Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = BSR-seq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3022 KB  
Article
Understanding Callus Types in Maize by Genetic Mapping and Transcriptional Profiling
by Guifang Lin, Yan Liu, Tej Man Tamang, Yang Qin, Mingxia Zhao, Jun Zheng, Guoying Wang, Hairong Wei, Sunghun Park, Myeong-Je Cho, Frank F. White, Yunjun Liu and Sanzhen Liu
Plants 2025, 14(20), 3168; https://doi.org/10.3390/plants14203168 - 15 Oct 2025
Viewed by 303
Abstract
Plant transformation efficiency is highly dependent on species, individual genotypes, and tissue types. In maize, immature embryos are regularly used for transformation. The process relies heavily on callus development, as it is intricately associated with somatic embryogenesis and subsequent plant regeneration, both of [...] Read more.
Plant transformation efficiency is highly dependent on species, individual genotypes, and tissue types. In maize, immature embryos are regularly used for transformation. The process relies heavily on callus development, as it is intricately associated with somatic embryogenesis and subsequent plant regeneration, both of which directly affect transformation efficiency. Immature embryos of the segregation progeny derived from the two inbred parents, a transformation-amenable line A188 and a recalcitrant line B73, can be cultured to form two primary callus types: Type I and Type II. The Type II callus grows faster and is a favorable type for regeneration. Here, Type I and II calli from the B73xA188 F2 population were genotyped by Genotyping-By-Sequencing (GBS). Quantitative trait locus (QTL) analysis of the callus type identified QTLs at chromosomes 2, 5, 6, 8, and 9. The result was largely supported by the bulk segregant RNA-seq (BSR-seq) genetic analysis using RNA from separately pooled Type I and II calli. Both analyses revealed that an allele of A188 on chromosome 6 and B73 alleles on chromosomes 2, 5, 8, and 9 promoted the formation of the Type II callus. Differentially expressed genes (DEGs) between the Type II and I F2 calli were also identified. In addition, the A188 calli developed from the same immature embryos often exhibit heterogeneous morphology, including the fast- and slow-growing callus sectors. The transcriptional comparison between the two sectors was performed to identify DEGs. Both sets of DEGs were enriched in genes involved in cell-wall organization and wax biosynthesis pathways. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

19 pages, 2814 KB  
Article
Integrating Genetic Mapping and BSR-Seq Analysis to Identify Candidate Genes Controlling Fruitfulness in Camellia sinensis
by Shizhuo Kan, Dandan Tang, Wei Chen, Yuxin Gu, Shenxin Zhao, Lu Long, Jing Zhang, Xiaoqin Tan, Liqiang Tan and Qian Tang
Plants 2025, 14(19), 2963; https://doi.org/10.3390/plants14192963 - 24 Sep 2025
Viewed by 407
Abstract
As nutrient allocation trade-offs occur between reproductive and vegetative development in crops, optimizing their partitioning holds promise for improving agricultural productivity and quality. Herein, we characterize the phenotypic diversity of the fruitfulness trait and identify associated genes in tea plants (Camellia sinensis [...] Read more.
As nutrient allocation trade-offs occur between reproductive and vegetative development in crops, optimizing their partitioning holds promise for improving agricultural productivity and quality. Herein, we characterize the phenotypic diversity of the fruitfulness trait and identify associated genes in tea plants (Camellia sinensis). Over three consecutive years, we monitored the fruitfulness of an F1 hybrid population (n = 206) derived from crosses of ‘Emei Wenchun’ and ‘Chuanmu 217’. A marked variation was observed in the yield of individual plants, ranging from complete sterility (zero fruits) to exceptionally high fertility (1612 fruits). Using the high-resolution genetic linkage map and the fruitfulness data, we identified a stable major QTL designated as qFN5. To fine-map the underlying gene(s), artificial pollination experiments were conducted with extreme phenotype individuals (with the highest vs. lowest fruit numbers). Bulked segregant RNA sequencing (BSR-Seq) with ovules collected at two and seven days post-pollination (DPP) identified the genomic intervals that exhibit a high degree of overlap with qFN5. Analysis of expression dynamics combined with functional genomics data revealed a prominent candidate gene, CsETR2 (TGY048509), which encodes an ethylene receptor protein. When CsETR2 was overexpressed in Arabidopsis thaliana, the transgenic lines exhibited significantly decreased reproductive performance relative to the wild-type plants. Relative to the wild type, the transgenic lines exhibited a significant decline in several key traits: the number of effective panicles decreased by 72.5%, the seed setting rate dropped by 67.7%, and the silique length shortened by 38%. These findings demonstrate its role in regulating plant fruitfulness. Furthermore, yeast one-hybrid and dual-luciferase assays verified that CsMYB15 (TGY110225) directly binds to the CsETR2 promoter, thus repressing its transcription. In summary, our findings expand the understanding of genetic regulation underlying fruitfulness in tea plants and provide candidate target loci for breeding. Full article
Show Figures

Figure 1

17 pages, 9471 KB  
Article
Characterization and Fine Mapping of the Stay-Green-Related Spot Leaf Gene TaSpl1 with Enhanced Stripe Rust and Powdery Mildew Resistance in Wheat
by Xiaomin Xu, Xin Du, Yanlong Jin, Yanzhen Wang, Zhenyu Wang, Jixin Zhao, Changyou Wang, Xinlun Liu, Chunhuan Chen, Pingchuan Deng, Tingdong Li and Wanquan Ji
Int. J. Mol. Sci. 2025, 26(9), 4002; https://doi.org/10.3390/ijms26094002 - 23 Apr 2025
Viewed by 699
Abstract
Lesion mimic phenotypes, characterized by leaf spots formed in the absence of pathogens or pests, are often associated with reactive oxygen species (ROS) accumulation and cell necrosis. This study identified a novel and stable homozygous spotted phenotype (HSP) from the F8 population [...] Read more.
Lesion mimic phenotypes, characterized by leaf spots formed in the absence of pathogens or pests, are often associated with reactive oxygen species (ROS) accumulation and cell necrosis. This study identified a novel and stable homozygous spotted phenotype (HSP) from the F8 population of common wheat (XN509 × N07216). The yellow spots that appeared at the booting stage were light-sensitive, and accompanied by cell necrosis and H2O2 accumulation. Compared with homozygous normal plants (HNPs), HSPs exhibited enhanced resistance to stripe rust and powdery mildew without compromising yield. RNA-Seq analysis at three stages revealed that differentially expressed genes (DEGs) between HSPs and HNPs were significantly enriched in KEGG pathways related to photosynthesis and photosynthesis-antenna proteins. GO analysis highlighted chloroplast and light stimulus-related down-regulated DEGs. Fine mapping identified TaSpl1 within a 0.91 Mb interval on chromosome 3DS, flanked by the markers KASP188 and KASP229, using two segregating populations comprising 1117 individuals. The candidate region contained 42 annotated genes, including 14 DEGs based on previous BSR-Seq data. PCR amplification and qRT-PCR verification identified the expression of TraesCS3D02G022100 was consistent with RNA-Seq data. Gene homology analysis and silencing experiments confirmed that TraesCS3D02G022100 was associated with stay-green traits. These findings provide new insights into the genetic regulation of lesion mimics, photosynthesis, and disease resistance in wheat. Full article
(This article belongs to the Special Issue Wheat Genetics and Genomics: 3rd Edition)
Show Figures

Figure 1

18 pages, 2961 KB  
Article
Genetic Dissection of the Powdery Mildew Resistance in a Cultivated Emmer Wheat Accession
by Ruishan Liu, Yuli Jin, Ningning Yu, Hongxing Xu, Xusheng Sun, Jiangchun Wang, Xueqing Liu, Jiadong Zhang, Jiatong Li, Yaoxue Li and Pengtao Ma
Agronomy 2025, 15(4), 980; https://doi.org/10.3390/agronomy15040980 - 18 Apr 2025
Cited by 1 | Viewed by 908
Abstract
Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew, poses a significant threat to global wheat production. In this study, we identified and characterized a broad-spectrum powdery mildew resistance gene, PmL709, in a resistant cultivated emmer [...] Read more.
Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew, poses a significant threat to global wheat production. In this study, we identified and characterized a broad-spectrum powdery mildew resistance gene, PmL709, in a resistant cultivated emmer wheat (Triticum dicoccum) accession: L709. Using bulked segregant RNA sequencing (BSR-Seq) analysis and molecular markers, PmL709 was mapped to a 1.7 cM interval on chromosome arm 2BS, flanked by markers Xdw05/YTU95-04/YTU95-06/YTU95-08/Xdw10/Xdw11 and YTU692B-094, corresponding to a 21.82–25.94 Mb physical interval (cv. Svevo), using the segregated population crossed by L709 and a susceptible durum wheat cultivar, Langdon. Referring to the origin, the resistance spectra, and the physical position with known resistance genes on chromosome arm 2BS, PmL709 was likely to be an allele of Pm68. Transcriptomic analysis revealed 3923 differentially expressed genes (DEGs) between resistant and susceptible bulks, enriched in pathways such as phenylpropanoid biosynthesis, MAPK signaling, and plant–pathogen interactions. qRT-PCR validated the differential expression of nine candidate genes within the PmL709 interval, highlighting their potential roles in disease resistance. The flanking markers could accurately trace the presence of PmL709 from resistant accession L709 in a survey of 46 susceptible wheat accessions. These findings provide valuable insights into the genetic and molecular mechanisms of powdery mildew resistance in wheat and offer practical tools for marker-assisted breeding to develop resistant cultivars. Full article
(This article belongs to the Special Issue Mechanism and Sustainable Control of Crop Diseases)
Show Figures

Figure 1

17 pages, 10492 KB  
Article
A Bread Wheat Line with the Substituted Wild Emmer Chromosome 4A Results in Fragment Deletions of Chromosome 4B and Weak Plants
by Yu Qiu, Fei Lu, Bohao Yang, Xin Hu, Yanhao Zhao, Mingquan Ding, Lei Yang and Junkang Rong
Plants 2025, 14(7), 1134; https://doi.org/10.3390/plants14071134 - 5 Apr 2025
Viewed by 905
Abstract
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution [...] Read more.
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution line (CASL4AL) exhibited stunted growth, including significantly reduced plant height, spike length, spikelet number, and stem width compared to normal plants. Integrative transcriptomic analyses (RNA-Seq and BSR-Seq) revealed a statistically significant depletion (p < 0.01) of single nucleotide polymorphisms (SNPs) on chromosome 4B in compromised plants. Chromosome association analysis of differentially expressed genes (DEGs, up- or downregulated) revealed that downregulated genes were predominantly located on chromosome 4B. The 1244 downregulated DEGs on Chr4B were employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and RNA metabolic processes, DNA repair, and transport systems were significantly enriched by GO analysis; however, only the mRNA surveillance pathway was enriched by KEGG enrichment. Molecular marker profiling showed a complete absence of target amplification in the critical 0–155 Mb region of chromosome 4B in all weak plants. Pearson’s correlation coefficients confirmed significant associations (p < 0.01) between 4B-specific amplification and weak phenotypes. These results demonstrate that 4B segmental deletions drive weak phenotypes in CASL4AL progeny, and provide experimental evidence for chromosome deletions induced in wild emmer chromosome substitution lines. This study highlights the potential of wild emmer as a valuable tool for generating chromosomal variations in wheat breeding programs. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

12 pages, 1754 KB  
Article
A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430
by Yintao Dai, Ningning Yu, Hongxing Xu, Shaoqing Liu, Jiadong Zhang, Ruishan Liu, Jiatong Li, Yaoxue Li, Bei Xiao, Guantong Pan, Dongming Li, Cheng Liu, Yuli Jin and Pengtao Ma
Int. J. Mol. Sci. 2025, 26(1), 242; https://doi.org/10.3390/ijms26010242 - 30 Dec 2024
Cited by 4 | Viewed by 1152
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world. Exploring Pm gene(s) and developing resistant cultivars are preferred to control the disease. Wild [...] Read more.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world. Exploring Pm gene(s) and developing resistant cultivars are preferred to control the disease. Wild emmer wheat (Triticum dicoccoides, 2n = 4x = 28, AABB) has accumulated abundant gene resources for resistance to powdery mildew during the long process of natural evolution. In the current study, the WEW accession D430 was highly resistant to powdery mildew at the whole-growth stage. Genetic analysis showed that the powdery mildew resistance in D430 was conferred by a single dominant locus or gene by the cross of D430 and susceptible durum wheat 647, tentatively named PmD430. Combining BSR-Seq analysis, molecular mapping, and sequence alignment, PmD430 was finally mapped to Pm4 locus, and the sequence was identical to Pm4b. Subsequently, 1871 DEGs between resistant and susceptible bulks were annotated and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eight disease-related genes were evaluated by qRT-PCR and exhibited a unique expression pattern when invaded by Bgt isolate E09 and was, therefore, presented as latent targets for regulating powdery mildew resistance in D430. Full article
(This article belongs to the Special Issue Molecular Research Progress of Cereal Crop Disease Resistance)
Show Figures

Figure 1

14 pages, 2556 KB  
Article
Conjunctive BSA-Seq and BSR-Seq to Map the Genes of Yellow Leaf Mutations in Hot Peppers (Capsicum annuum L.)
by Guosheng Sun, Changwei Zhang, Xi Shan, Zhenchao Zhang, Wenlong Wang, Wenjun Lu, Zhongliang Dai, Liu E, Yaolong Wang, Zhihu Ma and Xilin Hou
Genes 2024, 15(9), 1115; https://doi.org/10.3390/genes15091115 - 23 Aug 2024
Cited by 2 | Viewed by 1209
Abstract
Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore [...] Read more.
Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore the primary genetic elements that lead to the variations in the leaf color of hot peppers. To identify the pathways and genes associated with yellow leaf phenotypes, we applied sequencing-based Bulked Segregant Analysis (BSA-Seq) combined with BSR-Seq. We identified 4167 differentially expressed genes (DEGs) in the mutant pool compared with the wild-type pool. The results indicated that DEGs were involved in zeatin biosynthesis, plant hormone signal transduction, signal transduction mechanisms, post-translational modification and protein turnover. A total of 437 candidates were identified by the BSA-Seq, while the BSR-Seq pinpointed four candidate regions in chromosomes 8 and 9, containing 222 candidate genes. Additionally, the combination of BSA-Seq and BSR-Seq showed that there were 113 overlapping candidate genes between the two methods, among which 8 common candidates have been previously reported to be related to the development of chloroplasts, the photomorphogenesis and chlorophyll formation of plant chloroplasts and chlorophyll biogenesis. qRT-PCR analysis of the 8 common candidates showed higher expression levels in the mutant pool compared with the wild-type pool. Among the overlapping candidates, the DEG analysis showed that the CaKAS2 and CaMPH2 genes were down-regulated in the mutant pool compared to the wild type, suggesting that these genes may be key contributors to the yellow leaf phenotype of 96-140YBM. This research will deepen our understanding of the genetic basis of leaf color formation and provide valuable information for the breeding of hot peppers with diverse leaf colors. Full article
(This article belongs to the Special Issue Pepper Genetic Breeding and Germplasm Innovation)
Show Figures

Figure 1

27 pages, 2402 KB  
Article
Genetic Dissection of ToLCNDV Resistance in Resistant Sources of Cucumis melo
by Clara Pérez-Moro, Cristina Sáez, Alicia Sifres, Carmelo López, Narinder P. S. Dhillon, Belén Picó and Ana Pérez-de-Castro
Int. J. Mol. Sci. 2024, 25(16), 8880; https://doi.org/10.3390/ijms25168880 - 15 Aug 2024
Cited by 2 | Viewed by 2514
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a begomovirus causing significant melon (Cucumis melo) crop losses globally. This study aims to map the ToLCNDV resistance in the PI 414723 melon accession, previously identified and characterized through phenotypic studies, thereby exploring [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) is a begomovirus causing significant melon (Cucumis melo) crop losses globally. This study aims to map the ToLCNDV resistance in the PI 414723 melon accession, previously identified and characterized through phenotypic studies, thereby exploring shared genomic regions with the established resistant source WM-7. In the present study, WM-7 and PI 414723 were crossed with the susceptible accessions ‘Rochet’ and ‘Blanco’ respectively, to generate F1 hybrids. These hybrids were self-pollinated to generate the populations for mapping the ToLCNDV resistance region and designing markers for marker-assisted selection. Disease evaluation included visual symptom scoring, viral-load quantification and tissue printing. Genotyping-by-sequencing and SNP markers were used for quantitative trait loci (QTL) mapping. For genetic analysis, qPCR and bulked segregant RNA-seq (BSR-seq) were performed. Gene expression was assessed using RNA-seq, and qRT-PCR was used for confirmation. The research narrows the candidate region for resistance in WM-7 and identifies overlapping QTLs on chromosome 11 in PI 414723, found in the region of the DNA primase large subunit. BSR-seq and expression analyses highlight potential regulatory roles of chromosome 2 in conferring resistance. Differential expression was confirmed for six genes in the candidate region on chromosome 2. This study confirms the existence of common resistance genes in PI 414723 and WM-7. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Cucurbitaceous Crops)
Show Figures

Figure 1

14 pages, 5253 KB  
Article
Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701
by Hongyu Li, Kairong Li, Hongna Li, Chen Yang, Geetha Perera, Guiping Wang, Shikai Lyu, Lei Hua, Shams ur Rehman, Yazhou Zhang, Michael Ayliffe, Haitao Yu and Shisheng Chen
Plants 2024, 13(16), 2197; https://doi.org/10.3390/plants13162197 - 8 Aug 2024
Viewed by 1677
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem [...] Read more.
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs. Full article
(This article belongs to the Special Issue Mining and Mapping of Disease-Resistant Genes in Wheat)
Show Figures

Figure 1

26 pages, 6696 KB  
Article
RNA-Seq Bulked Segregant Analysis of an Exotic B. napus ssp. napobrassica (Rutabaga) F2 Population Reveals Novel QTLs for Breeding Clubroot-Resistant Canola
by Zhiyu Yu, Rudolph Fredua-Agyeman, Stephen E. Strelkov and Sheau-Fang Hwang
Int. J. Mol. Sci. 2024, 25(9), 4596; https://doi.org/10.3390/ijms25094596 - 23 Apr 2024
Cited by 3 | Viewed by 2005
Abstract
In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus [...] Read more.
In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada. Full article
(This article belongs to the Special Issue Recent Advances in Epigenetics in Plant Research)
Show Figures

Figure 1

15 pages, 3460 KB  
Article
Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants (Camellia sinensis)
by Yuan-Yuan Ye, Ding-Ding Liu, Rong-Jin Tang, Yang Gong, Chen-Yu Zhang, Piao Mei, Chun-Lei Ma and Jie-Dan Chen
Int. J. Mol. Sci. 2024, 25(8), 4549; https://doi.org/10.3390/ijms25084549 - 21 Apr 2024
Viewed by 1969
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant [...] Read more.
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise. Full article
(This article belongs to the Special Issue Advances in Tea Tree Genetics and Breeding)
Show Figures

Figure 1

14 pages, 4322 KB  
Article
Identification of Yellow Seed Color Genes Using Bulked Segregant RNA Sequencing in Brassica juncea L.
by Yang Wang, Hong Lu, Xiang Liu, Lu Liu, Wenying Zhang, Zhen Huang, Keqi Li and Aixia Xu
Int. J. Mol. Sci. 2024, 25(3), 1573; https://doi.org/10.3390/ijms25031573 - 26 Jan 2024
Cited by 4 | Viewed by 2305
Abstract
Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the [...] Read more.
Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard “Wuqi” and brown seed mustard “Wugong” was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G’ analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome “T84-66” (brown-seed) and “AU213” (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 14075 KB  
Article
Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117
by Hui Li, Xin Liu, Junqing Zhang, Longyu Chen, Minghu Zhang, Yongping Miao, Pan Ma, Ming Hao, Bo Jiang, Shunzong Ning, Lin Huang, Zhongwei Yuan, Xuejiao Chen, Xue Chen, Dengcai Liu, Hongshen Wan and Lianquan Zhang
Int. J. Mol. Sci. 2023, 24(16), 12845; https://doi.org/10.3390/ijms241612845 - 16 Aug 2023
Viewed by 8217
Abstract
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, [...] Read more.
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2676 KB  
Article
Conjunctive Analyses of BSA-Seq and BSR-Seq to Identify Candidate Genes Controlling the Black Lemma and Pericarp Trait in Barley
by Yajie Liu, Pengzheng Chen, Wenshuo Li, Xinchun Liu, Guowu Yu, Hui Zhao, Shuhua Zeng, Mao Li, Genlou Sun and Zongyun Feng
Int. J. Mol. Sci. 2023, 24(11), 9473; https://doi.org/10.3390/ijms24119473 - 30 May 2023
Cited by 10 | Viewed by 3240
Abstract
Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In [...] Read more.
Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors. Full article
(This article belongs to the Special Issue Molecular Research for Cereal Grain Quality 2.0)
Show Figures

Figure 1

14 pages, 4614 KB  
Article
BrCWM Mutation Disrupted Leaf Flattening in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Yanji Wu, Yue Xin, Jiaqi Zou, Shengnan Huang, Che Wang and Hui Feng
Int. J. Mol. Sci. 2023, 24(6), 5225; https://doi.org/10.3390/ijms24065225 - 9 Mar 2023
Cited by 2 | Viewed by 2534
Abstract
Leaf flattening plays a vital role in the establishment of plant architecture, which is closely related to plant photosynthesis and, thus, influences the product yield and quality of Chinese cabbage. In this study, we used the doubled haploid line ‘FT’ of Chinese cabbage [...] Read more.
Leaf flattening plays a vital role in the establishment of plant architecture, which is closely related to plant photosynthesis and, thus, influences the product yield and quality of Chinese cabbage. In this study, we used the doubled haploid line ‘FT’ of Chinese cabbage as the wild type for ethyl methanesulfonate (EMS) mutagenesis and obtained a mutant cwm with stably inherited compact and wrinkled leaves. Genetic analysis revealed that the mutated trait was controlled by a single recessive nuclear gene, Brcwm. Brcwm was preliminarily mapped to chromosome A07 based on bulked segregant RNA sequencing (BSR-seq) and fine-mapped to a 205.66 kb region containing 39 genes between Indel12 and Indel21 using SSR and Indel analysis. According to the whole-genome re-sequencing results, we found that there was only one nonsynonymous single nucleotide polymorphism (SNP) (C to T) within the target interval on exon 4 of BraA07g021970.3C, which resulted in a proline to serine amino acid substitution. The mutated trait co-segregated with the SNP. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) revealed that BraA07g021970.3C expression was dramatically higher in ‘FT’ leaves than that in cwm leaves. BraA07g021970.3C is homologous to AT3G55000 encoding a protein related to cortical microtubule organization. A similar phenotype of dwarfism and wrinkled leaves was observed in the recessive homozygous mutant cwm-f1 of AT3G55000, and its T3 transgenic lines were restored to the Arabidopsis wild-type phenotype through ectopic overexpression of BraA07g021970.3C. These results verified that BraA07g021970.3C was the target gene essential for leaf flattening in Chinese cabbage. Full article
(This article belongs to the Special Issue The Gene, Genomics, and Molecular Breeding in Cruciferae Plants)
Show Figures

Figure 1

Back to TopTop