efficacy of Upadacitinib in Treating Alopecia Areata, Atopic Dermatitis, and Th1 Comorbidities in Pediatric Patients: A Comprehensive Case Series and Literature Review
by Chiara Battilotti, Giulia Azzella, Annunziata Dattola, Alfredo Rossi, Francesca Svara, Camilla Chello, Ester Del Duca, Giovanni Paolino, Steven P. Nisticò, Giovanni Pellacani and Teresa Grieco
J. Clin. Med. 2025, 14(11), 3881; https://doi.org/10.3390/jcm14113881 (registering DOI) - 30 May 2025
Viewed by 38
Abstract
Alopecia areata (AA) and atopic dermatitis (AD) are complex immune-mediated conditions that frequently coexist in pediatric patients, complicating treatment approaches. Upadacitinib, a selective JAK1 inhibitor, modulates both Th1 and Th2 pathways and is approved for AD in adolescents and adults. This study presents [...] Read more.
Alopecia areata (AA) and atopic dermatitis (AD) are complex immune-mediated conditions that frequently coexist in pediatric patients, complicating treatment approaches. Upadacitinib, a selective JAK1 inhibitor, modulates both Th1 and Th2 pathways and is approved for AD in adolescents and adults. This study presents a case series of three adolescent patients with refractory AA and AD treated with upadacitinib 15 mg/day for 12 months, alongside a comprehensive literature review. All patients demonstrated rapid remission of AD symptoms within the first month and progressive hair regrowth, with SALT scores significantly improving at six and twelve months. No severe adverse events were reported. Notably, one patient achieved complete regrowth despite the presence of ophiasis, a pattern typically associated with poor prognosis. Our literature review identified only four previous pediatric cases successfully treated with upadacitinib, highlighting the novelty of our findings. These cases, together with our experience, suggest that upadacitinib offers a safe and effective therapeutic option for pediatric patients with concomitant AA and AD, including those who failed conventional or biologic therapies such as dupilumab. Larger, controlled studies are needed to confirm long-term efficacy and safety. Our results also support the potential role of upadacitinib in managing multiple Th1/Th2-mediated comorbidities in pediatric populations. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 (registering DOI) - 30 May 2025
Viewed by 116
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

17 pages, 8350 KiB  
Article
Characterisation and In Vitro Drug Release Profiles of Oleanolic Acid- and Asiatic Acid-Loaded Solid Lipid Nanoparticles (SLNs) for Oral Administration
by Michael Oboh, Eman Elhassan, Neil Anthony Koorbanally, Laurencia Govender, Muthulisi Siwela, Thirumala Govender and Blessing Nkazimulo Mkhwanazi
Pharmaceutics 2025, 17(6), 723; https://doi.org/10.3390/pharmaceutics17060723 - 30 May 2025
Viewed by 110
Abstract
Objectives: This study characterised and evaluated the stability, solubility, and in vitro drug release of OA- and AA-loaded SLNs. Methods: The OA- and AA-SLNs were formulated using the emulsion solvent evaporation method and characterised based on particle size (PS), polydispersity index (PDI), zeta [...] Read more.
Objectives: This study characterised and evaluated the stability, solubility, and in vitro drug release of OA- and AA-loaded SLNs. Methods: The OA- and AA-SLNs were formulated using the emulsion solvent evaporation method and characterised based on particle size (PS), polydispersity index (PDI), zeta potential (ZP), and transmission electron microscopy (TEM). Solubility studies were conducted in PBS (pH 1.2 and 6.8) and dH2O using HPLC, while in vitro drug release was assessed in simulated intestinal fluid (SIF) (pH 6.8). Results: The optimised OA-SLNs (1:1 drug-to-lipid ratio) showed PS, PDI, ZP, and EE% values of 312.9 ± 3.617 nm, 0.157 ± 0.014, −17.0 ± 0.513 mV, and 86.54 ± 1.818%, respectively. The optimised AA-SLNs (1:2 drug-to-lipid: ratio) had a PS of 115.5 ± 0.458 nm, PDI of 0.255 ± 0.007, ZP of −11.9 ± 0.321 mV, and EE% of 76.22 ± 0.436%. The SLNs remained stable for 60 days at 4 °C and room temperature (p < 0.05). The solubility study revealed that free OA and AA showed no measurable values in the three solvents. However, OA-SLNs showed the highest solubility in H2O (16-fold) followed by PBS at pH 6.8 (10-fold) and pH 1.2 (10-fold). AA-SLNs significantly improved the solubility in PBS at pH 6.8 (88-fold), compared to dH2O (6-fold) and PBS at pH 1.2 (26-fold). In vitro drug release studies showed that OA release from the SLNs was significantly increased within 300 min (p < 0.05) compared to the free drug. Similarly, AA release from the SLNs was significantly increased within 300 min (p < 0.05) compared to free AA. Conclusions: These results demonstrate that SLNs enhance OA and AA solubility and drug release, suggesting a promising strategy for improving oral bioavailability and therapeutic efficacy. Full article
Show Figures

Figure 1

13 pages, 4379 KiB  
Article
Optimizing Chlorella vulgaris Bioremediation of Wastewater via Advanced Aeration Systems: A Pilot-Scale Implementation
by Lamprini Malletzidou, Eleni Kyratzopoulou, Evangelos Nerantzis, Nikoletta Kyzaki, Nestor C. Tsirliganis and Nikolaos A. Kazakis
Processes 2025, 13(6), 1709; https://doi.org/10.3390/pr13061709 - 30 May 2025
Viewed by 212
Abstract
Towards the bioremediation of toxic compounds from aquatic environments using living microalgae, Chlorella vulgaris has emerged as a promising candidate for the removal of heavy metals. The present study advances the scale-up of the microalga’s culture and investigates its efficiency in multi-metal removal [...] Read more.
Towards the bioremediation of toxic compounds from aquatic environments using living microalgae, Chlorella vulgaris has emerged as a promising candidate for the removal of heavy metals. The present study advances the scale-up of the microalga’s culture and investigates its efficiency in multi-metal removal (Cu, Cd, Ni, Pb, and Zn at 1 ppm each). Two aeration conditions were investigated: standard/conventional aeration (SA), and an innovative, custom-built micro-bubble aeration (MBA), which optimizes CO2 residence time to enhance photosynthesis. Conducted in a pilot-scale 30 L photobioreactor (PBR) over a cultivation period of 7 days, control and multi-metal treated cultures were monitored for pH, cell population growth, and pigment content. Heavy metal removal efficiency was evaluated by means of atomic absorption spectroscopy (AAS) on Days 3 and 7 of cultivation. The comparative results reveal that MBA significantly enhances both the population and the photosynthetic pigment content of the cultures. Furthermore, the heavy metal removal efficiency under MBA reached up to 95% even by Day 3 of cultivation, remarkably higher than the 67% of the SA treated culture. These findings not only demonstrate Chlorella vulgaris’s effectiveness in multi-metal treated systems but also highlight the potential of advanced aeration systems to enhance bioremediation efficiency in larger-scale aquatic environments. Full article
Show Figures

Figure 1

34 pages, 4080 KiB  
Article
Comprehensive Assessment of Potentially Toxic Element (PTE) Contamination in Honey from a Historically Polluted Agro-Industrial Landscape: Implications for Agricultural Sustainability and Food Safety
by Ioana Andra Vlad, Szilárd Bartha, Győző Goji, Ioan Tăut, Florin Alexandru Rebrean, Laviniu Ioan Nuțu Burescu, Călin Gheorghe Pășcuț, Petrică Tudor Moțiu, Adrian Tunduc, Claudiu Ion Bunea and Florin-Dumitru Bora
Agriculture 2025, 15(11), 1176; https://doi.org/10.3390/agriculture15111176 - 29 May 2025
Viewed by 200
Abstract
Honey is increasingly recognized not only as a functional food but also as a potential bioindicator of environmental pollution. This study assessed the concentrations of four potentially toxic elements (PTEs)—lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn)—in 48 multifloral honey samples collected [...] Read more.
Honey is increasingly recognized not only as a functional food but also as a potential bioindicator of environmental pollution. This study assessed the concentrations of four potentially toxic elements (PTEs)—lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn)—in 48 multifloral honey samples collected in 2023 from seven locations across a historically polluted agro-industrial region in Romania. Samples were analyzed using Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace AAS (GFAAS), with quality control ensured through certified reference materials. Results revealed that Pb (0.72–1.69 mg/kg) and Cd (0.02–0.37 mg/kg) levels consistently exceeded international safety thresholds, while Cu (0.62–2.22 mg/kg) and Zn (0.91–1.93 mg/kg), although essential nutrients, were found in elevated concentrations. Spatial analysis indicated a general trend of higher contamination in sites located closer to former industrial facilities, influenced by factors such as altitude and atmospheric transport. These findings confirm the persistent environmental burden in post-industrial landscapes and support the use of honey as a cost-effective tool for pollution monitoring. The study underscores the need for targeted environmental policies, sustainable apicultural practices, and continued surveillance to protect ecosystem health and food safety. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

16 pages, 1231 KiB  
Article
Polymorphisms in Necroptosis Pathway Genes: Novel Prognostic Markers for Multiple Myeloma Treatment Outcomes
by Marcin Sokołowski, Piotr Łacina, Katarzyna Bogunia-Kubik, Grzegorz Mazur and Aleksandra Butrym
Int. J. Mol. Sci. 2025, 26(11), 5237; https://doi.org/10.3390/ijms26115237 - 29 May 2025
Viewed by 55
Abstract
Multiple myeloma is a neoplastic disease characterised by the proliferation of clonal, atypical plasma cells. In cancer cells, the balance between two paths of cell death, necroptosis and apoptosis, is disrupted. The aim of this study was to analyse the occurrence of polymorphisms [...] Read more.
Multiple myeloma is a neoplastic disease characterised by the proliferation of clonal, atypical plasma cells. In cancer cells, the balance between two paths of cell death, necroptosis and apoptosis, is disrupted. The aim of this study was to analyse the occurrence of polymorphisms in genes encoding key proteins for the necroptosis process, i.e., RIPK-1, RIPK-3 and MAPKAPK2. We investigated the potential relations between the occurrence of genetic variability and the clinical course of the disease. We analysed six single-nucleotide polymorphisms in a population of patients with multiple myeloma (n = 205) and healthy volunteers (n = 100): RIPK1 rs2272990, RIPK1 rs9391981, RIPK3 rs724165, RIPK3rs3212243, MAPKAPK2, rs45514798 and MAPKAPK2 rs4073250. We found that genotypes rs9391981 CG, rs724165 CG, rs3212243 GG, and rs4073250 AA were independent predictors of overall survival, while genotype MAPKAPK2 rs4073250 AA was an independent predictor of progression-free survival. MAPKAPK2 rs45514798 AA was associated with polyneuropathy after thalidomide therapy. In conclusion, some of the SNPs tested have potential prognostic value and could be used as marker of survival in patients with multiple myeloma. Full article
(This article belongs to the Special Issue Molecular Studies of Hematologic Malignancies)
Show Figures

Figure 1

24 pages, 13221 KiB  
Article
Initial Characterization of the Layer Interface for Graphite-Free Additive Friction Stir Deposition of AA7075
by Jacob Hansen, Andrew Holladay, Luk Dean, Aaron Christiansen, Michael Merrell, Yuri Hovanski and Scott Rose
Metals 2025, 15(6), 614; https://doi.org/10.3390/met15060614 - 29 May 2025
Viewed by 86
Abstract
Additive friction stir deposition (AFSD) is a novel friction stir technology. It is one of the most prolific solid-state metal deposition processes. In recent years, the aerospace and defense industries have increased their investment in the deposition of 7xxx aluminum alloys. This has [...] Read more.
Additive friction stir deposition (AFSD) is a novel friction stir technology. It is one of the most prolific solid-state metal deposition processes. In recent years, the aerospace and defense industries have increased their investment in the deposition of 7xxx aluminum alloys. This has allowed AFSDs of 7xxx aluminum to move from a laboratory environment to being tested in an industrial setting. This work strives to help move the AFSD of AA7075 toward an effective production environment by providing an initial characterization of the graphite-free layer interface. To the authors’ knowledge, this is the first graphite-free study to utilize both knub–scroll and scroll tools in AA7075. It is also the first study to compare how flat, knub, knub–scroll, and scroll influence layer mixing in graphite-free AA7075. The condition of the layer interface is particularly important to build direction properties. As many end users of AFSD desire isotropic properties, improving build direction properties is extremely important. This work looks at how external tool geometries and layer height impact the layer interface. The objective is to not only better characterize the layer interface but also to determine if a specific external geometry and or layer height could help facilitate a stronger layer interface. It was found that depositions made by the knub tool at a 2.5 mm layer height generated the most visually consolidated layer interface at an optical and SEM level. Under EDS analysis, the knub tool only saw a 12% variation between peak and background oxygen counts. EBSD scans also revealed a more consistent grain size distribution. Full article
Show Figures

Figure 1

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 155
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 4658 KiB  
Article
Potentiostatic Plasma Electrolytic Oxidation (PEO) of Aluminum Alloy AA6082: Effect of Electrical Input on Coating Microstructure and Corrosion Resistance
by Alberto Berardi, Matteo Gamba, Luca Paterlini, Federica Ceriani and Marco Ormellese
Coatings 2025, 15(6), 653; https://doi.org/10.3390/coatings15060653 - 29 May 2025
Viewed by 141
Abstract
Aluminum alloy AA6082 (Al-Si-Mg) is a lightweight alloy that requires thick barrier coatings to be protected from localized corrosion. Plasma Electrolytic Oxidation (PEO) coating is a common anodic surface treatment used for growing protective oxides; the main process variables of PEO are the [...] Read more.
Aluminum alloy AA6082 (Al-Si-Mg) is a lightweight alloy that requires thick barrier coatings to be protected from localized corrosion. Plasma Electrolytic Oxidation (PEO) coating is a common anodic surface treatment used for growing protective oxides; the main process variables of PEO are the composition of the electrolytic solution and the electrical input. This work focuses on the optimization of the electrical input by comparing different coatings produced by potentiostatic PEO at the effective potential of 350 V, applied by different combinations of voltage ramps with various slopes and maintenance times at the fixed potential. All processes lasted five minutes. The innovative character of this research work is the evaluation of the combined effect of the anodizing voltage and its different trends with time on the coating structure and morphology. The corrosion resistance of coated AA6082 is assessed in contact with chlorides, reproducing seawater. The resulting anodic coatings were compared in terms of structure, composition (thickness, XRD, SEM-EDS) and corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy), finding that longer maintenance at high anodizing potentials promotes localized high-energy plasma discharges, producing larger pores and thicker, but less protective coatings. Results show that the coating thickness increases with the maintenance time (maximum thickness value~17.6 μm). Shorter maintenance periods and longer voltage ramps lead to a lower surface porosity and enhanced corrosion performances of the oxide. The thinnest and least porous coating exhibits the best corrosion behavior (CR~1.1 μm/year). Full article
Show Figures

Figure 1

30 pages, 3063 KiB  
Article
Operation Strategy of Multi-Virtual Power Plants Participating in Joint Electricity–Carbon Market Based on Carbon Emission Theory
by Jiahao Zhou, Dongmei Huang, Xingchi Ma and Wei Hu
Energies 2025, 18(11), 2820; https://doi.org/10.3390/en18112820 - 28 May 2025
Viewed by 126
Abstract
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they [...] Read more.
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they participate in multi-tier markets, including energy, ancillary services, and capacity trading. This study proposes a load factor-based VPP pre-dispatch model for optimal resource allocation. It incorporates the coupling effects of electricity–carbon markets. A Nash negotiation strategy is developed for multi-VPP cooperation. The model uses an accelerated adaptive alternating-direction multiplier method (AA-ADMM) for efficient demand response. The approach balances computational efficiency with privacy protection. Revenue is allocated fairly based on individual contributions. The study uses data from a VPP dispatch center in Shanxi Province. Shanxi has abundant wind and solar resources, necessitating advanced scheduling methods. Cooperative operation boosts profits for three VPPs by CNY 1101, 260, and 823, respectively. The alliance’s total profit rises by CNY 2184. Carbon emissions drop by 31.3% to 8.113 tons, with a CNY 926 gain over independent operation. Post-cooperation, VPP1 and VPP2 see slight emission increases, while VPP3 achieves major reductions. This leads to significant low-carbon benefits. This method proves effective in cutting costs and emissions. It also balances economic and environmental gains while ensuring fair profit distribution. Full article
Show Figures

Figure 1

13 pages, 619 KiB  
Article
Exploring the Association Between CD36 rs1761667 Polymorphism and Susceptibility to Non-Contact Tissue Injuries in Moroccan Elite Cyclists and Field Hockey Players: A Pilot Study
by El Mokhtar El Ouali, Jihan Kartibou, Juan Del Coso, Badreddine El Makhzen, Laila Bouguenouch, Ramzi El Akbir, Abdelmoujoud El Haboussi, Omar Akhouayri, Azeddine Ibrahimi, Abdelhalem Mesfioui and Hassane Zouhal
Genes 2025, 16(6), 651; https://doi.org/10.3390/genes16060651 - 28 May 2025
Viewed by 179
Abstract
Background: Non-contact tissue injury in elite athletes is influenced by multiple factors, including genetic predisposition. Although previous research has identified several genetic markers associated with injury susceptibility, the role of the CD36 (cluster of differentiation 36) gene, a key regulator of fatty [...] Read more.
Background: Non-contact tissue injury in elite athletes is influenced by multiple factors, including genetic predisposition. Although previous research has identified several genetic markers associated with injury susceptibility, the role of the CD36 (cluster of differentiation 36) gene, a key regulator of fatty acid transport into skeletal muscle and other vital tissues, remains unexplored in this context. A single-nucleotide polymorphism in the CD36 gene (rs1761667) involves an A-to-G substitution (with three genotypes = AA and GG homozygotes and AG heterozygotes), and previous data have reported that individuals carrying the AA genotype of the CD36 gene show reduced expression of the CD36 protein and poorer lipid metabolism. Additionally, it has been recently found that the frequency of the AA genotype is significantly lower in elite cyclists compared to field hockey players. No previous study has examined the association between the CD36 rs1761667 polymorphism and athlete injury risk. Therefore, the aim of this study was to investigate the potential association between the CD36 rs1761667 polymorphism and non-contact tissue injury susceptibility in elite Moroccan cyclists and field hockey players. Methods: Forty-three elite Moroccan male athletes, including 19 cyclists and 24 national team field hockey players, volunteered for this study. Non-contact tissue injuries during the 2022/2023 sports season have been recorded. Genotyping of the CD36 rs1761667 polymorphism was carried out using Sanger sequencing. Chi-square tests were used to analyze the Hardy–Weinberg equilibrium and compare the genotypes and characteristics of athletes with and without non-contact injuries. Results: During the 2022/2023 sports season, 21.05% of cyclists (4 out of 19) and 33.33% of field hockey players (8 out of 24) experienced non-contact tissue injuries. The genotypic frequency was similar in the injured and non-injured groups among cyclists (χ2 and p not calculated because “AA = 0” in both groups), field hockey players (χ2 = 3.30, p = 0.19), and all athletes (χ2 = 1.73, p = 0.41). Additionally, the dominant model of the CD36 rs1761667 polymorphism (AA+AG vs. GG) did not reveal a significant risk of non-contact injuries among cyclists (OR: 1.20, 95% CI: 0.13–19.09, p > 0.9999), field hockey players (OR: infinity, 95% CI: 0.23-infinity, p = 0.53), and all athletes (OR: 2.75, 95% CI: 0.32–34.12, p = 0.65). Furthermore, the recessive model (AA vs. AG+GG) did not demonstrate any effect on the risk of non-contact injuries in cyclists (OR and 95% CI not calculated, p > 0.9999), field hockey players (OR: 0.33, 95% CI: 0.05–2.40, p = 0.38), and all athletes (OR: 0.55, 95% CI: 0.10–2.60, p = 0.69). Conclusions: This study suggests that the association between specific genotypes (AA, AG, and GG) or alleles (A and G) of the CD36 gene and susceptibility to non-contact tissue injuries in Moroccan cycling and field hockey players is uncertain. Given the small sample size, further studies will be needed to explore and confirm these findings. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1139 KiB  
Article
Outcome of Sleep Rehabilitation in Autistic Children with Sleep Disorders Is Linked to Melatonin Receptor Genes SNPs
by Elisabetta Bolognesi, Alessandra Carta, Franca Rosa Guerini, Stefano Sotgiu, Cristina Agliardi, Chiara Dettori, Milena Zanzottera and Mario Clerici
Int. J. Mol. Sci. 2025, 26(11), 5198; https://doi.org/10.3390/ijms26115198 - 28 May 2025
Viewed by 45
Abstract
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor [...] Read more.
A significant proportion of children with Autism spectrum disorder (ASD) experience sleep issues, such as insomnia and other disorders, as assessed by the Sleep Disturbance Scale for Children. Our study investigated the link between six single nucleotide polymorphisms (SNPs) in the melatonin receptor genes MT1 and MT2 and ASD susceptibility, clinical severity and associated sleep problems. A total of 139 ASD children, 82 siblings, and 53 unrelated healthy controls, all of Sardinian ancestry, were studied; among them, 38 children with co-occurring sleep issues were assessed for the outcomes of a rehabilitative program, including behavioral therapy and sleep hygiene. The MT2 rs10830963 G allele is more prevalent in ASD children and their siblings compared to the healthy controls, while rs2119882 (MT1) and rs1562444 (MT2) are associated with DIMS, DA, and SHY. ASD Children carrying the rs2119882 T allele have higher scores for DIMS and DA compared to C allele carriers, and those carrying rs1562444 A allele have higher scores for SHY than G allele carriers. After rehabilitative treatment, homozygous TT carriers of rs2119882 showed less improvement in DIMS symptoms compared to CT and CC carriers. A similar result was observed for AA carriers of SNP rs1562444 about SHY. We may suggest that the MT1 and MT2 variants may serve as useful predictive genetic markers for the severity of sleep disorders in children with ASD, potentially informing the design of more targeted rehabilitative treatments. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop