Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Berberis microphylla

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2126 KB  
Article
Calafate (Berberis microphylla G. Forst) Populations from Chilean Patagonia Exhibit Similar Structuring at the Genetic and Metabolic Levels
by Antonieta Ruiz, Marco Meneses, Benjamín Varas, Juan Araya, Carola Vergara, Dietrich von Baer, Patricio Hinrichsen and Claudia Mardones
Horticulturae 2024, 10(5), 458; https://doi.org/10.3390/horticulturae10050458 - 30 Apr 2024
Viewed by 2769
Abstract
Berberis microphylla, commonly known as calafate, is one of the most promising species of Chilean Patagonia to be domesticated, due to its anthocyanin-rich berries. The main aim of this study was to understand the genetic structure of the wild populations of B. [...] Read more.
Berberis microphylla, commonly known as calafate, is one of the most promising species of Chilean Patagonia to be domesticated, due to its anthocyanin-rich berries. The main aim of this study was to understand the genetic structure of the wild populations of B. microphylla in the main regions where it grows and its relationship with phenolic secondary metabolite profiles. Ripe berry samples and leaves were collected from the Aysén and Magallanes regions. Genetic analyses were carried out using 18 microsatellite markers. Phenolic compounds were extracted from the ripe fruits and were quantified using high-performance liquid chromatography (HPLC). Their antioxidant capacity was determined according to the Trolox equivalent antioxidant capacity (TEAC) assay. Total phenols were measured as their absorbance at a wavelength of 280 nm. Both the genetic and chemometric data were explored using unsupervised and supervised methods. The genetic markers suggest the existence of three groups, two of them corresponding to the Aysén and Magallanes samples, and the third corresponding to Chile Chico (a district in Aysén), which was the most divergent of the three. Similar results were observed in the phenolic profile obtained with chemometric analysis, with the same samples forming a separate third group. The differentiation achieved using the genetic and chemical data may be the result of intrinsic genetic differences, environmental effects on fruit maturity, or the sum of both factors. These are all points to consider in the domestication of this valuable species by selecting individuals with desirable traits and contrasting phenotypes. Full article
Show Figures

Figure 1

13 pages, 2162 KB  
Article
Effect of Climatic Variations in the Floral Phenology of Berberis microphylla and Its Pollinator Insects
by Silvia Radice, Edgardo Giordani and Miriam E. Arena
Horticulturae 2023, 9(12), 1254; https://doi.org/10.3390/horticulturae9121254 - 23 Nov 2023
Cited by 2 | Viewed by 1876
Abstract
Berberis microphylla (calafate) is an evergreen shrub that grows spontaneously in the Argentinean and Chilean Patagonia with a very harsh climate. This Sub-Antarctic zone is affected by the “El Niño” and “La Niña” pattern, which is measured using the Oceanic Niño Index (ONI). [...] Read more.
Berberis microphylla (calafate) is an evergreen shrub that grows spontaneously in the Argentinean and Chilean Patagonia with a very harsh climate. This Sub-Antarctic zone is affected by the “El Niño” and “La Niña” pattern, which is measured using the Oceanic Niño Index (ONI). The objective of this study was to analyze the floral phenology and its pollinator insects, in relation to the climatic conditions observed. This work was developed in Ushuaia (Argentina) during 2010, 2014, 2015, and 2016. Significant differences were observed for the development of flower bud and floral phenology between the four years studied. On 26 October, between 84 and 100% of flower buds was recorded in the shrubs tested during the years 2010, 2014, and 2015 and then decreased abruptly in 2010 and more slowly in 2014 and 2015. However, in 2016 on the same date, it was recorded 70% of button flowers increasing to 90% on 5 November and then slowly evolving towards the anthesis phase. On the other hand, the anthesis phase was developed rapidly for 2010 and 2015 and slower for 2014 and 2016. A peak in anthesis occurred on 2 November in 2010, while in the other years, it was observed later in 16 November. The hoverflies of the genus Carposcalis and Allograpta, both insects verified to be responsible for the pollination of calafate, were registered between 2014 and 2016. Carposcalis was significantly more present in 2014, while in 2015 and 2016, Allograpta was predominant. The insect activity was also related with the climatic conditions, i.e., air temperature, air relative humidity, wind speed, and gust of wind along the day during the anthesis phase, and which also modified its life cycle. So, it was observed in 2016, the year with winter temperatures higher than normal, that adult hoverflies ended their hibernation period earlier and began to lay eggs on the juvenile calafate sprouts; hence, the emerging larvae ate the pollen grain of button flowers, causing a decrease in future fruits harvested. The results presented show that the “La Niña” and “El Niño” effects in these latitudes are the opposite of those expected. Spring 2016 developed under a strong “La Niña” effect, as occurred in 2010 with temperatures warmer than in 2014 and 2015, where both years developed under the “El Niño” effect. This study showed how climatic conditions can modify the floral phenology of B. microphylla and its pollinator insect frequency, their activity, and their life cycle. Full article
Show Figures

Figure 1

18 pages, 3016 KB  
Article
Novel Approach to Organic Mulching from Natural-Based Solutions to Enhance Soil Health and Functional Value of Calafate Fruit
by Matías Betancur, Jorge Retamal-Salgado, María Dolores López, Rosa Vergara-Retamales and Mauricio Schoebitz
Horticulturae 2023, 9(11), 1202; https://doi.org/10.3390/horticulturae9111202 - 5 Nov 2023
Cited by 3 | Viewed by 2808
Abstract
Mulching suppresses weeds, improves soil biology, and increases physical or bioactive fruit yield in fruit orchards. However, there is no information on its impact on calafate (Berberis microphylla G. Forst.) orchards, which produce berries with high antioxidant content. To address this gap, [...] Read more.
Mulching suppresses weeds, improves soil biology, and increases physical or bioactive fruit yield in fruit orchards. However, there is no information on its impact on calafate (Berberis microphylla G. Forst.) orchards, which produce berries with high antioxidant content. To address this gap, in 2021, an experiment was conducted to evaluate the effect of 5 years of mulching on soil, plants, and calafate fruit. Four mulching treatments were established: no mulch (control), geotextile, oat straw, and hazelnut shell. All mulches suppressed weeds (43%) and maintained more soil moisture (5%) than the control. Soil microbial activity increased only with hazelnut shell compared with the control, up to 46%. Only oat straw and hazelnut shell increased basal respiration and urease up to 31% and 15% more than the control. Oat straw produced the highest fruit yield with 0.44 t ha−1, while the lowest yield was produced by the control and hazelnut shell with 0.1 and 0.15 t ha−1, respectively. The geotextile with 0.35 t ha−1 of fruit produced no differences between treatments. The ORAC antioxidant capacity was only higher in the control and hazelnut shell, with a mean of 3272 µmol TE 100 g−1. Hazelnut shell mulch is recommended to improve the biological functions of the soil and the antioxidant capacity of the calafate fruit. Full article
Show Figures

Figure 1

23 pages, 32660 KB  
Review
Anti-Inflammatory Chilean Endemic Plants
by Carolina Otero, Carolina Klagges, Bernardo Morales, Paula Sotomayor, Jorge Escobar, Juan A. Fuentes, Adrian A. Moreno, Felipe M. Llancalahuen, Ramiro Arratia-Perez, Felipe Gordillo-Fuenzalida, Michelle Herrera, Jose L. Martínez and Maité Rodríguez-Díaz
Pharmaceutics 2023, 15(3), 897; https://doi.org/10.3390/pharmaceutics15030897 - 10 Mar 2023
Cited by 8 | Viewed by 6128
Abstract
Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any [...] Read more.
Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge. Full article
Show Figures

Graphical abstract

19 pages, 2234 KB  
Article
Sequential Biorefining of Bioactive Compounds of High Functional Value from Calafate Pomace (Berberis microphylla) Using Supercritical CO2 and Pressurized Liquids
by Jaime Ortiz-Viedma, José M. Bastias-Montes, Cielo Char, Camila Vega, Alejandra Quintriqueo, Manuela Gallón-Bedoya, Marcos Flores, José M. Aguilera, José M. Miranda and Jorge Barros-Velázquez
Antioxidants 2023, 12(2), 323; https://doi.org/10.3390/antiox12020323 - 30 Jan 2023
Cited by 14 | Viewed by 3099
Abstract
A biorefinery process was developed for a freeze-dried pomace of calafate berries (Berberis microphylla). The process consisted of extraction of lipophilic components with supercritical CO2 (scCO2) and subsequent extraction of the residue with a pressurized mixture of ethanol/water [...] Read more.
A biorefinery process was developed for a freeze-dried pomace of calafate berries (Berberis microphylla). The process consisted of extraction of lipophilic components with supercritical CO2 (scCO2) and subsequent extraction of the residue with a pressurized mixture of ethanol/water (1:1 v/v). scCO2 extracted oil from the pomace, while pressurized liquid extraction generated a crude extract rich in phenols and a residue rich in fiber, proteins and minerals. Response surface analysis of scCO2 extraction suggested optimal conditions of 60 °C, 358.5 bar and 144.6 min to obtain a lipid extract yield of 11.15% (d.w.). The dark yellow oil extract contained a good ratio of ω6/ω3 fatty acids (1:1.2), provitamin E tocopherols (406.6 mg/kg), and a peroxide index of 8.6 meq O2/kg. Pressurized liquid extraction generated a polar extract with good phenolic content (33 mg gallic acid equivalents /g d.w.), anthocyanins (8 mg/g) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl test = 25 µg/mL and antioxidant activity = 63 µM Te/g). The extraction kinetics of oil by scCO2 and phenolic compounds were optimally adjusted to the spline model (R2 = 0.989 and R2 = 0.999, respectively). The solid extracted residue presented a fiber content close to cereals (56.4% d.w.) and acceptable values of proteins (29.6% d.w.) and minerals (14.1% d.w.). These eco-friendly processes valorize calafate pomace as a source of ingredients for formulation of healthy foods, nutraceuticals and nutritional supplements. Full article
Show Figures

Figure 1

19 pages, 2499 KB  
Article
Berberis microphylla G. Forst Intake Reduces the Cardiovascular Disease Plasmatic Markers Associated with a High-Fat Diet in a Mice Model
by Lia Olivares-Caro, Daniela Nova-Baza, Claudia Radojkovic, Luis Bustamante, Daniel Duran, Daniela Mennickent, Victoria Melin, David Contreras, Andy J. Perez and Claudia Mardones
Antioxidants 2023, 12(2), 304; https://doi.org/10.3390/antiox12020304 - 28 Jan 2023
Cited by 1 | Viewed by 2828
Abstract
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean–Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome [...] Read more.
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean–Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome changes after chronic consumption of this fruit. Characterized calafate extract was administered in water, for four months, to a group of mice fed with a high-fat diet and compared with a control diet. Metabolome changes were studied using UHPLC-DAD-QTOF-based untargeted metabolomics. The study was complemented by the analysis of protein biomarkers determined using Luminex technology, and quantification of OH radicals by electron paramagnetic resonance spectroscopy. Thirteen features were identified with a maximum annotation level-A, revealing an increase in succinic acid, activation of tricarboxylic acid and reduction of carnitine accumulation. Changes in plasma biomarkers were related to inflammation and cardiovascular disease, with changes in thrombomodulin (−24%), adiponectin (+68%), sE-selectin (−34%), sICAM-1 (−24%) and proMMP-9 (−31%) levels. The production of OH radicals in plasma was reduced after calafate intake (−17%), especially for the group fed with a high-fat diet. These changes could be associated with protection against atherosclerosis due to calafate consumption, which is discussed from a holistic and integrative point of view. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cardiovascular Health)
Show Figures

Graphical abstract

16 pages, 1601 KB  
Article
Variation in Physical-Chemical Parameters and Phenolic Compounds in Fruits of Four Calafate Clones
by Fernando Pinto-Morales, Jorge Retamal-Salgado, María Dolores López, Nelson Zapata, Rosa Vergara-Retamales and Daniela Palma
Agronomy 2022, 12(9), 2146; https://doi.org/10.3390/agronomy12092146 - 9 Sep 2022
Cited by 3 | Viewed by 1987
Abstract
Calafate (Berberis microphylla G. Forst) is an evergreen shrub with blue berries that grows naturally in Patagonia, in South America. It has beneficial nutraceutical characteristics for human health. The objective of the research was to evaluate the effect of different harvest dates [...] Read more.
Calafate (Berberis microphylla G. Forst) is an evergreen shrub with blue berries that grows naturally in Patagonia, in South America. It has beneficial nutraceutical characteristics for human health. The objective of the research was to evaluate the effect of different harvest dates of calafate clones in the south-central zone of Chile on the polyphenolic content, antioxidant capacity, quality parameters and fruit yield. To meet this objective, during three consecutive years, four wild calafate clones located in the town of San Ignacio, Chile, were selected. Where a harvest period was established from 110 to 140 days after full bloom (DAFBs), each of the harvests carried out were used for the following measurements: antioxidant capacity, determination of anthocyanin content, concentration of polyphenols, phenolic compounds, soluble solids, total titratable acidity, pH, fruit yield and quality. Among the main results, it can be highlighted that clone 2 was the one that obtained the highest concentration of soluble solids, with 38.0 °Brix at 140 DAFBs. Together, it was the one that obtained the highest content of total polyphenols and concentration of anthocyanins, with 1121 g GAE kg−1 fw and 714 g cy-3-glu 100 g−1 fw, respectively. Full article
(This article belongs to the Special Issue Postharvest Physiology of Fruits and Vegetables)
Show Figures

Figure 1

15 pages, 2859 KB  
Article
Phenolic Compounds in Calafate Berries Encapsulated by Spray Drying: Neuroprotection Potential into the Ingredient
by María E. Romero-Román, Mauricio Schoebitz, Jorge Fuentealba, Cristina García-Viguera and María D. López Belchí
Antioxidants 2021, 10(11), 1830; https://doi.org/10.3390/antiox10111830 - 18 Nov 2021
Cited by 14 | Viewed by 3382
Abstract
Calafate is a berry rich in anthocyanins that presents higher content of polyphenols than other fruits. Its compounds have been described previously, however, the potential thereof in preventing and treating degenerative disorders has not yet been studied. Due to its astringency, the consumption [...] Read more.
Calafate is a berry rich in anthocyanins that presents higher content of polyphenols than other fruits. Its compounds have been described previously, however, the potential thereof in preventing and treating degenerative disorders has not yet been studied. Due to its astringency, the consumption of this berry in its natural state is limited. To profit from the aforementioned properties and reduce palatability issues, calafate berry extracts were microencapsulated by spray drying, a rapid, cost-effective and scalable process, and were then compared with freeze drying as a control. The stability of its contents and its in-vitro potential, with respect to AChE activity and neuroprotection, were measured from the obtained microcapsules, resulting from temperature treatments and different encapsulant contents. The results indicated that the spray-dried powders were stable, despite high temperatures, and their encapsulation exhibited nearly 50% efficiency. The highest quantity of polyphenols and 3-O-glycosylated anthocyanins was obtained from encapsulation with 20% maltodextrin, at 120 °C. Temperature did not affect the microcapsules’ biological action, as demonstrated by their antioxidant activities. The prevention of Aβ peptide cytotoxicity in PC12 cells (20%) revealed that encapsulated calafate can confer neuroprotection. We conclude that spray-drying is an appropriate technique for scaling-up and producing new value-added calafate formulations with anti-neurodegenerative effects and vivid colors. Full article
Show Figures

Figure 1

20 pages, 10760 KB  
Article
Phytochemical Screening and Antioxidant Activity of Seven Native Species Growing in the Forests of Southern Chilean Patagonia
by Merly de Armas-Ricard, Francisco Quinán-Cárdenas, Harold Sanhueza, Rodrigo Pérez-Vidal, Cristina Mayorga-Lobos and Oney Ramírez-Rodríguez
Molecules 2021, 26(21), 6722; https://doi.org/10.3390/molecules26216722 - 6 Nov 2021
Cited by 2 | Viewed by 3515
Abstract
The genus Nothofagus is one of the most abundant in the subantarctic Patagonian forests. Five species inhabit these ecosystems, three evergreen (Nothofagus betuloides, Nothofagus dombeyi, and Nothofagus nitida) and two deciduous (Nothofagus pumilio and Nothofagus antarctica). This [...] Read more.
The genus Nothofagus is one of the most abundant in the subantarctic Patagonian forests. Five species inhabit these ecosystems, three evergreen (Nothofagus betuloides, Nothofagus dombeyi, and Nothofagus nitida) and two deciduous (Nothofagus pumilio and Nothofagus antarctica). This is the first report on the levels of secondary metabolites and the antioxidant capacity of Patagonian tree species growing in natural environments. The aim of this work was to carry out a phytochemical screening, to determine the antioxidant capacity, the sun protection factor, and the α-glucosidase and tyrosinase inhibitory activity of foliar extracts of the five previous species. Besides, Aristotelia chilensis and Berberis microphylla, two species of Patagonian shrubs growing in the same forests, were used as reference. N. dombeyi was the Nothofagus with the best antioxidant capacity. B. microphylla differed from all studied species. Moreover, the Nothofagus was split into two groups. N. betuloides and N. dombeyi are the most similar species to A. chilensis. The α-glucosidase was completely inhibited by all studied extracts. Furthermore, N. antarctica, N.pumilio, and N. nitida inhibited about 70% of the tyrosinase activity. All the results found in this study for the species of the genus Nothofagus support further research on their potential beneficial properties for human health. Full article
Show Figures

Figure 1

17 pages, 2248 KB  
Article
Effect of Cryoconcentration Assisted by Centrifugation-Filtration on Bioactive Compounds and Microbiological Quality of Aqueous Maqui (Aristotelia chilensis (Mol.) Stuntz) and Calafate (Berberis microphylla G. Forst) Extracts Pretreated with High-Pressure Homogenization
by Carla Vidal-San Martín, José Miguel Bastías-Montes, Constanza Villagra-Jorquera, Gheldred Salinas-Huenchulao, Abigail Flores-Ríos, Natalia Gonzáles-Díaz, Yanara Tamarit-Pino, Ociel Muñoz-Fariña and Roberto Quevedo-León
Processes 2021, 9(4), 692; https://doi.org/10.3390/pr9040692 - 15 Apr 2021
Cited by 11 | Viewed by 3201
Abstract
The objective of this study was to evaluate the effect of cryoconcentration assisted by centrifugation-filtration on the bioactive compounds and the microbiological quality of aqueous maqui (Aristotelia chilensis (Mol.) Stuntz) and calafate (Berberis microphylla G. Forst) extracts pretreated with high-pressure homogenization [...] Read more.
The objective of this study was to evaluate the effect of cryoconcentration assisted by centrifugation-filtration on the bioactive compounds and the microbiological quality of aqueous maqui (Aristotelia chilensis (Mol.) Stuntz) and calafate (Berberis microphylla G. Forst) extracts pretreated with high-pressure homogenization (HPH). Aqueous extracts were prepared from fresh fruits which were treated with HPH (predefined pressure and number of passes). The best pretreatment was determined by aerobic mesophilic, fungal, and yeast counts. Treated extracts were frozen at −30 °C in special tubes and centrifuged at 4000 rpm for 10 min to obtain the cryoconcentrated product. The optimal pretreatment conditions for HPH were 200 MPa and one pass in which the extracts exhibited no microorganism counts. Cryoconcentration by freezing and subsequent centrifugation-filtration in a single cycle showed high process efficiency (>95%) in both soluble solids and bioactive compounds (total polyphenols and anthocyanins) and antioxidant capacity of the fresh fruits and extracts. The HPH treatment and subsequent cryoconcentration assisted by centrifugation-filtration is an efficient technology to obtain concentrates with good microbiological quality and a high content of bioactive compounds. Full article
(This article belongs to the Special Issue Recent Advances in Food and Bioproducts Processes)
Show Figures

Graphical abstract

13 pages, 1229 KB  
Article
Native Species Facing Climate Changes: Response of Calafate Berries to Low Temperature and UV Radiation
by María Eugenia Romero-Román, Mauricio Schoebitz, Richard M. Bastías, Pablo S. Fernández, Cristina García-Viguera and María Dolores López-Belchi
Foods 2021, 10(1), 196; https://doi.org/10.3390/foods10010196 - 19 Jan 2021
Cited by 18 | Viewed by 5687
Abstract
Calafate (Berberis microphylla G. Forst) is a wild bush plant widely distributed in the south of Argentina and Chile. Their blue colored fruits present particular flavor and health benefits attributed to high polyphenol contents biosynthesized by the plant under stress. Studies about [...] Read more.
Calafate (Berberis microphylla G. Forst) is a wild bush plant widely distributed in the south of Argentina and Chile. Their blue colored fruits present particular flavor and health benefits attributed to high polyphenol contents biosynthesized by the plant under stress. Studies about correlation of abiotic conditions with anthocyanin profiles and physicochemical features of calafate beneath wild origin environment are not described yet. Hence, this research aimed to evaluate the physicochemical changes, antioxidant activity and anthocyanin content of calafate fruit in relationship to UV solar radiation (W.m−2) and air temperature (°C) environment condition during three consecutive years (2017, 2018, 2019). Variations in fruit anthocyanins were determined by comparison between high performance liquid chromatography (HPLC-DAD-ESI)/MSn and CIEL*a*b* colors parameters. Correlations were analyzed by principal component analysis (PCA). Radiation was negatively correlated with fruit size and weight. Physicochemical aspects such as pH, soluble solids, color, total anthocyanins, flavanols and other phenolic compounds were positively correlated with temperature changes. The quantities of monomeric anthocyanins were dependent on both low temperature and global radiation (reaching 20.01 mg g−1 FW in calafate fruit). These results constitute a valuable resource to understand the structural and physiological plasticity of calafate in facing climate changes for future domestication research as well as for agri-food industrial application. Full article
(This article belongs to the Special Issue Climate Changes and Global Warming—the Future of Foods)
Show Figures

Graphical abstract

20 pages, 927 KB  
Article
Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL
by Lia Olivares-Caro, Claudia Radojkovic, Si Yen Chau, Daniela Nova, Luis Bustamante, Jose Yamil Neira, Andy J. Perez and Claudia Mardones
Antioxidants 2020, 9(12), 1171; https://doi.org/10.3390/antiox9121171 - 24 Nov 2020
Cited by 11 | Viewed by 4948
Abstract
Calafate (Berberis microphylla G. Forst) is a Patagonian barberry very rich in phenolic compounds. Our aim was to demonstrate, through in vitro models, that a comprehensive characterized calafate extract has a protective role against oxidative processes associated to cardiovascular disease development. Fifty-three [...] Read more.
Calafate (Berberis microphylla G. Forst) is a Patagonian barberry very rich in phenolic compounds. Our aim was to demonstrate, through in vitro models, that a comprehensive characterized calafate extract has a protective role against oxidative processes associated to cardiovascular disease development. Fifty-three phenolic compounds (17 of them not previously reported in calafate), were tentatively identified by Ultra-Liquid Chromatography with Diode Array Detector, coupled to Quadrupole-Time of Fly Mass Spectrometry (UHPLC-DAD-QTOF). Fatty acids profile and metals content were studied for the first time, by Gas Chromatography Mass Spectrometry (GC-MS) and Total X-ray Fluorescence (TXRF), respectively. Linolenic and linoleic acid, and Cu, Zn, and Mn were the main relevant compounds from these groups. The bioactivity of calafate extract associated to the cardiovascular protection was evaluated using Human Umbilical Vein Endothelial Cells (HUVECs) and human low density lipoproteins (LDL) to measure oxidative stress and lipid peroxidation. The results showed that calafate extract reduced intracellular Reactive Oxygen Species (ROS) production (51%) and completely inhibited LDL oxidation and malondialdehyde (MDA) formation. These findings demonstrated the potential of the relevant mix of compounds found in calafate extract on lipoperoxidation and suggest a promising protective effect for reducing the incidence of cardiovascular disease. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 919 KB  
Article
Quality Attributes of Cryoconcentrated Calafate (Berberis microphylla) Juice during Refrigerated Storage
by Patricio Orellana-Palma, Guisella Tobar-Bolaños, Nidia Casas-Forero, Rommy N. Zúñiga and Guillermo Petzold
Foods 2020, 9(9), 1314; https://doi.org/10.3390/foods9091314 - 18 Sep 2020
Cited by 34 | Viewed by 5424
Abstract
This study aimed to evaluate the potential of centrifugal block cryoconcentration (CBCC) at three cycles applied to fresh calafate juice. The fresh juice and cryoconcentrate at each cycle were stored for five weeks at 4 °C and quality attributes were analyzed every 7 [...] Read more.
This study aimed to evaluate the potential of centrifugal block cryoconcentration (CBCC) at three cycles applied to fresh calafate juice. The fresh juice and cryoconcentrate at each cycle were stored for five weeks at 4 °C and quality attributes were analyzed every 7 days. CBCC had significant effects in the calafate juice, since in the last cycle, the cryoconcentrate reached a high value of total soluble solids (TSS, ≈42 °Brix), with final attractive color, and an increase of approximately 2.5, 5.2, 5.1, 4.0 and 5.3 times in relation to the fresh juice values, for total bioactive compounds (TBC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC), respectively. However, at 35 days under storage, these values decreased by 5%, 13%, 15%, 19%, 24% and 27%, for TSS, TBC, DPPH, ABTS, FRAP and ORAC, respectively. Additionally, until the day 14, the panelists indicated a good acceptability of the reconstituted cryoconcentrate. Therefore, CBCC can be considered a novel and viable technology for the preservation of quality attributes from fresh calafate juice with interesting food applications of the cryoconcentrates due to their high stability during storage time in comparison to the fresh juice. Full article
(This article belongs to the Special Issue The Health Benefits of the Bioactive Compounds in Foods)
Show Figures

Graphical abstract

24 pages, 1704 KB  
Article
Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia
by Melina F. Chamorro, Gabriela Reiner, Cristina Theoduloz, Ana Ladio, Guillermo Schmeda-Hirschmann, Sergio Gómez-Alonso and Felipe Jiménez-Aspee
Molecules 2019, 24(18), 3331; https://doi.org/10.3390/molecules24183331 - 12 Sep 2019
Cited by 41 | Viewed by 5754
Abstract
The Argentinean Patagonia berries Berberis microphylla, Berberis darwinii, and Fragaria chiloensis ssp. chiloensis f. patagonica were investigated for their polyphenol content and composition by means of liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. The in [...] Read more.
The Argentinean Patagonia berries Berberis microphylla, Berberis darwinii, and Fragaria chiloensis ssp. chiloensis f. patagonica were investigated for their polyphenol content and composition by means of liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. The in vitro antioxidant activity and inhibition of metabolic syndrome-associated enzymes (α-glucosidase, α-amylase, and lipase) of the fruit extracts was assessed. The most complex polyphenol profile was found in the Berberis samples, with 10 anthocyanins, 27 hydroxycinnamic acids, 3 proanthocyanidins, 2 flavan-3-ol, and 22 flavonols. Fragaria presented four anthocyanins, nine ellagitannins, two proanthocyanidin dimers, one flavan-3-ol, and five flavonols. The Berberis samples showed the best antioxidant capacity, while Fragaria displayed better activity against α-glucosidase and lipase. The phenolic content and composition of the Argentinean Patagonia berries was similar to that reported for Chilean samples but with some chemical differences between Eastern (Argentina) and Western (Chile) Patagonia. The data obtained supports the consumption of these berries as sources of beneficial polyphenols. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 1633 KB  
Article
Potent Vasodilator and Cellular Antioxidant Activity of Endemic Patagonian Calafate Berries (Berberis microphylla) with Nutraceutical Potential
by Camila Calfío and Juan Pablo Huidobro-Toro
Molecules 2019, 24(15), 2700; https://doi.org/10.3390/molecules24152700 - 25 Jul 2019
Cited by 22 | Viewed by 4692
Abstract
Hydroalcoholic extracts of Patagonian Calafate berry (Berberis microphylla) contain mono or disaccharide conjugated anthocyanins and flavonols. The Liquid Chromatography-Mass Spectrometry (LC-MS) chemical extract profile identified glycosylated anthocyanidins such as delphinidin-, petunidin- and malvidin-3-glucoside as the major constituents. The predominant flavonols were [...] Read more.
Hydroalcoholic extracts of Patagonian Calafate berry (Berberis microphylla) contain mono or disaccharide conjugated anthocyanins and flavonols. The Liquid Chromatography-Mass Spectrometry (LC-MS) chemical extract profile identified glycosylated anthocyanidins such as delphinidin-, petunidin- and malvidin-3-glucoside as the major constituents. The predominant flavonols were 3-O substituents quercetin-rutinoside or -rhamnoside. Anthocyanins doubled flavonols in mass (13.1 vs. 6 mg/g extract). Polyphenols vascular actions were examined in the rat arterial mesenteric bed bioassay; extract perfusion elicited concentration-dependent vasodilatation mimicked by conjugated anthocyanins standards. Vascular responses of main glycosylated anthocyanins were endothelium-dependent (p < 0.001) and mediated by NO production (p < 0.05). The anthocyanins antioxidant activity determined in isolated endothelial cells (CAA) showed a reduced redox potential as compared to the extract or quercetin. While in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, the anthocyanins showed an equivalent quercetin potency, the extract was 15-fold less active, proposing that the anthocyanin-induced vasodilation is not due to an antioxidant mechanism. The extract shows promising commercial nutraceutical potential. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop