Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Aurivillius structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7862 KB  
Review
Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review
by Thomas Erbland, Sara Ibrahim, Lucas Pelat, Kevin Lemoine, Angélique Bousquet and Pierre Bonnet
Molecules 2025, 30(18), 3784; https://doi.org/10.3390/molecules30183784 - 17 Sep 2025
Viewed by 263
Abstract
Bismuth-based oxyfluorides (BiOxF3−2x) have recently emerged as promising photocatalysts due to their unique electronic structures and tunable physicochemical properties. This review provides a comprehensive overview of these materials, focusing on their crystal structures, band gap characteristics, and photocatalytic performance. [...] Read more.
Bismuth-based oxyfluorides (BiOxF3−2x) have recently emerged as promising photocatalysts due to their unique electronic structures and tunable physicochemical properties. This review provides a comprehensive overview of these materials, focusing on their crystal structures, band gap characteristics, and photocatalytic performance. Particular attention is given to BiOF, Bi7O5F11, and β-BiOxF3−2x, highlighting the influence of fluorine’s high electronegativity and internal electric fields on charge separation and light absorption. The potential of Aurivillius-type oxyfluorides is also discussed. Structural modifications, such as the introduction of oxygen vacancies, morphology control, and metal/non-metal doping, are examined for their effects on photocatalytic efficiency. Furthermore, various synthesis techniques and heterojunction engineering strategies involving semiconductors, carbon-based materials, and metal nanoparticles are explored to improve light harvesting and reduce charge recombination. Applications in pollutant degradation and CO2 photoconversion are reviewed, demonstrating the versatility of these materials. Despite their promise, the challenges associated with phase identification and composition control are also emphasized, underlining the need for rigorous structural characterization. Future directions for optimizing the photocatalytic activity of bismuth-based oxyfluorides are outlined, focusing on strategies to enhance their performance. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 2819 KB  
Article
New Piezoceramic SrBi2Nb2-2xWxSnxO9: Crystal Structure, Microstructure and Dielectric Properties
by Sergei V. Zubkov, Ivan A. Parinov and Alexander V. Nazarenko
Materials 2024, 17(18), 4455; https://doi.org/10.3390/ma17184455 - 11 Sep 2024
Cited by 1 | Viewed by 905
Abstract
By using the method of high-temperature solid-phase reaction, the new piezoceramic SrBi2Nb2-2xWxSnxO9 was obtained, where partial substitution of niobium (Nb) atoms with Sn4+ and W6+ atoms in the compound SrBi2 [...] Read more.
By using the method of high-temperature solid-phase reaction, the new piezoceramic SrBi2Nb2-2xWxSnxO9 was obtained, where partial substitution of niobium (Nb) atoms with Sn4+ and W6+ atoms in the compound SrBi2Nb2O9 occurred in the octahedra of the perovskite layer (B-position). X-ray diffraction investigations showed that these compounds are single-phase SrBi2Nb2-2xWxSnxO9 (x = 0.1, 0.2) and two-phase SrBi2Nb2-2xWxSnxO9 (x = 0.3, 0.4), but all of them had the structure of Aurivillius-Smolensky phases (ASPs) with close parameters of orthorhombic unit cells. It corresponded to the space group A21am. The temperature dependences of the relative permittivity ε/ε0 and the tangent of the dielectric loss angle tan d were defined at various frequencies. It was found that doping SrBi2Nb2-2xWxSnxO9 (x = 0.1) improved the electrophysical properties of the compound: losses decreased, and the relative permittivity increased. This result was obtained for the first time. Moreover, a new result was obtained that indicated an improvement in the electrophysical properties of SrBi2Nb2O9 using the chemical element Sn (tin). This refutes the previously existing opinion about the impossibility to use Sn as a doping element. Full article
(This article belongs to the Special Issue Advanced Dielectric Ceramics (2nd Edition))
Show Figures

Graphical abstract

16 pages, 12976 KB  
Article
Impedance Spectroscopy of Sm-Doped of BaBi2Nb2O9 Aurivillius Ceramics
by Jolanta Makowska, Michał Rerak, Beata Wodecka-Duś, Tomasz Goryczka, Grzegorz Tytko, Anna Zawada and Małgorzata Adamczyk-Habrajska
Materials 2024, 17(17), 4360; https://doi.org/10.3390/ma17174360 - 3 Sep 2024
Viewed by 1186
Abstract
This investigation focuses on the impact of Sm3+ dopants on BaBi2Nb2O9 (BBN) ceramics. These ceramics were obtained using the traditional solid state reaction approach. Techniques like scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were [...] Read more.
This investigation focuses on the impact of Sm3+ dopants on BaBi2Nb2O9 (BBN) ceramics. These ceramics were obtained using the traditional solid state reaction approach. Techniques like scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to explore the structure and morphology of the ceramics. The results showed that the chemical composition of the ceramic samples matched well with the initial ceramic powder stoichiometry. Increasing the amount of samarium resulted in a slight reduction in the average ceramic grain size. The ceramics exhibited a tetragonal structure categorized under the space group I4/mmm. The electrical properties were analyzed using complex impedance spectroscopy (SI) across various temperatures and frequencies, revealing that both grains and intergranular boundaries are significant in the material’s conductivity. Full article
(This article belongs to the Special Issue Piezoelectric/Ferroelectric Ceramic Materials and Devices)
Show Figures

Figure 1

15 pages, 2608 KB  
Article
Photocatalytic Degradation of Sulfamethoxazole by Cd/Er-Doped Bi2MoO6
by Nengxun Yang, Yixuan Niu, Bohang Zhang and Fuchun Zhang
Coatings 2024, 14(9), 1112; https://doi.org/10.3390/coatings14091112 - 2 Sep 2024
Cited by 3 | Viewed by 1771
Abstract
Bi2MoO6 (BMO) is a typical bismuth-based semiconductor material, and its unique Aurivillius structure provides a broad space for electron delocalization. In this study, a new type of bismuth molybdate Cd/Er-BMO photocatalytic material was prepared by co-doping Er3+ and Cd [...] Read more.
Bi2MoO6 (BMO) is a typical bismuth-based semiconductor material, and its unique Aurivillius structure provides a broad space for electron delocalization. In this study, a new type of bismuth molybdate Cd/Er-BMO photocatalytic material was prepared by co-doping Er3+ and Cd2+, and the performance of the photocatalytic degradation of sulfamethoxazole (SMZ) was systematically studied. The research results showed that the efficiency of SMZ degradation by Cd/Er-BMO was significantly improved after doping Er3+ and Cd2+ ions, reflecting the synergistic catalytic effect of Cd2+ and Er3+ co-doping. Cd/Er-BMO doped with 6% Cd had the highest degradation efficiency (93.89%) of SMZ under visible light irradiation. The material revealed excellent stability and reusability in repeated degradation experiments. In addition, 6% Cd/Er-BMO had a smaller particle size and a larger specific surface area, which is conducive to improving the generation efficiency of its photogenerated electron-hole pairs and reducing the recombination rate, significantly enhancing the photocatalysis of the material. This study not only provides an effective photocatalyst for degrading environmental pollutants such as SMZ, but also provides an important scientific basis and new ideas for the future development of efficient and stable photocatalytic materials. Full article
(This article belongs to the Special Issue Coatings as Key Materials in Catalytic Applications)
Show Figures

Figure 1

12 pages, 12974 KB  
Article
Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof
by Fatima Kainat, Nawishta Jabeen, Ali Yaqoob, Najam Ul Hassan, Ahmad Hussain and Mohamed E. Khalifa
Crystals 2024, 14(8), 710; https://doi.org/10.3390/cryst14080710 - 7 Aug 2024
Cited by 12 | Viewed by 1274
Abstract
Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O [...] Read more.
Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O9 (X = Ca, Ba, Be, Mg, Sr). The Perdew–Burke–Ernzerhof approach and generalized gradient approximation (GGA) are implemented to thoroughly investigate the structural, bandgap, optical, and electronic properties of the compounds. The optical conductivity, band topologies, dielectric function, bandgap values, absorption coefficient, reflectivity, extinction coefficient, refractive index, and partial and total densities of states are thoroughly investigated from a photovoltaics standpoint. The material exhibits distinct behaviors, including significant optical anisotropy and an elevated absorption coefficient > 105 cm−1 in the region of visible; ultraviolet energy is observed, the elevated transparency lies in the visible and infrared regions for the imaginary portion of the dielectric function, and peaks in the optical spectra caused by inter-band transitions are detected. According to the data reported, it becomes obvious that XNb2Bi2O9 (X = Ca, Ba, Be, Mg, and Sr) is a suitable candidate for implementation in solar energy conversion applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

11 pages, 6690 KB  
Article
Magnetic Properties of Gd-Doped Bi7Fe3Ti3O21 Aurivillius-Type Ceramics
by Joanna A. Bartkowska, Diana Szalbot, Jolanta Makowska, Małgorzata Adamczyk-Habrajska and Zbigniew Stokłosa
Materials 2024, 17(15), 3760; https://doi.org/10.3390/ma17153760 - 30 Jul 2024
Cited by 3 | Viewed by 1175
Abstract
The magnetic properties of Aurivillius-phase Bi7Fe3Ti3O21 (BFT) and Bi7−xGdxFe3Ti3O21, where x = 0.2, 0.4, and 0.6 (BGFT), were investigated. Ceramic material undoped (BGF) and doped with Gd3+ ions were prepared by [...] Read more.
The magnetic properties of Aurivillius-phase Bi7Fe3Ti3O21 (BFT) and Bi7−xGdxFe3Ti3O21, where x = 0.2, 0.4, and 0.6 (BGFT), were investigated. Ceramic material undoped (BGF) and doped with Gd3+ ions were prepared by conventional solid-state reaction. In order to confirm that the obtained materials belong to Aurivillius structures, XRD tests were performed. The XRD results confirmed that both the undoped and the gadolinium-doped materials belong to the Aurivillius phases. The qualitative chemical composition of the obtained materials was confirmed based on EDS tests. The temperature dependences of magnetization and magnetic susceptibility were examined for the ceramic material both undoped and doped with Gd3+ ions. The measurements were taken in the temperature range from T = 10 K to T = 300 K. Using Curie’s law, the value of the Curie constant was determined, and on its basis, the number of iron ions that take part in magnetic processes was calculated. The value of Curie constant C = 0.266 K, while the concentration of iron ions Fe3+, which influence the magnetic properties of the material, is equal 3.7 mol% (for BFT). Hysteresis loop measurements were also performed at temperatures of T = 10 K, T = 77 K, and T = 300 K. The dependence of magnetization on the magnetic field was described by the Brillouin function, and on its basis, the concentration of Fe3+ ions, which are involved in magnetic properties, was also calculated (3.4 mol% for BFT). Tests showed that the material is characterized by magnetic properties at low temperatures. At room temperature (RT), it has paramagnetic properties. It was also found that Gd3+ ions improve the magnetic properties of tested material. Full article
Show Figures

Figure 1

19 pages, 5071 KB  
Article
Magnetoelectric Properties of Aurivillius-Layered Perovskites
by Vadla Veenachary, Eskilla Venkata Ramana, Simhachalam Narendra Babu, Venkata Sreenivas Puli, Sujoy Saha, Gopalan Srinivasan, G. Prasad and N. V. Prasad
Crystals 2024, 14(4), 299; https://doi.org/10.3390/cryst14040299 - 22 Mar 2024
Cited by 6 | Viewed by 1948
Abstract
In the present work, we have synthesized rare-earth ion modified Bi4−xRExTi2Fe0.7Co0.3O12−δ (RE = Dy, Sm, La) multiferroic compounds by the conventional solid-state route. Analysis of X-ray diffraction by Rietveld refinement confirmed the [...] Read more.
In the present work, we have synthesized rare-earth ion modified Bi4−xRExTi2Fe0.7Co0.3O12−δ (RE = Dy, Sm, La) multiferroic compounds by the conventional solid-state route. Analysis of X-ray diffraction by Rietveld refinement confirmed the formation of a polycrystalline orthorhombic phase. The morphological features revealed a non-uniform, randomly oriented, plate-like grain structure. The peaks evident in the Raman spectra closely corresponded to those of orthorhombic Aurivillius phases. Dielectric studies and impedance measurements were carried out. Asymmetric complex impedance spectra suggested the relaxation of charge carriers belonging to the non-Debye type and controlled by a thermally activated process. Temperature-dependent AC conductivity data showed a change of slope in the vicinity of the phase transition temperature of both magnetic and electrical coupling natures. Based on the universal law and its exponent nature, one can suppose that the conduction process is governed by a small polaron hopping mechanism but significant distortion of TiO6 octahedral. The doping of the A-sites with rare-earth element ions and changes in the concentrations of Fe and Co ions located on the B-sites manifested themselves in saturated magnetic hysteresis loops, indicating competitive interactions between ferroelectric and canted antiferromagnetic spins. The magnetic order in the samples is attributed to pair-wise interactions between adjacent Fe3+–O–Fe3+, Co2+/3+–O–Co3+/2+, and Co2+/3+–O–Fe3+ ions or Dzyaloshinskii–Moriya interactions among magnetic ions in the adjacent sub-lattices. As a result, enhanced magnetoelectric coefficients of 42.4 mV/cm-Oe, 30.3 mV/cm-Oe, and 21.6 mV/cm-Oe for Bi4−xDyxTi2Fe0.7Co0.3O12−δ (DBTFC), Bi4−xLaxTi2Fe0.7Co0.3O12−δ (LBTFC), and Bi4−xSmxTi2Fe0.7Co0.3O12−δ (SBTFC), respectively, have been obtained at lower magnetic fields (<3 kOe). The strong coupling of the Aurivillius compounds observed in this study is beneficial to future multiferroic applications. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

11 pages, 4033 KB  
Article
Structure, Electrical Properties, and Thermal Stability of the Mn/Nb Co-Doped Aurivillius-Type Na0.5Bi4.5Ti4O15 High Temperature Piezoelectric Ceramics
by Tianlong Zhao, Kefei Shi, Chunlong Fei, Xinhao Sun, Yi Quan, Wen Liu, Juan Zhang and Xianying Dai
Crystals 2023, 13(3), 433; https://doi.org/10.3390/cryst13030433 - 2 Mar 2023
Cited by 10 | Viewed by 2345
Abstract
In order to meet the urgent need for high temperature piezoelectric materials with a Curie temperature over 400 °C, the Mn/Nb co-doped strategy has been proposed to improve the weak piezoelectric performance of the Aurivillius-type Na0.5Bi4.5Ti4O15 [...] Read more.
In order to meet the urgent need for high temperature piezoelectric materials with a Curie temperature over 400 °C, the Mn/Nb co-doped strategy has been proposed to improve the weak piezoelectric performance of the Aurivillius-type Na0.5Bi4.5Ti4O15 (NBT) high temperature piezoelectric ceramics. In this paper, the crystal structure, electrical properties, and thermal stability of the B-site Mn/Nb co-doped Na0.5Bi4.5Ti4-x(Mn1/3Nb2/3)xO15 (NBT-100x) ceramics were systematically investigated by the conventional solid-state reaction method. The crystal structural analysis results indicate that the NBT-100x ceramics have typical bismuth oxide layer type phase structure and high anisotropic plate-like morphology. The lattice parameters and the grain sizes increase with the B-site Mn/Nb co-doped content. The electrical properties were significantly improved by Mn/Nb co-doped modifications. The maximum of the piezoelectric coefficient d33 was found to be 29 pC/N for the NBT-2 ceramics, nearly twice that of the unmodified NBT ceramics. The highest values of the planar electromechanical coupling factor kp and thickness electromechanical coupling factor kt were also obtained for the NBT-2 ceramics, at 5.4% and 31.2%, respectively. The dielectric spectroscopy showed that the Curie temperature Tc of the Mn/Nb co-doped NBT-100x ceramics is slightly higher than that of unmodified NBT ceramics (646 °C). The DC resistivity of the NBT-2 ceramics is higher than 106 Ω∙cm at 500 °C. All the results together with the good thermal stability demonstrated the Mn/Nb co-doped ceramics as an effective method to improve the NBT based piezoelectric ceramics and the potential candidates of the Mn/Nb co-doped NBT-100x ceramics for high temperature piezoelectric applications. Full article
(This article belongs to the Special Issue Lead-free Ferro-/Piezoelectric Ceramics and Thin Films)
Show Figures

Figure 1

14 pages, 4945 KB  
Article
Magnetic and Magnetoelectric Properties of AurivilliusThree- and Four-Layered Intergrowth Ceramics
by Vadla Veenachary, Eskilla Venkata Ramana, Simhachalam Narendra Babu, Venkata Sreenivas Puli, Adiraj Srinivas, Gopalan Srinivasan, Sujoy Saha, Guduru Prasad and Nandiraju Venkata Prasad
Crystals 2023, 13(3), 426; https://doi.org/10.3390/cryst13030426 - 1 Mar 2023
Cited by 4 | Viewed by 1833
Abstract
In this work, we have prepared intergrowth of multiferroic compounds namely Bi4RTi3Fe0.7Co0.3O15-Bi3RTi2Fe0.7Co0.3O12−δ (BRTFCO15-BRTFCO12) (rare earth (R) = Dy, Sm, La) [...] Read more.
In this work, we have prepared intergrowth of multiferroic compounds namely Bi4RTi3Fe0.7Co0.3O15-Bi3RTi2Fe0.7Co0.3O12−δ (BRTFCO15-BRTFCO12) (rare earth (R) = Dy, Sm, La) by solid-state reaction method. From the X-ray diffraction Rietveld refinement, the structure of the intergrowths was found to be orthorhombic in which satisfactory fittings establish the existence of three-layered (space group: b 2 c b) and four-layered compounds (space group: A21am). Analysis of magnetic measurements confirmed a larger magnetization for theSm-modified intergrowth compound (BSTFCO15-BSTFCO12) compared to Dy- and La-doped ones. The emergence of higher magnetic properties can be due to distortion in the unit cell when some Bi3+ ions are replaced with the Sm3+, bonding of Fe3+-O-Co3+ as well as a possible mixture of FexCoy-type nanoparticles that are formed generally in the synthesis of intergrowths. The changes in the magnetic state of the Aurivillius intergrowths have been reflected in the magnetoelectric (ME) coupling: higher ME coefficient (~30 mV/Cm-Oe) at lower magnetic fields and is constant up to 3 kOe. The results were corroborated by Raman spectroscopy and variation of temperature with magnetization data. The results revealed that the RE-modified intergrowth route is an effective preparative method for higher-layer Aurivillius multiferroic ceramics. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 11463 KB  
Review
New Modification of Polar Nonlinear Optical Iodate Fluoride PbF(IO3), the Family MX(IO3), M = Bi, Ba, Pb, X = O, F, (OH) Related to Aurivillius Phases and Similar Iodates
by Elena Belokoneva, Olga Reutova, Anatoly Volkov, Olga Dimitrova and Sergey Stefanovich
Symmetry 2023, 15(1), 100; https://doi.org/10.3390/sym15010100 - 30 Dec 2022
Cited by 3 | Viewed by 2429
Abstract
A new modification of PbF(IO3) has been obtained as single crystals from hydrothermal synthesis, alongside the known centrosymmetric, Pb(IO3)2, as a second phase. Measured with the Kurtz-Perry SHG method, the new crystals are phase-matchable for YAG:Nd laser [...] Read more.
A new modification of PbF(IO3) has been obtained as single crystals from hydrothermal synthesis, alongside the known centrosymmetric, Pb(IO3)2, as a second phase. Measured with the Kurtz-Perry SHG method, the new crystals are phase-matchable for YAG:Nd laser radiation and demonstrate strong SHG output. According to an X-ray diffraction analysis conducted on a single crystal at low temperature, the new crystals appear monoclinic, of space group Pn, as opposed to the known orthorhombic modification of the PbF(IO3), of space group Iba2. The new crystals were also measured at room temperature, showing an orthorhombic disordered variant of the new phase (space group C2ma, standard Abm2). This variant presents an “average structure” with the mirror plane in the group. The low-temperature X-ray single-crystal experiment allowed us to find the correct structural model, where the mirror plane was found as a twin element in the real monoclinic Pn structure. A careful crystal chemical analysis led to a whole family of nonlinear optical crystals with a common formula, AX(IO3), A = Bi, Ba, Pb, X = O, F, (OH), currently counting six representatives, including the well-known BiO(IO3). All of them possess common central cationic layers similar to those known in Aurivillius-type phases, with anionic iodate layers attached above and below these layers instead of the perovskite-like, or halogens. The structure–property relationships are discussed with respect to the important role of the large cations: Pb2+, Bi3+ or Ba2+. A number of iodates with similar structures are also analyzed. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

20 pages, 9405 KB  
Article
Impedance Spectroscopy of Pr-Doped BaBi2Nb2O9 Aurivillius Ceramics
by Michał Rerak, Jolanta Makowska, Małgorzata Adamczyk-Habrajska and Lucjan Kozielski
Materials 2022, 15(18), 6308; https://doi.org/10.3390/ma15186308 - 11 Sep 2022
Cited by 1 | Viewed by 1899
Abstract
Herein this study, the polycrystalline nature of the Aurivillius type structure is studied; primarily, the main objective is to observe the influence of dopant Pr3+ at the Ba2+-site of BaBi2Nb2O9 (BBN) ceramics. The ceramics under [...] Read more.
Herein this study, the polycrystalline nature of the Aurivillius type structure is studied; primarily, the main objective is to observe the influence of dopant Pr3+ at the Ba2+-site of BaBi2Nb2O9 (BBN) ceramics. The ceramics under investigation were fabricated via the conventional solid-state reaction method. Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques were used to analyse their morphological structure. It was found that the chemical composition of the ceramic samples corresponds well to the initial stoichiometry of the ceramic powders. An increase in praseodymium content caused a slight decrease in the average size of the ceramic grains. The obtained ceramic materials are described by a tetragonal structure with the space group I4/mmm. The electrical properties of the material have been studied using complex impedance spectroscopy methods in wide temperature and frequency ranges. The analysis of obtained results showed grains and grain boundaries contribute to conductive processes in the material. A possible ’hopping’ mechanism for electrical transport processes in the system is evident from the analysis of results based on Joncher law. Full article
(This article belongs to the Special Issue Advances in Dielectric Ceramics and Their Applications)
Show Figures

Figure 1

12 pages, 5235 KB  
Article
Gd/Mn Co-Doped CaBi4Ti4O15 Aurivillius-Phase Ceramics: Structures, Electrical Conduction and Dielectric Relaxation Behaviors
by Daowen Wu, Huajiang Zhou, Lingfeng Li and Yu Chen
Materials 2022, 15(17), 5810; https://doi.org/10.3390/ma15175810 - 23 Aug 2022
Cited by 9 | Viewed by 2165
Abstract
In this work, Gd/Mn co-doped CaBi4Ti4O15 Aurivillius-type ceramics with the formula of Ca1-xGdxBi4Ti4O15 + xGd/0.2wt%MnCO3 (abbreviated as CBT-xGd/0.2Mn) were prepared by the conventional solid-state [...] Read more.
In this work, Gd/Mn co-doped CaBi4Ti4O15 Aurivillius-type ceramics with the formula of Ca1-xGdxBi4Ti4O15 + xGd/0.2wt%MnCO3 (abbreviated as CBT-xGd/0.2Mn) were prepared by the conventional solid-state reaction route. Firstly, the prepared ceramics were identified as the single CaBi4Ti4O15 phase with orthorhombic symmetry and the change in lattice parameters detected from the Rietveld XRD refinement demonstrated that Gd3+ was successfully substituted for Ca2+ at the A-site. SEM observations further revealed that all samples were composed of the randomly orientated plate-like grains, and the corresponding average grain size gradually decreased with Gd content (x) increasing. For all compositions studied, the frequency independence of conductivity observed above 400 °C showed a nature of ionic conduction behavior, which was predominated by the long-range migration of oxygen vacancies. Based on the correlated barrier hopping (CBH) model, the maximum barrier height WM, the dc conduction activation energy Edc, as well as the hopping conduction activation energy Ep were calculated for the CBT-xGd/0.2Mn ceramics. The composition with x = 0.06 was found to have the highest Edc value of 1.87 eV, as well as the lowest conductivity (1.8 × 10−5 S/m at 600 °C) among these compositions. The electrical modules analysis for this composition further illustrated the degree of interaction between charge carrier β increases, with an increase in temperature from 500 °C to 600 °C, and then a turn to decrease when the temperature exceeded 600 °C. The value of β reached a maximum of 0.967 at 600 °C, indicating that the dielectric relaxation behavior at this temperature was closer to the ideal Debye type. Full article
(This article belongs to the Special Issue Microstructural Design and Processing Control of Advanced Ceramics)
Show Figures

Figure 1

15 pages, 5089 KB  
Article
The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics
by Michał Rerak, Jolanta Makowska, Katarzyna Osińska, Tomasz Goryczka, Anna Zawada and Małgorzata Adamczyk-Habrajska
Materials 2022, 15(16), 5790; https://doi.org/10.3390/ma15165790 - 22 Aug 2022
Cited by 6 | Viewed by 1929
Abstract
Aurivillius BaBi2Nb2O9 and Ba1-xPrxBi2Nb2O9 ceramics were successfully synthesized by a simple solid state reaction method. Ceramics were prepared from reactants: Nb2O5, Bi2O3 [...] Read more.
Aurivillius BaBi2Nb2O9 and Ba1-xPrxBi2Nb2O9 ceramics were successfully synthesized by a simple solid state reaction method. Ceramics were prepared from reactants: Nb2O5, Bi2O3, BaCO3 and Pr2O3. The microstructure, structure, chemical composition, and dielectric properties of the obtained materials were examined. Dielectric properties were investigated in a wide range of temperatures (T = 20–500 °C) and frequencies (f = 0.1 kHz–1 MHz). The obtained ceramic materials belong to the group of layered perovskites, crystallizing in a tetragonal structure with the space group I4/mmm. Modification of the barium niobate compound with praseodymium ions influenced its dielectric properties and introducing a small concentration of the dopant ion causes a slight increase in the value of electric permittivity and shifts its maximum towards higher temperatures. Full article
(This article belongs to the Special Issue Advances in Dielectric Ceramics and Their Applications)
Show Figures

Figure 1

18 pages, 3129 KB  
Article
Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye
by David A. Collu, Cristina Carucci, Marco Piludu, Drew F. Parsons and Andrea Salis
Int. J. Mol. Sci. 2022, 23(10), 5422; https://doi.org/10.3390/ijms23105422 - 12 May 2022
Cited by 15 | Viewed by 3023
Abstract
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi [...] Read more.
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir—Hinshelwood model obtaining a kinetic constant k = 7.81 × 10−2 min−1 for BWO and k = 9.27 × 10−2 min−1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications. Full article
(This article belongs to the Collection Feature Papers in 'Physical Chemistry and Chemical Physics')
Show Figures

Figure 1

11 pages, 1985 KB  
Article
The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0)
by Sergei V. Zubkov, Ivan A. Parinov and Yulia A. Kuprina
Electronics 2022, 11(2), 277; https://doi.org/10.3390/electronics11020277 - 16 Jan 2022
Cited by 6 | Viewed by 2129
Abstract
A new series of layered perovskite-like oxides Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0) was synthesized by the method of high-temperature solid-state reaction, in which partial substitution of bismuth (Bi) atoms in the dodecahedra [...] Read more.
A new series of layered perovskite-like oxides Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0) was synthesized by the method of high-temperature solid-state reaction, in which partial substitution of bismuth (Bi) atoms in the dodecahedra of the perovskite layer (A-positions) by Nd atoms takes place. X-ray structural studies have shown that all compounds are single-phase and have the structure of Aurivillius phases (APs), with close parameters of orthorhombic unit cells corresponding to space group A21am. The dependences of the relative permittivity ε/ε0 and the tangent of loss tgσ at different frequencies on temperature were measured. The piezoelectric constant d33 was measured for Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75) compounds of the synthesized series. Full article
(This article belongs to the Special Issue Robust Design Optimization of Electrical Machines and Devices)
Show Figures

Figure 1

Back to TopTop