Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = ATRC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5866 KB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 553
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

11 pages, 1679 KB  
Article
Atom Exchange Radical Cyclization: A Sustainable Synthetic Approach towards New Functionalized Targets
by Biagio Anderlini, Andrea Severini, Camilla Ferrari, Claudio Fontanesi, Vittorio Ascari, Niccolò Braidi and Fabrizio Roncaglia
Appl. Sci. 2024, 14(11), 4357; https://doi.org/10.3390/app14114357 - 21 May 2024
Viewed by 1478
Abstract
In this study, we demonstrate the direct preparation of dihalo-γ-lactams featuring two distinct halogens from dichloroamides using a novel atom exchange radical cyclization (AERC) procedure. This method integrates the established atom transfer radical cyclization (ATRC) with halogen exchange in solution. The [...] Read more.
In this study, we demonstrate the direct preparation of dihalo-γ-lactams featuring two distinct halogens from dichloroamides using a novel atom exchange radical cyclization (AERC) procedure. This method integrates the established atom transfer radical cyclization (ATRC) with halogen exchange in solution. The technique operates under mild conditions and requires small amounts of metallic copper, serving as both a supplemental activator and reducing agent. Full article
(This article belongs to the Special Issue Recent Advances in Green Chemistry and Sustainable Catalysis)
Show Figures

Figure 1

15 pages, 2916 KB  
Article
Synthesis of PDMS-μ-PCL Miktoarm Star Copolymers by Combinations (Є) of Styrenics-Assisted Atom Transfer Radical Coupling and Ring-Opening Polymerization and Study of the Self-Assembled Nanostructures
by Yi-Shen Huang, Dula Daksa Ejeta, Kun-Yi (Andrew) Lin, Shiao-Wei Kuo, Tongsai Jamnongkan and Chih-Feng Huang
Nanomaterials 2023, 13(16), 2355; https://doi.org/10.3390/nano13162355 - 17 Aug 2023
Cited by 5 | Viewed by 2807
Abstract
Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 [...] Read more.
Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 °C. By achieving high coupling efficiency (χc = 0.95), we obtained mid-chain functionalized PDMS-VBAm-PDMS polymers with benzylic alcohols. Interestingly, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis revealed the insertion of only two VBA coupling agents (m = 2). Subsequently, the PDMS-VBA2-PDMS products underwent mid-chain extensions using ε-caprolactone (ε-CL) through ring-opening polymerization (ROP) with an efficient organo-catalyst at 40 °C, resulting in the synthesis of novel (PDMS)2-μ-(PCL)2 μ-SCPs. Eventually, novel (PDMS)2-μ-(PCL)2 μ-SCPs were obtained. The obtained PDMS-μ-PCL μ-SCPs were further subjected to examination of their solid-state self-assembly through small-angle X-ray scattering (SAXS) experiments. Notably, various nanostructures, including lamellae and hexagonally packed cylinders, were observed with a periodic size of approximately 15 nm. As a result, we successfully developed a simple and effective reaction combination (Є) strategy (i.e., SA ATRC-Є-ROP) for the synthesis of well-defined PDMS-μ-PCL μ-SCPs. This approach may open up new possibilities for fabricating nanostructures from siloxane-based materials. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Graphical abstract

19 pages, 3243 KB  
Article
Evidence for the Hydration of Some Organic Compounds during Reverse-Phase HPLC Analysis
by Igor G. Zenkevich, Abdennour Derouiche and Daria A. Nikitina
Molecules 2023, 28(2), 734; https://doi.org/10.3390/molecules28020734 - 11 Jan 2023
Cited by 7 | Viewed by 2651
Abstract
Some polar analytes (X) can reversibly form hydrates in water-containing eluents under the conditions of reversed-phase HPLC analysis, X + H2O X × H2O. One of the methods to detect their formation is the recurrent approximation of the [...] Read more.
Some polar analytes (X) can reversibly form hydrates in water-containing eluents under the conditions of reversed-phase HPLC analysis, X + H2O X × H2O. One of the methods to detect their formation is the recurrent approximation of the net retention times of such analytes, tR(C + ΔC) = atR(C) + b, where ΔC = const is the constant step in the variation of the organic modifier content of an eluent. These dependencies are linear if hydrates are not formed, but in the case of hydrate formation, they deviate from linearity under high water content. It has been shown that UV spectroscopic parameters, namely, relative optical densities: Arel = A1)/A2), depend on eluent composition for some organic compounds, but their variations cannot be used as indicators for hydrate formation. The coefficients that characterize the dependence of the analyte retention indices on the organic component concentration of an eluent, dRI/dC, appeared to be the most informative additional criterion for hydration. The values of these coefficients for most polar analytes are largely negative (dRI/dC < 0), whereas, for nonpolar compounds, they are largely positive (dRI/dC > 0). Full article
(This article belongs to the Special Issue Chromatography—The Ultimate Analytical Tool II)
Show Figures

Figure 1

3 pages, 187 KB  
Reply
Reply to Sidiropoulos, K.; Tsikopoulos, K. Comment on “Oldrini et al. PHILOS Synthesis for Proximal Humerus Fractures Has High Complications and Reintervention Rates: A Systematic Review and Meta-Analysis. Life 2022, 12, 311”
by Lorenzo Massimo Oldrini, Pietro Feltri, Jacopo Albanese, Francesco Marbach, Giuseppe Filardo and Christian Candrian
Life 2022, 12(8), 1282; https://doi.org/10.3390/life12081282 - 22 Aug 2022
Cited by 2 | Viewed by 1496
Abstract
Thank you for the opportunity to respond to the commentary [...] Full article
(This article belongs to the Special Issue Healing after Trauma)
17 pages, 3476 KB  
Article
Exploring Anatomo-Morphometric Characteristics of Infrapatellar, Suprapatellar Fat Pad, and Knee Ligaments in Osteoarthritis Compared to Post-Traumatic Lesions
by Chiara Giulia Fontanella, Elisa Belluzzi, Assunta Pozzuoli, Manuela Scioni, Eleonora Olivotto, Davide Reale, Pietro Ruggieri, Raffaele De Caro, Roberta Ramonda, Emanuele Luigi Carniel, Marta Favero and Veronica Macchi
Biomedicines 2022, 10(6), 1369; https://doi.org/10.3390/biomedicines10061369 - 9 Jun 2022
Cited by 40 | Viewed by 3595
Abstract
Several studies have investigated cartilage degeneration and inflammatory subchondral bone and synovial membrane changes using magnetic resonance (MR) in osteoarthritis (OA) patients. Conversely, there is a paucity of data exploring the role of knee ligaments, infrapatellar fat pad (IFP), and suprapatellar fat pad [...] Read more.
Several studies have investigated cartilage degeneration and inflammatory subchondral bone and synovial membrane changes using magnetic resonance (MR) in osteoarthritis (OA) patients. Conversely, there is a paucity of data exploring the role of knee ligaments, infrapatellar fat pad (IFP), and suprapatellar fat pad (SFP) in knee OA compared to post-traumatic cohorts of patients. Therefore, the aim of this study was to analyze the volumetric and morphometric characteristics of the following joint tissues: IFP (volume, surface, depth, femoral and tibial arch lengths), SFP (volume, surface, oblique, antero–posterior, and cranio–caudal lengths), anterior (ACL) and posterior cruciate ligament (PCL) (volume, surface, and length), and patellar ligament (PL) (volume, surface, arc, depth, and length). Eighty-nine MR images were collected in the following three groups: (a) 32 patients with meniscal tears, (b) 29 patients with ACL rupture (ACLR), and (c) 28 patients affected by end-stage OA. Volume, surface, and length of both ACL and PCL were determined in groups a and c. A statistical decrease of IFP volume, surface, depth, femoral and tibial arch lengths was found in end-stage OA compared to patients with meniscal tear (p = 0.002, p = 0.008, p < 0.0001, p = 0.028 and p < 0.001, respectively) and patients with ACLR (p < 0.0001, p < 0.0001, p = 0.008 and p = 0.011, respectively). An increment of volume and surface SFP was observed in group b compared to both groups a and c, while no differences were found in oblique, antero–posterior, and cranio–caudal lengths of SFP among the groups. No statistical differences were highlighted comparing volume, surface, arc, and length of PL between the groups, while PL depth was observed to be decreased in end-OA patients compared with meniscal tear patients (p = 0.023). No statistical differences were observed comparing ACL and PCL lengths between patients undergoing meniscectomy and TKR. Our study confirms that IFP MR morphometric characteristics are different between controls and OA, supporting an important role of IFP in OA pathology and progression in accordance with previously published studies. In addition, PL depth changes seem to be associated with OA pathology. Multivariate analysis confirmed that OA patients had a smaller IFP compared to patients with meniscal tears, confirming its involvement in OA. Full article
Show Figures

Graphical abstract

21 pages, 15683 KB  
Article
Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile
by Michael Spedding, Claude Sebban, Thérèse M. Jay, Cyril Rocher, Brigitte Tesolin-Decros, Paul Chazot, Esther Schenker, Gabor Szénási, György I. Lévay, Katalin Megyeri, Jozsef Barkóczy, Laszlo G. Hársing, Ian Thomson, Mark O. Cunningham, Miles A. Whittington, Lori-An Etherington, Jeremy J. Lambert, Ferenc A. Antoni and Istvan Gacsályi
Cells 2022, 11(7), 1181; https://doi.org/10.3390/cells11071181 - 31 Mar 2022
Cited by 3 | Viewed by 3668
Abstract
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which [...] Read more.
Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin. EGIS 11150 enhanced H-PFC coherence, and increased the 8–9 Hz theta band of the EEG power spectrum (from 0.002 mg/kg i.p, at >30× lower doses than clozapine, and >100× for olanzapine, risperidone, or haloperidol). EGIS 11150 fully blocked the effects of phencyclidine (PCP) or ketamine on EEG. Inhibition of long-term potentiation (LTP) in H-PFC was blocked by platform stress, but was fully restored by EGIS 11150 (0.01 mg/kg i.p.), whereas clozapine (0.3 mg/kg ip) only partially restored LTP. EGIS 11150 has a unique electrophysiological profile, so phenotypical screening on H-PFC connectivity can reveal novel antipsychotics. Full article
Show Figures

Figure 1

13 pages, 2135 KB  
Article
Thermally Degradable Poly(n-butyl acrylate) Model Networks Prepared by PhotoATRP and Radical Trap-Assisted Atom Transfer Radical Coupling
by Michael R. Martinez, Ziye Zhuang, Megan Treichel, Julia Cuthbert, Mingkang Sun, Joanna Pietrasik and Krzysztof Matyjaszewski
Polymers 2022, 14(4), 713; https://doi.org/10.3390/polym14040713 - 12 Feb 2022
Cited by 2 | Viewed by 4181
Abstract
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups [...] Read more.
Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment. Full article
(This article belongs to the Collection State-of-the-Art Polymer Science and Technology in Poland)
Show Figures

Graphical abstract

14 pages, 1714 KB  
Article
Glucoraphanin Increases Intracellular Hydrogen Sulfide (H2S) Levels and Stimulates Osteogenic Differentiation in Human Mesenchymal Stromal Cell
by Laura Gambari, Marli Barone, Emanuela Amore, Brunella Grigolo, Giuseppe Filardo, Renato Iori, Valentina Citi, Vincenzo Calderone and Francesco Grassi
Nutrients 2022, 14(3), 435; https://doi.org/10.3390/nu14030435 - 19 Jan 2022
Cited by 12 | Viewed by 3662
Abstract
Osteopenia and osteoporosis are among the most prevalent consequences of ageing, urging the promotion of healthy nutritional habits as a tool in preventing bone fractures. Glucosinolates (GLSs) are organosulfur compounds considered relatively inert precursors of reactive derivatives isothiocyanates (ITCs). Recent evidence suggests that [...] Read more.
Osteopenia and osteoporosis are among the most prevalent consequences of ageing, urging the promotion of healthy nutritional habits as a tool in preventing bone fractures. Glucosinolates (GLSs) are organosulfur compounds considered relatively inert precursors of reactive derivatives isothiocyanates (ITCs). Recent evidence suggests that GLSs may exert biological properties based on their capacity to release hydrogen sulfide (H2S). H2S-donors are known to exert anabolic function on bone cells. Here, we investigated whether a GLS, glucoraphanin (GRA) obtained from Tuscan black kale, promotes osteogenesis in human mesenchymal stromal cells (hMSCs). H2S release in buffer and intracellular H2S levels were detected by amperometric measurements and fluorimetric/cytofluorimetric analyses, respectively. Alizarin red staining assay and real-time PCR were performed to evaluate mineral apposition and mRNA expression of osteogenic genes. Using an in vitro cell culture model, our data demonstrate a sulforaphane (SFN)-independent osteogenic stimulation of GRA in hMSCs, at least partially attributable to H2S release. In particular, GRA upregulated the expression of osteogenic genes and enhanced mineral apposition while increasing intracellular concentrations of H2S. Overall, this study suggests the feasibility of using cruciferous derivatives as natural alternatives to chemical H2S-donors as adjuvant therapies in the treatment of bone-wasting diseases. Full article
(This article belongs to the Special Issue Dietary Supplements and Musculoskeletal Health and Function)
Show Figures

Figure 1

9 pages, 2769 KB  
Communication
Photoinduced Atom Transfer Radical Addition/Cyclization Reaction between Alkynes or Alkenes with Unsaturated α-Halogenated Carbonyls
by Kazuki Matsuo, Tadashi Yoshitake, Eiji Yamaguchi and Akichika Itoh
Molecules 2021, 26(22), 6781; https://doi.org/10.3390/molecules26226781 - 10 Nov 2021
Cited by 16 | Viewed by 4518
Abstract
We have developed a photochemical ATRA/ATRC reaction that is mediated by halogen bonding interactions. This reaction is caused by the reaction of malonic acid ester derivatives containing bromine or iodine with unsaturated compounds such as alkenes and alkynes in the presence of diisopropylethylamine [...] Read more.
We have developed a photochemical ATRA/ATRC reaction that is mediated by halogen bonding interactions. This reaction is caused by the reaction of malonic acid ester derivatives containing bromine or iodine with unsaturated compounds such as alkenes and alkynes in the presence of diisopropylethylamine under visible light irradiation. As a result of various control experiments, it was found that the formation of complexes between amines and halogens by halogen-bonding interaction occurs in the reaction system, followed by the cleavage of the carbon–halogen bonds by visible light, resulting in the formation of carbon radicals. In this reaction, a variety of substrates can be used, and the products, cyclopentenes and cyclopentanes, were obtained by intermolecular addition and intramolecular cyclization. Full article
(This article belongs to the Special Issue Green and Highly Efficient One-Pot Synthesis and Catalysis)
Show Figures

Graphical abstract

11 pages, 1882 KB  
Article
Universal Chain-End Coupling Conditions for Brominated Polystyrenes, Polyacrylates, and Polymethacrylates
by Joseph J. Andry, Jaenic J. Lee, Jessica Wu, Katherine Xia and Eric S. Tillman
Processes 2021, 9(6), 1001; https://doi.org/10.3390/pr9061001 - 5 Jun 2021
Cited by 3 | Viewed by 3703
Abstract
Atom transfer radical coupling (ATRC), performed with or without radical traps, has allowed for high extents of coupling (Xc) for a variety of brominated polymers, yet structurally different polymeric chain ends require unique reagents and reaction conditions. Inspired by a similar [...] Read more.
Atom transfer radical coupling (ATRC), performed with or without radical traps, has allowed for high extents of coupling (Xc) for a variety of brominated polymers, yet structurally different polymeric chain ends require unique reagents and reaction conditions. Inspired by a similar study that focused on universal conditions for the controlled polymerization of different monomers using atom transfer radical polymerization (ATRP), this work focuses on developing a single set of conditions (or conditions with as little variation as possible) that will achieve extents of coupling greater than 80% or end-brominated chains of polystyrene (PSBr), poly(methyl methacrylate) (PMMABr), and poly(methyl acrylate) (PMABr). The radical traps α-phenyl-tert-butylnitrone (PBN), 2-methyl-2-nitrosopropane (MNP), and nitrosobenzene (NBz) were chosen in this study, along with copper catalysts, reducing agents, and nitrogen-based ligands. Ultimately, a single set of effective reaction conditions was identified with the only difference being the radical trap used: MNP was effective for coupling PSBr and PMABr while NBz was necessary to achieve similarly high extents of coupling for PMMABr. Full article
(This article belongs to the Special Issue Tailoring Polymeric Materials for Specific Applications)
Show Figures

Graphical abstract

16 pages, 1029 KB  
Review
Secretome and Extracellular Vesicles as New Biological Therapies for Knee Osteoarthritis: A Systematic Review
by Daniele D’Arrigo, Alice Roffi, Magali Cucchiarini, Matteo Moretti, Christian Candrian and Giuseppe Filardo
J. Clin. Med. 2019, 8(11), 1867; https://doi.org/10.3390/jcm8111867 - 4 Nov 2019
Cited by 79 | Viewed by 8336
Abstract
Secretome and extracellular vesicles (EVs) are considered a promising option to exploit mesenchymal stem cells’ (MSCs) properties to address knee osteoarthritis (OA). The aim of this systematic review was to analyze both the in vitro and in vivo literature, in order to understand [...] Read more.
Secretome and extracellular vesicles (EVs) are considered a promising option to exploit mesenchymal stem cells’ (MSCs) properties to address knee osteoarthritis (OA). The aim of this systematic review was to analyze both the in vitro and in vivo literature, in order to understand the potential of secretome and EVs as a minimally invasive injective biological approach. A systematic review of the literature was performed on PubMed, Embase, and Web of Science databases up to 31 August 2019. Twenty studies were analyzed; nine in vitro, nine in vitro and in vivo, and two in vivo. The analysis showed an increasing interest in this emerging field, with overall positive findings. Promising in vitro results were documented in terms of enhanced cell proliferation, reduction of inflammation, and down-regulation of catabolic pathways while promoting anabolic processes. The positive in vitro findings were confirmed in vivo, with studies showing positive effects on cartilage, subchondral bone, and synovial tissues in both OA and osteochondral models. However, several aspects remain to be clarified, such as the different effects induced by EVs and secretome, which is the most suitable cell source and production protocol, and the identification of patients who may benefit more from this new biological approach for knee OA treatment. Full article
(This article belongs to the Special Issue Cartilage Repair and Restorative Procedures)
Show Figures

Figure 1

16 pages, 9223 KB  
Article
Synthesis of Poly(ε-caprolactone)-Based Miktoarm Star Copolymers through ROP, SA ATRC, and ATRP
by Venkatesan Sathesh, Jem-Kun Chen, Chi-Jung Chang, Junko Aimi, Zong-Cheng Chen, Yu-Chih Hsu, Yi-Shen Huang and Chih-Feng Huang
Polymers 2018, 10(8), 858; https://doi.org/10.3390/polym10080858 - 2 Aug 2018
Cited by 13 | Viewed by 6558
Abstract
The synthesis of novel branched/star copolymers which possess unique physical properties is highly desirable. Herein, a novel strategy was demonstrated to synthesize poly(ε-caprolactone) (PCL) based miktoarm star (μ-star) copolymers by combining ring-opening polymerization (ROP), styrenics-assisted atom transfer radical coupling (SA ATRC), and atom [...] Read more.
The synthesis of novel branched/star copolymers which possess unique physical properties is highly desirable. Herein, a novel strategy was demonstrated to synthesize poly(ε-caprolactone) (PCL) based miktoarm star (μ-star) copolymers by combining ring-opening polymerization (ROP), styrenics-assisted atom transfer radical coupling (SA ATRC), and atom transfer radical polymerization (ATRP). From the analyses of gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), well-defined PCL-μ-PSt (PSt: polystyrene), and PCL-μ-PtBA (PtBA: poly(tert-butyl acrylate) μ-star copolymers were successfully obtained. By using atomic force microscopy (AFM), interestingly, our preliminary examinations of the μ-star copolymers showed a spherical structure with diameters of ca. 250 and 45 nm, respectively. We successfully employed combinations of synthetic techniques including ROP, SA ATRC, and ATRP with high effectiveness to synthesize PCL-based μ-star copolymers. Full article
(This article belongs to the Special Issue Smart Polymers)
Show Figures

Graphical abstract

23 pages, 8064 KB  
Article
Multidimensional Transition Metal Complexes Based on 3-Amino-1H-1,2,4-triazole-5-carboxylic Acid: From Discrete Mononuclear Complexes to Layered Materials
by Bing Liu, José A. Fernandes, João P. C. Tomé, Filipe A. Almeida Paz and Luís Cunha-Silva
Molecules 2015, 20(7), 12341-12363; https://doi.org/10.3390/molecules200712341 - 7 Jul 2015
Cited by 6 | Viewed by 8746
Abstract
The synthesis and structural characterization of five transition metal complexes with different dimensionality and incorporating residues of 3-amino-1H-1,2,4-triazole-5-carboxylic acid (H2atrc) is reported: [Zn(Hatrc)2(H2O)] (1), [Mn(Hatrc)2(H2O)2]·2H2O [...] Read more.
The synthesis and structural characterization of five transition metal complexes with different dimensionality and incorporating residues of 3-amino-1H-1,2,4-triazole-5-carboxylic acid (H2atrc) is reported: [Zn(Hatrc)2(H2O)] (1), [Mn(Hatrc)2(H2O)2]·2H2O (2), [Fe2(Hatrc)4(OH)2]·6H2O (3), [Cd(Hatrc)2(H2O)]n (4), and [Mn(atrc)(H2O)]n·nH2O (5). These materials could be prepared from solution (13), diffusion (4), or hydrothermal reactions (5) with various anions and L:M ratios. Structural details were revealed by single crystal X-ray diffraction. The discrete units composing compounds 13, the polymeric 1D chain of 4 and the 2D layer of 5 are further extended into 3D supramolecular architectures through the formation of hydrogen bonds. Full article
(This article belongs to the Special Issue Metal-Organic Frameworks: Chemistry and Applications)
Show Figures

Figure 1

15 pages, 1436 KB  
Article
Effect of Trapping Agent and Polystyrene Chain End Functionality on Radical Trap-Assisted Atom Transfer Radical Coupling
by Elizabeth M. Carnicom, Jessica A. Abruzzese, Yacouba Sidibe, Kenneth D. Myers and Eric S. Tillman
Polymers 2014, 6(11), 2737-2751; https://doi.org/10.3390/polym6112737 - 24 Oct 2014
Cited by 7 | Viewed by 8824
Abstract
Coupling reactions were performed to gauge the effect of the inclusion of a radical trap on the success of coupling reactions of monohalogenated polystyrene (PSX) chains in atom transfer radical coupling (ATRC) type reactions. The effect of both the specific radical trap chosen [...] Read more.
Coupling reactions were performed to gauge the effect of the inclusion of a radical trap on the success of coupling reactions of monohalogenated polystyrene (PSX) chains in atom transfer radical coupling (ATRC) type reactions. The effect of both the specific radical trap chosen and the structure of the polymer chain end were evaluated by the extent of dimerization observed in a series of analogous coupling reactions. The commonly used radical trap 2-methyl-2-nitrosopropane (MNP) showed the highest amounts of dimerization for PSX (X = Br, Cl) compared to coupling reactions performed in its absence or with a different radical trap. A dinitroxide coupling agent was also studied with the extent of coupling nearly matching the effectiveness of MNP in RTA (Radical trap-assisted)-ATRC reactions, while N-nitroso and electron rich nitroso coupling agents were the least effective. (2,2,6,6-Tetramethyl-piperin-l-yl)oxyl-capped PS (PS-TEMPO), prepared by NMP, was subjected to a coupling sequence conceptually similar to RTA-ATRC, but dimerization was not observed regardless of the choice of radical trap. Kinetic experiments were performed to observe rate changes on the coupling reaction of PSBr as a result of the inclusion of MNP, with substantial rate enhancements found in the RTA-ATRC coupling sequence compared to traditional ATRC. Full article
(This article belongs to the Special Issue Controlled/Living Radical Polymerization)
Show Figures

Graphical abstract

Back to TopTop