Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Bayan Obo rare earth concentrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5392 KB  
Article
Selective Leaching Bastnaesite from Bayan Obo Rare Earth Concentrate and the Recovery Process of Rare Earths, Aluminum, Fluoride and Calcium
by Yanzhu Liu, Huifang Xiao, Lihui Liu, Xiaofan Ye, Xiaoqian Hu, Yanrong Ding and Yongxiu Li
Metals 2025, 15(4), 431; https://doi.org/10.3390/met15040431 - 12 Apr 2025
Viewed by 895
Abstract
Bayan Obo rare earth concentrate (BOREC) is composed of bastnaesite, monazite and fluorite, which is recognized as a refractory mineral in the world. In order to solve the problems of waste gas treatment and comprehensive utilization efficiency of BOREC decomposed by the current [...] Read more.
Bayan Obo rare earth concentrate (BOREC) is composed of bastnaesite, monazite and fluorite, which is recognized as a refractory mineral in the world. In order to solve the problems of waste gas treatment and comprehensive utilization efficiency of BOREC decomposed by the current concentrated sulfuric acid roasting method (500–700 °C), H2SO4-HCl mixed acid assisted by aluminum salt was used to leach out the bastnaesite, and the optimal conditions were determined as follows: c(H+) = 7 mol/L, c(1/2H2SO4):c(HCl) = 5:1, c(Al2(SO4)3) = 0.25 mol/L, temperature 135 °C, liquid–solid ratio of 42:1, and reaction time 3 h. At this time, the leaching rates of concentrate and rare earth (La, Ce, Pr and Nd) were 74.08% and 71.95%, respectively, and the decomposition rate of bastnaesite was 96.83%. At the same time, the yield of calcium sulfate was 77.35% and the purity was 99.22%. Subsequently, sodium sulfate was added with m(Na2SO4):m(RE2O3) = 2.5:1, and the recovery rate of rare earth was 99.5%, and the purity of rare earth double salt product was 98.47% at a temperature of 90 °C. After most of the acid had been extracted with triethyloctanamine, sodium fluoride was added with a fluorine–aluminum ratio of 6:1, sodium carbonate was used to adjust pH = 3, and cryolite was obtained with a purity of 95.59% and an aluminum recovery rate of 99.6% at 90 °C. Since the separation of bastnaesite and monazite has been basically realized in the leaching stage, it is conducive to the docking of subsequent alkali decomposition and recovery of trisodium phosphate, realizing the comprehensive recovery of rare earth, fluorine, calcium, aluminum and phosphorus. Full article
(This article belongs to the Special Issue Advances in Flotation Separation and Mineral Processing)
Show Figures

Figure 1

23 pages, 10455 KB  
Article
Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy
by Hailong Jin, Qing Sun, Biao Chen, Wei Wei, Yanjiang Liu and Qiang Li
Minerals 2025, 15(3), 212; https://doi.org/10.3390/min15030212 - 22 Feb 2025
Viewed by 1869
Abstract
The Bayan Obo is the largest carbonatite-type rare earth deposit in the world. It not only has a large amount of light rare earth element (LREE) resources but also hosts approximately 9 million tons of medium and heavy rare earth element (M+HREE) resources. [...] Read more.
The Bayan Obo is the largest carbonatite-type rare earth deposit in the world. It not only has a large amount of light rare earth element (LREE) resources but also hosts approximately 9 million tons of medium and heavy rare earth element (M+HREE) resources. However, the M+HREE resources have not received enough attention, which hinders their further utilization. In this study, we conduct a systematic investigation of the distribution and process mineralogy properties of M+HREE in different types of ores in the Bayan Obo deposit. The high-value area (>0.1%) of M+HREE elements is found concentrated in the central and deeper parts of the Main and East orebodies. The content of M+HREE varies among different types of ores, with the Aegirine type (1005 ppm) and Fluorite type (1204 ppm) showing a higher average M+HREE concentration. The minerals rich in M+HREE include bastnäsite, monazite, Ca-fluorocarbonate, Ba-fluorocarbonate, allanite, aeschynite, and fergusonite, each with concentrations exceeding 4000 ppm. Aeschynite and fergusonite, in particular, exhibit high M+HREE concentrations and are enriched in fluorite-type and aegirine-type ores. Analysis of the mixed raw ores from the production line at the concentrating plant reveals an M+HREE concentration of approximately 0.2% and a concentration of the seven target minerals at around 12%. However, the particle size distribution and monomer dissociation degree are limited to below 22.3 µm and 40%, respectively. Based on these integrated analyses, we propose that the fluorite-type and aegirine-type ores within the Main and East open-pits are potential M+HREE targets. Furthermore, the recycling and utilization of M+HREE resources in the Bayan Obo deposit require a well-structured process flow and the selection of advanced processing equipment in the future. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

15 pages, 7941 KB  
Article
An Environmentally Friendly Sulfuric Acid Decomposition Strategy for Mixed Rare Earth Concentrate
by Shaochun Hou, Bo Zhang, Wenjun Li, Tuo Zhao, Zongyang Da and Chenghong Liu
Minerals 2024, 14(2), 185; https://doi.org/10.3390/min14020185 - 9 Feb 2024
Cited by 5 | Viewed by 2421
Abstract
A novel environmentally friendly one-step decomposition strategy for mixed rare earth concentrate of Bayan Obo in sulfuric acid solution was proposed in this work. In this process, more than 84% of bastnasite and monazite were decomposed in the leaching step at a temperature [...] Read more.
A novel environmentally friendly one-step decomposition strategy for mixed rare earth concentrate of Bayan Obo in sulfuric acid solution was proposed in this work. In this process, more than 84% of bastnasite and monazite were decomposed in the leaching step at a temperature lower than the boiling point of sulfuric acid solution. So, the dilapidation of sulfuric acid in this current proposed process will be reduced to a large extent. The stability region of rare earth ion in the RE(La, Ce, Nd)-F-P-SO4-H2O system at 170 °C has been proven through Eh-pH diagrams. The factors influencing decomposition of rare earth concentrate in this process were also investigated and the optimal leaching conditions were determined to be a leaching temperature of 170 °C with an ore/acid ratio of 1:5 (g/mL), a sulfuric acid concentrate of 75% and a leaching time of 80 min. The mineralogical changes occurring during the H2SO4 leaching process were investigated by X-ray diffraction and SEM-EDS. The analysis results showed that bastnasite and most of monazite had been decomposed, leaving only a small amount of monazite in the leaching residue. Full article
(This article belongs to the Special Issue Green and Efficient Recovery/Extraction of Rare Earth Resources)
Show Figures

Graphical abstract

20 pages, 15405 KB  
Article
Post-Magmatic Fluids Dominate the Mineralization of Dolomite Carbonatitic Dykes Next to the Giant Bayan Obo REE Deposit, Northern China
by Le Hu, Yike Li, Maoshan Chuan, Ruiping Li, Changhui Ke and Zhongjian Wu
Minerals 2020, 10(12), 1117; https://doi.org/10.3390/min10121117 - 12 Dec 2020
Cited by 4 | Viewed by 3814
Abstract
The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the [...] Read more.
The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the petrological and mineralogical characteristics of a typical dolomite carbonatite dyke near the deposit. The dolomite within the dyke experienced intense post-emplacement fluids metasomatism as evidenced by the widespread hydrothermal REE-bearing minerals occurring along the carbonate mineral grains. REE contents of bulk rocks and constituent dolomite minerals (>90 vol.%) are 1407–4184 ppm and 63–152 ppm, respectively, indicating that dolomite is not the dominant mineral controlling the REE budgets of the dyke. There are three types of apatite in the dyke: Type 1 apatite is the primary apatite and contains REE2O3 at 2.35–4.20 wt.% and SrO at 1.75–2.19 wt.%; Type 2 and Type 3 apatites are the products of replacement of primary apatite. The REE2O3 (6.10–8.21 wt.%) and SrO (2.83–3.63 wt.%) contents of Type 2 apatite are significantly elevated for overprinting of REE and Sr-rich fluids derived from the carbonatite. Conversely, Type 3 apatite has decreased REE2O3 (1.17–2.35 wt.%) and SrO (1.51–1.99 wt.%) contents, resulting from infiltration of fluids with low REE and Na concentrations. Our results on the dyke suggest that post-magmatic fluids expelled from the carbonatitic melts dominated the REE mineralization of the Bayan Obo deposit, and a significant fluid disturbance occurred but probably provided no extra REEs to the deposit. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

19 pages, 10099 KB  
Article
Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting
by Yan Zhou, He Yang, Xiang-xin Xue and Shuai Yuan
Metals 2017, 7(6), 195; https://doi.org/10.3390/met7060195 - 27 May 2017
Cited by 28 | Viewed by 7853
Abstract
A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction [...] Read more.
A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic concentrate was 56.3 wt. %. An innovative approach, using water to leach REEs after (NH4)2SO4 activation roasting, was used to extract REEs from magnetic separation tailings. The main influence factors of the leaching recovery during (NH4)2SO4 activation roasting, were investigated with the mass ratio of (NH4)2SO4 to magnetic separation tailings, roasting temperature and roasting time. The leaching recoveries of La, Ce and Nd reached 83.12%, 76.64% and 77.35%, respectively, under the optimized conditions: a mass ratio of 6:1, a roasting temperature of 400 °C and a roasting time of 80 min. Furthermore, the phase composition and reaction process during the (NH4)2SO4 activation roasting were analyzed with X-ray diffraction (XRD), energy dispersive X-ray spectroscopy & scanning electron microscopy (EDS-SEM) and thermogravimetry & differential scanning calorimetry (TG-DSC), and the leaching solution and leaching residue were also characterized. Full article
(This article belongs to the Special Issue Valuable Metal Recycling)
Show Figures

Figure 1

Back to TopTop