Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = Ayurveda

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4256 KB  
Review
Progress in Pharmacokinetics, Pharmacological Effects, and Molecular Mechanisms of Swertiamarin: A Comprehensive Review
by Hao-Xin Yang, Ying-Yue Hu, Rui Liang, Hong Zheng and Xuan Zhang
Cells 2025, 14(15), 1173; https://doi.org/10.3390/cells14151173 - 30 Jul 2025
Viewed by 699
Abstract
Swertiamarin (SW), a natural iridoid glycoside primarily isolated from the genus Swertia, Gentianaceae family, has been extensively utilized in traditional medicine systems, including Ayurveda, Traditional Chinese Medicine, and Tibetan medicine, for treating fever, diabetes, liver disorders, and inflammatory conditions. Pharmacokinetic studies reveal [...] Read more.
Swertiamarin (SW), a natural iridoid glycoside primarily isolated from the genus Swertia, Gentianaceae family, has been extensively utilized in traditional medicine systems, including Ayurveda, Traditional Chinese Medicine, and Tibetan medicine, for treating fever, diabetes, liver disorders, and inflammatory conditions. Pharmacokinetic studies reveal that SW exhibits rapid absorption but demonstrates low oral bioavailability due to the first-pass effect. Pharmacological studies have demonstrated that SW possesses a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and neuroprotective activities. Our analysis demonstrates that SW exerts remarkable therapeutic potential across multiple pathological conditions through coordinated modulation of key signaling cascades, including Nrf2/HO-1, NF-κB, MAPK, PI3K/Akt, and PPAR pathways. This comprehensive review systematically consolidates current knowledge on SW’s pharmacokinetic characteristics, toxicity, diverse biological activities, and underlying molecular mechanisms based on extensive preclinical evidence, establishing a scientific foundation for future drug development strategies and potential clinical applications of the potential natural lead compound. Full article
Show Figures

Figure 1

16 pages, 1327 KB  
Article
Therapeutic Evaluation Punica granatum Peel Powder for the Ailment of Inflammatory Bowel Disorder in NCM460 Cell Line and in Albino Rats
by Parikshit Roychowdhury, Gyanendra Kumar Prajapati, Rupesh Singh, Prasanna Gurunath, Ramesh C, Gowthamarajan Kuppuswamy and Anindita De
Pharmaceutics 2025, 17(7), 843; https://doi.org/10.3390/pharmaceutics17070843 - 27 Jun 2025
Viewed by 648
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory condition associated with the colon and rectum, often predisposing individuals to inflammatory bowel disease-related colorectal cancer (IBD-CRC). Current therapeutic options for UC, including corticosteroids and immunosuppressive drugs, pose significant side effects. Punica granatum peel powder [...] Read more.
Background: Ulcerative colitis (UC) is a chronic inflammatory condition associated with the colon and rectum, often predisposing individuals to inflammatory bowel disease-related colorectal cancer (IBD-CRC). Current therapeutic options for UC, including corticosteroids and immunosuppressive drugs, pose significant side effects. Punica granatum peel powder (PPPG), a traditional herbal remedy in Ayurveda medicine for colitis, exhibits promising therapeutic effects with a favorable safety profile. Objectives: This study aims to explore the therapeutic potential and mechanism of action of a modified PPPG formulation in UC treatment. Methods: Using NCM460 cells and an acetic acid-induced UC murine model, the efficacy of modified PPPG was evaluated. Results: Therapy with modified PPPG significantly improved UC-associated symptoms, such as improvements in body weight, colon length, and disease activity index, as validated by histological examination. Transcriptomic sequencing identified downregulation of the IL-6/STAT3 signaling pathway and reduced inflammatory markers like p-NF-κB, IL-1β, and NLRP3 on PPPG therapy. Conclusions: These findings suggest that modified PPPG holds promise as a novel therapeutic strategy for UC intervention, targeting key inflammatory pathways implicated in UC pathogenesis and potentially mitigating the risk of IBD-CRC. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

13 pages, 217 KB  
Article
The Āyurveda and the Four Principles of Medical Ethics
by Izaiah H. Vasseur and Signe Cohen
Religions 2025, 16(7), 847; https://doi.org/10.3390/rel16070847 - 26 Jun 2025
Viewed by 444
Abstract
This paper examines the ethical frameworks that guide Āyurvedic practices and compares them with those underlying contemporary Western medicine. At the heart of current bioethical debates is the question of whether certain principles can be universally valid across cultures. This paper argues that [...] Read more.
This paper examines the ethical frameworks that guide Āyurvedic practices and compares them with those underlying contemporary Western medicine. At the heart of current bioethical debates is the question of whether certain principles can be universally valid across cultures. This paper argues that while the moral vision of Āyurvedic medicine significantly differs from that of Western medicine in various respects, both systems share fundamental ethical principles, notably beneficence and non-maleficence. However, important distinctions arise in their respective conceptions of autonomy and justice, suggesting that these principles may not be as universally applicable as the former two. Drawing on the “four principles” approach of modern Western medical ethics, as outlined in Beauchamp and Childress’s Principles of Biomedical Ethics, this paper challenges the assumption that the principles of autonomy and justice are culturally neutral. Through a comparison with Āyurvedic ethics, we highlight how these principles may not be as universally relevant as commonly assumed, raising important questions about the possibility of a global bioethical framework. Full article
23 pages, 2525 KB  
Review
Bacopa monnieri: Preclinical and Clinical Evidence of Neuroactive Effects, Safety of Use and the Search for Improved Bioavailability
by Anna Gościniak, Anna Stasiłowicz-Krzemień, Marta Szeląg, Jakub Pawlak, Izabela Skiera, Hanna Kwiatkowska, Natasza Nowak, Krzysztof Bernady, Piotr Trzaskoma, Oskar Zimak-Krótkopad and Judyta Cielecka-Piontek
Nutrients 2025, 17(11), 1939; https://doi.org/10.3390/nu17111939 - 5 Jun 2025
Cited by 2 | Viewed by 9793
Abstract
Bacopa monnieri, also known as Brahmi or Waterhyssop, is a plant used in Ayurveda for its memory-enhancing properties and control of blood sugar levels. It contains active compounds such as alkaloids, saponins, and cucurbitacins, which have various biological activities. The plant has [...] Read more.
Bacopa monnieri, also known as Brahmi or Waterhyssop, is a plant used in Ayurveda for its memory-enhancing properties and control of blood sugar levels. It contains active compounds such as alkaloids, saponins, and cucurbitacins, which have various biological activities. The plant has been studied for its potential in treating Alzheimer’s disease, Parkinson’s disease, attention deficit hyperactivity disorder (ADHD), and depression. Animal studies have shown promising results in reducing symptoms and protecting against neurodegeneration. Concerning safety, Bacopa monnieri has been found to be generally non-toxic, with no serious side effects reported. However, interactions with certain medications and contraindications in conditions like hyperthyroidism should be considered. Further research is needed to determine optimal dosages and ensure safety, especially for pregnant and breastfeeding women. Full article
Show Figures

Graphical abstract

14 pages, 604 KB  
Review
Targeting Gastrointestinal Cancers with Carvacrol: Mechanistic Insights and Therapeutic Potential
by Nitika Patwa, Gagandeep Singh, Vikas Sharma, Priyanka Chaudhary, Bunty Sharma, Shafiul Haque, Vikas Yadav, Shakti Ranjan Satapathy and Hardeep Singh Tuli
Biomolecules 2025, 15(6), 777; https://doi.org/10.3390/biom15060777 - 27 May 2025
Viewed by 1506
Abstract
Gastrointestinal (GI) cancers, including esophageal, gastric, pancreatic, liver, and colorectal malignancies, represent a major global health burden due to their high incidence, aggressive nature, and limited treatment outcomes. This review explores the therapeutic potential of carvacrol, a naturally occurring monoterpenoid phenol predominantly found [...] Read more.
Gastrointestinal (GI) cancers, including esophageal, gastric, pancreatic, liver, and colorectal malignancies, represent a major global health burden due to their high incidence, aggressive nature, and limited treatment outcomes. This review explores the therapeutic potential of carvacrol, a naturally occurring monoterpenoid phenol predominantly found in oregano and other aromatic plants. Carvacrol has demonstrated strong anticancer properties by modulating multiple molecular pathways governing apoptosis, inflammation, angiogenesis, and metastasis. Preclinical studies have revealed its ability to selectively target cancer cells while sparing healthy tissue. Advances in nanotechnology have further enhanced its pharmacological profile by improving solubility, stability, and tumor-targeted delivery. Additionally, carvacrol shows synergistic effects when used in combination with conventional chemotherapeutics. While the evidence is promising, clinical studies are needed to validate its translational potential. This review aims to consolidate current findings and encourage further investigation into carvacrol’s application as an adjunct or alternative therapeutic agent in GI cancer management. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

35 pages, 1668 KB  
Review
Stability Dynamics of Plant-Based Extracellular Vesicles Drug Delivery
by Satyavati Rawat, Sanchit Arora, Madhukiran R. Dhondale, Mansi Khadilkar, Sanjeev Kumar and Ashish Kumar Agrawal
J. Xenobiot. 2025, 15(2), 55; https://doi.org/10.3390/jox15020055 - 13 Apr 2025
Viewed by 2564
Abstract
Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and [...] Read more.
Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Figure 1

44 pages, 4558 KB  
Review
Recent Advances in Biochar Production, Characterization, and Environmental Applications
by Mohan Varkolu, Sreedhar Gundekari, Omvesh, Venkata Chandra Sekhar Palla, Pankaj Kumar, Satyajit Bhattacharjee and Thallada Vinodkumar
Catalysts 2025, 15(3), 243; https://doi.org/10.3390/catal15030243 - 4 Mar 2025
Cited by 15 | Viewed by 7870
Abstract
Biochar has gained a lot of attention due to its numerous applications and environmental benefits. It is a specialized form of charcoal derived from various types of organic materials such as wood chips, agricultural waste, and other biomass feedstock. It is produced through [...] Read more.
Biochar has gained a lot of attention due to its numerous applications and environmental benefits. It is a specialized form of charcoal derived from various types of organic materials such as wood chips, agricultural waste, and other biomass feedstock. It is produced through a process called pyrolysis, resulting in a highly porous material with a large surface area, making it an excellent material. Biochar has several unique properties that make it a promising tool for mitigating climate change and improving soil fertility and crop yields, among other things, making it an attractive option for sustainable agriculture. In addition, biochar can be used to filter contaminants from water, improve water quality, and reduce the risk of pollution-related health problems. Furthermore, biochar has the potential to be used as a fuel or catalyst for renewable energy production. Its multifunctional nature makes biochar a compelling tool for sustainable agriculture and a viable strategy in the fight against global warming. In the present review, we discuss the synthesis, characterization, and numerous applications of biochar in a detailed manner. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

40 pages, 3058 KB  
Review
Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders
by Prawej Ansari, Alexa D. Reberio, Nushrat J. Ansari, Sandeep Kumar, Joyeeta T. Khan, Suraiya Chowdhury, Fatma Mohamed Abd El-Mordy, J. M. A. Hannan, Peter R. Flatt, Yasser H. A. Abdel-Wahab and Veronique Seidel
Biomedicines 2025, 13(2), 454; https://doi.org/10.3390/biomedicines13020454 - 12 Feb 2025
Cited by 8 | Viewed by 7665
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and [...] Read more.
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action. Full article
Show Figures

Figure 1

20 pages, 4103 KB  
Review
Nanotherapeutic and Nano–Bio Interface for Regeneration and Healing
by Rajiv Kumar, Chinenye Adaobi Igwegbe and Shri Krishna Khandel
Biomedicines 2024, 12(12), 2927; https://doi.org/10.3390/biomedicines12122927 - 23 Dec 2024
Cited by 2 | Viewed by 1622
Abstract
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is [...] Read more.
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics. This review explored the interplay of cellular and molecular processes contributing to wound healing, focusing on inflammation, innervation, angiogenesis, and the role of cell surface adhesion molecules. Additionally, it delved into the significance of calcium signaling in skeletal muscle regeneration and its implications for regenerative medicine. Furthermore, the therapeutic targeting of cellular senescence for long-term wound healing was discussed. The integration of cutting-edge technologies, such as quantitative imaging and computational modeling, has revolutionized the current approach of wound healing dynamics. The review also highlighted the role of nanotechnology in tissue engineering and regenerative medicine, particularly in the development of nanomaterials and nano–bio tools for promoting wound regeneration. Moreover, emerging nano–bio interfaces facilitate the efficient transport of biomolecules crucial for regeneration. Overall, this review provided insights into the cellular and molecular mechanisms of wound healing and regeneration, emphasizing the significance of interdisciplinary approaches and innovative technologies in advancing regenerative therapies. Through harnessing the potential of nanoparticles, bio-mimetic matrices, and scaffolds, regenerative medicine offers promising avenues for restoring damaged tissues with unparalleled precision and efficacy. This pursuit marks a significant departure from traditional approaches, offering promising avenues for addressing longstanding challenges in cellular and tissue repair, thereby significantly contributing to the advancement of regenerative medicine. Full article
(This article belongs to the Special Issue Materials for Biomedical Engineering and Regenerative Medicine)
Show Figures

Figure 1

17 pages, 3525 KB  
Review
Harnessing the Antibacterial, Anti-Diabetic and Anti-Carcinogenic Properties of Ocimum sanctum Linn (Tulsi)
by Rakesh Arya, Hossain Md. Faruquee, Hemlata Shakya, Sheikh Atikur Rahman, Most Morium Begum, Sudhangshu Kumar Biswas, Md. Aminul Islam Apu, Md. Azizul Islam, Md. Mominul Islam Sheikh and Jong-Joo Kim
Plants 2024, 13(24), 3516; https://doi.org/10.3390/plants13243516 - 16 Dec 2024
Cited by 2 | Viewed by 6737
Abstract
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical [...] Read more.
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical regions of the Eastern World. Tulsi is known to be an adaptogen, aiding the body in adapting to stress by harmonizing various bodily systems. Revered in Ayurveda as the “Elixir of Life”, Tulsi is believed to enhance lifespan and foster longevity. Eugenol, the active ingredient present in Tulsi, is a l-hydroxy-2-methoxy-4-allylbenzene compound with diverse therapeutic applications. As concerns over the adverse effects of conventional antibacterial agents continue to grow, alternative therapies have gained prominence. Essential oils (EOs) containing antioxidants have a long history of utilization in traditional medicine and have gained increasing popularity over time. Numerous in vitro, in vivo and clinical studies have provided compelling evidence supporting the safety and efficacy of antioxidant EOs derived from medicinal plants for promoting health. This comprehensive review aims to highlight the scientific knowledge regarding the therapeutic properties of O. sanctum, focusing on its antibacterial, anti-diabetic, anti-carcinogenic, radioprotective, immunomodulatory, anti-inflammatory, cardioprotective, neurogenesis, anti-depressant and other beneficial characteristics. Also, the extracts of O. sanctum L. have the ability to reduce chronic inflammation linked to neurological disorders such as Parkinson’s and Alzheimer’s disease. The information presented in this review shed light on the multifaceted potential of Tulsi and its derivatives in maintaining and promoting health. This knowledge may pave the way for the development of novel therapeutic interventions and natural remedies that harness the immense therapeutic potential of Tulsi in combating various health conditions, while also providing valuable insights for further research and exploration in this field. Full article
Show Figures

Figure 1

14 pages, 2769 KB  
Article
Study on the Genus Drymaria (Caryophyllaceae)—A New Species from North-East India
by Sindhu Arya, Harsh Singh, Kalarikkal Walsan Vishnu and Duilio Iamonico
Plants 2024, 13(23), 3378; https://doi.org/10.3390/plants13233378 - 30 Nov 2024
Cited by 2 | Viewed by 1314
Abstract
A new species of Drymaria from the Kohima District (Nagaland of North-East India) is described and illustrated based on both molecular data (the ITS region of nuclear DNA) and morphometric analyses (clustering, PCA, DA, and MANOVA). The new species resembles D. cordata but [...] Read more.
A new species of Drymaria from the Kohima District (Nagaland of North-East India) is described and illustrated based on both molecular data (the ITS region of nuclear DNA) and morphometric analyses (clustering, PCA, DA, and MANOVA). The new species resembles D. cordata but differs with respect to the shape of the sepal (oblong, incurved at the margin vs. lanceolate, not incurved at the margin), petals (oblong or linear vs. ovate–lanceolate), and bract (foliaceous, glabrous, non-prominent vs. non-foliaceous, pubescent, and prominent). For nomenclatural purposes, the typification of Drymaria villosa by Duke (in 1961) was corrected according to Art. 9.10 of the Shenzhen Code. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

21 pages, 2421 KB  
Review
Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic
by Shabana Bano, Avisek Majumder, Ayush Srivastava and Kasturi Bala Nayak
Biomolecules 2024, 14(9), 1166; https://doi.org/10.3390/biom14091166 - 18 Sep 2024
Cited by 5 | Viewed by 5657
Abstract
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer [...] Read more.
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer risk. Recently, researchers have extracted and tested multiple phytochemicals from cardamom to assess their potential effectiveness against various types of human malignancy. These studies have indicated that cardamom can help overcome drug resistance to standard chemotherapy and protect against chemotherapy-induced toxicity due to its scavenging properties. Furthermore, chemical compounds in cardamom, including limonene, cymene, pinene, linalool, borneol, cardamonin, indole-3-carbinol, and diindolylmethane, primarily target the programmed cell death lignin-1 gene, which is more prevalent in cancer cells than in healthy cells. This review provides the medicinal properties and pharmacological uses of cardamom, its cellular effects, and potential therapeutic uses in cancer prevention and treatment, as well as its use in reducing drug resistance and improving the overall health of cancer patients. Based on previous preclinical studies, cardamom shows significant potential as an anti-cancer agent, but further exploration for clinical use is warranted due to its diverse mechanisms of action. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

22 pages, 1476 KB  
Review
Gut Microbiota-Mediated Biotransformation of Medicinal Herb-Derived Natural Products: A Narrative Review of New Frontiers in Drug Discovery
by Christine Tara Peterson
J 2024, 7(3), 351-372; https://doi.org/10.3390/j7030020 - 4 Sep 2024
Cited by 2 | Viewed by 5406
Abstract
The discovery of natural products has been pivotal in drug development, providing a vast reservoir of bioactive compounds from various biological sources. This narrative review addresses a critical research gap: the largely underexplored role of gut microbiota in the mediation and biotransformation of [...] Read more.
The discovery of natural products has been pivotal in drug development, providing a vast reservoir of bioactive compounds from various biological sources. This narrative review addresses a critical research gap: the largely underexplored role of gut microbiota in the mediation and biotransformation of medicinal herb-derived natural products for therapeutic use. By examining the interplay between gut microbiota and natural products, this review highlights the potential of microbiota-mediated biotransformation to unveil novel therapeutic agents. It delves into the mechanisms by which gut microbes modify and enhance the efficacy of natural products, with a focus on herbal medicines from Ayurveda and traditional Chinese medicine, known for their applications in treating metabolic and inflammatory diseases. The review also discusses recent advances in microbiota-derived natural product research, including innovative methodologies such as culturomics, metagenomics, and metabolomics. By exploring the intricate interactions between gut microorganisms and their substrates, this review uncovers new strategies for leveraging gut microbiota-mediated processes in the development of groundbreaking therapeutics. Full article
(This article belongs to the Special Issue Herbal Medicines: Current Advances and Clinical Prospects)
Show Figures

Figure 1

20 pages, 3883 KB  
Article
In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3
by Kian Falah, Patrick Zhang, Anisha K. Nigam, Koustav Maity, Geoffrey Chang, Jeffry C. Granados, Jeremiah D. Momper and Sanjay K. Nigam
Nutrients 2024, 16(14), 2242; https://doi.org/10.3390/nu16142242 - 12 Jul 2024
Cited by 3 | Viewed by 2230
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution [...] Read more.
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

14 pages, 2772 KB  
Article
A Novel Nutraceutical Supplement Lowers Postprandial Glucose and Insulin Levels upon a Carbohydrate-Rich Meal or Sucrose Drink Intake in Healthy Individuals—A Randomized, Placebo-Controlled, Crossover Feeding Study
by Giriprasad Venugopal, Rishikesh Dash, Siwani Agrawal, Sayantan Ray, Prasanta Kumar Sahoo and Balamurugan Ramadass
Nutrients 2024, 16(14), 2237; https://doi.org/10.3390/nu16142237 - 11 Jul 2024
Cited by 3 | Viewed by 5780
Abstract
Background: Alkaloid- and polyphenol-rich white mulberry leaf and apple peel extracts have been shown to have potential glucose-lowering effects, benefitting the control of postprandial blood glucose levels. This study aimed to determine the effect of the combination of Malus domestica peel and Morus [...] Read more.
Background: Alkaloid- and polyphenol-rich white mulberry leaf and apple peel extracts have been shown to have potential glucose-lowering effects, benefitting the control of postprandial blood glucose levels. This study aimed to determine the effect of the combination of Malus domestica peel and Morus alba leaf extracts (GLUBLOCTM) on postprandial blood glucose and insulin-lowering effects in healthy adults after a carbohydrate-rich meal or sucrose drink intake. Methods: This study was designed as a randomized, crossover, single-blinded clinical trial. Out of 116 healthy participants, 85 subjects (aged 18–60 years) completed the day 1 and 5 crossover study. On day 1, subjects were supplemented with a placebo or GLUBLOCTM tablet 10 min before the carbohydrate-rich meal (300 g of tomato rice) or sucrose drink intake (75 g of sucrose dissolved in 300 mL water). On day 5, the treatments were crossed over, and the same diet was followed. Postprandial blood glucose and insulin levels were measured on days 1 and 5 (baseline 0, post-meal 30, 60, 90, and 120 min). Differences in iAUC, Cmax, and Tmax were determined between the placebo and GLUBLOCTM-treated cohorts. Results: Significant changes in total iAUC (0–120 min), Cmax, and Tmax of postprandial blood glucose and insulin levels were noticed upon GLUBLOCTM supplementation. The percentage reduction in the iAUC of blood glucose levels was 49.78% (iAUC0–60min) and 43.36% (iAUC0–120min), respectively, compared with the placebo in the sucrose drink intake study. Similarly, there was a 41.13% (iAUC0–60min) and 20.26% (iAUC0–120min) glucose-lowering effect compared with the placebo in the carbohydrate-rich meal intake study. Conclusions: Premeal supplementation with GLUBLOCTM significantly reduced the postprandial surge in blood glucose and insulin levels after a carbohydrate-rich meal or sucrose drink intake over 120 min in healthy individuals. This study proves that GLUBLOCTM can manage steady postprandial blood glucose levels. Full article
Show Figures

Figure 1

Back to TopTop