Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = Bluetooth communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8816 KB  
Article
Error Correction in Bluetooth Low Energy via Neural Network with Reject Option
by Wellington D. Almeida, Felipe P. Marinho, André L. F. de Almeida and Ajalmar R. Rocha Neto
Sensors 2025, 25(19), 6191; https://doi.org/10.3390/s25196191 - 6 Oct 2025
Viewed by 422
Abstract
This paper presents an approach to error correction in wireless communication systems, with a focus on the Bluetooth Low Energy standard. Our method uses the redundancy provided by the cyclic redundancy check and leaves the transmitter unchanged. The approach has two components: an [...] Read more.
This paper presents an approach to error correction in wireless communication systems, with a focus on the Bluetooth Low Energy standard. Our method uses the redundancy provided by the cyclic redundancy check and leaves the transmitter unchanged. The approach has two components: an error-detection algorithm that validates data packets and a neural network with reject option that classifies signals received from the channel and identifies bit errors for later correction. This design localizes and corrects errors and reduces transmission failures. Extensive simulations were conducted, and the results demonstrated promising performance. The method achieved correction rates of 94–98% for single-bit errors and 54–68% for double-bit errors, which reduced the need for packet retransmissions and lowered the risk of data loss. When applied to images, the approach enhanced visual quality compared with baseline methods. In particular, we observed improvements in visual quality for signal-to-noise ratios between 9 and 11 dB. In many cases, these enhancements were sufficient to restore the integrity of corrupted images. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

29 pages, 1328 KB  
Article
A Resilient Energy-Efficient Framework for Jamming Mitigation in Cluster-Based Wireless Sensor Networks
by Carolina Del-Valle-Soto, José A. Del-Puerto-Flores, Leonardo J. Valdivia, Aimé Lay-Ekuakille and Paolo Visconti
Algorithms 2025, 18(10), 614; https://doi.org/10.3390/a18100614 - 29 Sep 2025
Viewed by 247
Abstract
This paper presents a resilient and energy-efficient framework for jamming mitigation in cluster-based wireless sensor networks (WSNs), addressing a critical vulnerability in hostile or interference-prone environments. The proposed approa ch integrates dynamic cluster reorganization, adaptive MAC-layer behavior, and multipath routing strategies to restore [...] Read more.
This paper presents a resilient and energy-efficient framework for jamming mitigation in cluster-based wireless sensor networks (WSNs), addressing a critical vulnerability in hostile or interference-prone environments. The proposed approa ch integrates dynamic cluster reorganization, adaptive MAC-layer behavior, and multipath routing strategies to restore communication capabilities and sustain network functionality under jamming conditions. The framework is evaluated across heterogeneous topologies using Zigbee and Bluetooth Low Energy (BLE); both stacks were validated in a physical testbed with matched jammer and traffic conditions, while simulation was used solely to tune parameters and support sensitivity analyses. Results demonstrate significant improvements in Packet Delivery Ratio, end-to-end delay, energy consumption, and retransmission rate, with BLE showing particularly high resilience when combined with the mitigation mechanism. Furthermore, a comparative analysis of routing protocols including AODV, GAF, and LEACH reveals that hierarchical protocols achieve superior performance when integrated with the proposed method. This framework has broader applicability in mission-critical IoT domains, including environmental monitoring, industrial automation, and healthcare systems. The findings confirm that the framework offers a scalable and protocol-agnostic defense mechanism, with potential applicability in mission-critical and interference-sensitive IoT deployments. Full article
Show Figures

Figure 1

19 pages, 912 KB  
Article
Lightweight Embedded IoT Gateway for Smart Homes Based on an ESP32 Microcontroller
by Filippos Serepas, Ioannis Papias, Konstantinos Christakis, Nikos Dimitropoulos and Vangelis Marinakis
Computers 2025, 14(9), 391; https://doi.org/10.3390/computers14090391 - 16 Sep 2025
Viewed by 1271
Abstract
The rapid expansion of the Internet of Things (IoT) demands scalable, efficient, and user-friendly gateway solutions that seamlessly connect resource-constrained edge devices to cloud services. Low-cost, widely available microcontrollers, such as the ESP32 and its ecosystem peers, offer integrated Wi-Fi/Bluetooth connectivity, low power [...] Read more.
The rapid expansion of the Internet of Things (IoT) demands scalable, efficient, and user-friendly gateway solutions that seamlessly connect resource-constrained edge devices to cloud services. Low-cost, widely available microcontrollers, such as the ESP32 and its ecosystem peers, offer integrated Wi-Fi/Bluetooth connectivity, low power consumption, and a mature developer toolchain at a bill of materials cost of only a few dollars. For smart-home deployments where budgets, energy consumption, and maintainability are critical, these characteristics make MCU-class gateways a pragmatic alternative to single-board computers, enabling always-on local control with minimal overhead. This paper presents the design and implementation of an embedded IoT gateway powered by the ESP32 microcontroller. By using lightweight communication protocols such as Message Queuing Telemetry Transport (MQTT) and REST APIs, the proposed architecture supports local control, distributed intelligence, and secure on-site data storage, all while minimizing dependence on cloud infrastructure. A real-world deployment in an educational building demonstrates the gateway’s capability to monitor energy consumption, execute control commands, and provide an intuitive web-based dashboard with minimal resource overhead. Experimental results confirm that the solution offers strong performance, with RAM usage ranging between 3.6% and 6.8% of available memory (approximately 8.92 KB to 16.9 KB). The initial loading of the single-page application (SPA) results in a temporary RAM spike to 52.4%, which later stabilizes at 50.8%. These findings highlight the ESP32’s ability to serve as a functional IoT gateway with minimal resource demands. Areas for future optimization include improved device discovery mechanisms and enhanced resource management to prolong device longevity. Overall, the gateway represents a cost-effective and vendor-agnostic platform for building resilient and scalable IoT ecosystems. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

25 pages, 5456 KB  
Article
A Lightweight Hybrid Detection System Based on the OpenMV Vision Module for an Embedded Transportation Vehicle
by Xinxin Wang, Hongfei Gao, Xiaokai Ma and Lijun Wang
Sensors 2025, 25(18), 5724; https://doi.org/10.3390/s25185724 - 13 Sep 2025
Cited by 1 | Viewed by 671
Abstract
Aiming at the real-time object detection requirements of the intelligent control system for laboratory item transportation in mobile embedded unmanned vehicles, this paper proposes a lightweight hybrid detection system based on the OpenMV vision module. The system adopts a two-stage detection mechanism: in [...] Read more.
Aiming at the real-time object detection requirements of the intelligent control system for laboratory item transportation in mobile embedded unmanned vehicles, this paper proposes a lightweight hybrid detection system based on the OpenMV vision module. The system adopts a two-stage detection mechanism: in long-distance scenarios (>32 cm), fast target positioning is achieved through red threshold segmentation based on the HSV(Hue, Saturation, Value) color space; when in close range (≤32 cm), it switches to a lightweight deep learning model for fine-grained recognition to reduce invalid computations. By integrating the MobileNetV2 backbone network with the FOMO (Fast Object Matching and Occlusion) object detection algorithm, the FOMO MobileNetV2 model is constructed, achieving an average classification accuracy of 94.1% on a self-built multi-dimensional dataset (including two variables of light intensity and object distance, with 820 samples), which is a 26.5% improvement over the baseline MobileNetV2. In terms of hardware, multiple functional components are integrated: OLED display, Bluetooth communication unit, ultrasonic sensor, OpenMV H7 Plus camera, and servo pan-tilt. Target tracking is realized through the PID control algorithm, and finally, the embedded terminal achieves a real-time processing performance of 55 fps. Experimental results show that the system can effectively and in real-time identify and track the detection targets set in the laboratory. The designed unmanned vehicle system provides a practical solution for the automated and low-power transportation of small items in the laboratory environment. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

23 pages, 16144 KB  
Article
Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field
by Samuel Craven, Austin Bee, Blake Sanders, Eliza Hammari, Cooper Bond, Ruth Kerry, Neil Hansen and Brian A. Mazzeo
Sensors 2025, 25(17), 5537; https://doi.org/10.3390/s25175537 - 5 Sep 2025
Viewed by 1512
Abstract
Realization of the goals of precision agriculture is dependent on prescribing irrigation strategies matched to spatiotemporal variations in soil moisture on commercial farms. However, the scale at which these variations occur is not well understood. A high-spatial-density network of sensors with the ability [...] Read more.
Realization of the goals of precision agriculture is dependent on prescribing irrigation strategies matched to spatiotemporal variations in soil moisture on commercial farms. However, the scale at which these variations occur is not well understood. A high-spatial-density network of sensors with the ability to measure and report data over the course of a growing season is needed. In this work, design of the low-profile Smart Bluetooth Stake spatiotemporal soil moisture mapping system is presented. Smart stakes use Bluetooth Low Energy to communicate 64 MHz soil moisture impedance measurements from ground level to a receiver mounted on the center-pivot irrigation boom and equipped with a rotating high-gain parabolic antenna. Smart stakes can remain in the ground throughout the entire growing season without disrupting farm operations. A system of 86 sensors was deployed on a 50-hectare commercial field near Elberta, Utah, during the final growth stage of a crop of winter wheat. Different receiver antenna configurations were tested over the course of several weeks which included two full irrigation cycles. In the high-gain antenna configuration, data was successfully collected from 75 sensors, with successful packet transmission at ranges of approximately 600 m. Enough data was collected to construct a spatiotemporal moisture map of the field over the course of an irrigation cycle. Smart Bluetooth Stakes constitute an important advance in the spatial density achievable with direct sensors for precision agriculture. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

26 pages, 2499 KB  
Article
Self-Balancing Mobile Robot with Bluetooth Control: Design, Implementation, and Performance Analysis
by Sandeep Gupta, Kanad Ray and Shamim Kaiser
Automation 2025, 6(3), 42; https://doi.org/10.3390/automation6030042 - 3 Sep 2025
Viewed by 1132
Abstract
This paper presents a comprehensive study of an ESP32 microcontroller-based self-balancing mobile robot system designed in conjunction with an Android app for Bluetooth control. The robot employs an MPU6050 accelerometer/gyroscope to execute dynamic equilibrium control for robotic balance. This study explores the design [...] Read more.
This paper presents a comprehensive study of an ESP32 microcontroller-based self-balancing mobile robot system designed in conjunction with an Android app for Bluetooth control. The robot employs an MPU6050 accelerometer/gyroscope to execute dynamic equilibrium control for robotic balance. This study explores the design of a system composed of an ESP32-based dual-platform architecture. The firmware for the ESP32 executes real-time motor control and sensor processing, while the Android application provides the user interface, data visualization, and command transmission. The system achieves stable operation with tilt angle variations of ±2.5° (σ=0.8°, n = 50 trials) during normal operation with a PID controller tuned to KP = 6.0, KI = 0.1, and KD = 1.5. In experimental tests, control latency was measured at 38–72 ms (mean = 55 ms, σ=12 ms) over distances of 1–10 m with a robust Bluetooth connection. Extended operational tests indicated the reliability of both autonomous obstacle avoidance mode and manual control exceeding 95%. Key contributions include gyro drift compensation using a progressive calibration scheme, intelligent battery management for operational efficiency, and a dual-mode control interface to facilitate seamless transition between manual and autonomous operation. Processing of real-time telemetry on the Android application allows visualization of important parameters like tilt angle, motor speeds, and sensor readings. This work contributes to a cost-effective mobile robotics platform (total cost: USD 127) through the provision of detailed design specifications, implementation strategies, and performance characteristics. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

27 pages, 7467 KB  
Article
Bluetooth Protocol for Opportunistic Sensor Data Collection on IoT Telemetry Applications
by Pablo García-Rivada, Ángel Niebla-Montero, Paula Fraga-Lamas and Tiago M. Fernández-Caramés
Electronics 2025, 14(16), 3281; https://doi.org/10.3390/electronics14163281 - 18 Aug 2025
Viewed by 786
Abstract
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource [...] Read more.
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource usage and energy consumption. Among such IoT devices, this article focuses on Bluetooth-based beacons due to their low latency and the advantage of not requiring pairing for communications. Specifically, to tackle the limitations of beacons in terms of bandwidth and transmission frequency, this article proposes a protocol that modifies beacon frames to include up to three parameters per frame and that allows for making use of configurable beaconing intervals based on the specific requirements of the communications scenario. Moreover, the use of the proposed protocol leads to increased data rates for beaconing transmissions, providing a low latency and a flexible configuration that permits adjusting different parameters. The proposed solution enables end-to-end interoperability in Opportunistic Edge Computing (OEC) networks by integrating a lightweight bridge module to transparently manage BLE advertisement segments. To demonstrate the performance of the devised opportunistic protocol, it is evaluated across multiple scenarios (i.e., in a short-distance reference scenario, inside a home with diverse obstacles, inside a building, outdoors and in an industrial scenario), showing its flexibility and ability to collect substantial data volumes from heterogeneous IoT devices. Full article
(This article belongs to the Special Issue Applications of Sensor Networks and Wireless Communications)
Show Figures

Figure 1

22 pages, 728 KB  
Article
Multi-Layered Security Assessment in mHealth Environments: Case Study on Server, Mobile and Wearable Components in the PHGL-COVID Platform
by Edi Marian Timofte, Mihai Dimian, Serghei Mangul, Alin Dan Potorac, Ovidiu Gherman, Doru Balan and Marcel Pușcașu
Appl. Sci. 2025, 15(15), 8721; https://doi.org/10.3390/app15158721 - 7 Aug 2025
Viewed by 891
Abstract
The growing use of mobile health (mHealth) technologies adds complexity and risk to the healthcare environment. This paper presents a multi-layered cybersecurity assessment of an in-house mHealth platform (PHGL-COVID), comprising a Docker-based server infrastructure, a Samsung Galaxy A55 smartphone, and a Galaxy Watch [...] Read more.
The growing use of mobile health (mHealth) technologies adds complexity and risk to the healthcare environment. This paper presents a multi-layered cybersecurity assessment of an in-house mHealth platform (PHGL-COVID), comprising a Docker-based server infrastructure, a Samsung Galaxy A55 smartphone, and a Galaxy Watch 7 wearable. The objective was to identify vulnerabilities across the server, mobile, and wearable components by emulating real-world attacks and conducting systematic penetration tests on each layer. Tools and methods specifically tailored to each technology were applied, revealing exploitable configurations, insecure Bluetooth Low Energy (BLE) communications, and exposure of Personal Health Records (PHRs). Key findings included incomplete container isolation, BLE metadata leakage, and persistent abuse of Android privacy permissions. This work delivers both a set of actionable recommendations for developers and system architects to strengthen the security of mHealth platforms, and a reproducible audit methodology that has been validated in a real-world deployment, effectively bridging the gap between theoretical threat models and practical cybersecurity practices in healthcare systems. Full article
(This article belongs to the Special Issue Advances in Cyber Security)
Show Figures

Figure 1

16 pages, 1702 KB  
Article
Mobile and Wireless Autofluorescence Detection Systems and Their Application for Skin Tissues
by Yizhen Wang, Yuyang Zhang, Yunfei Li and Fuhong Cai
Biosensors 2025, 15(8), 501; https://doi.org/10.3390/bios15080501 - 3 Aug 2025
Cited by 1 | Viewed by 872
Abstract
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the [...] Read more.
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the autofluorescence signals of biological tissues are relatively weak, making them challenging to be captured by photoelectric sensors. Moreover, the absorption and scattering properties of biological tissues lead to a substantial attenuation of the autofluorescence of biological tissues, thereby worsening the signal-to-noise ratio. This has also imposed limitations on the development and application of compact-sized autofluorescence detection systems. In this study, a compact LED light source and a CMOS sensor were utilized as the excitation and detection devices for skin tissue autofluorescence, respectively, to construct a mobile and wireless skin tissue autofluorescence detection system. This system can achieve the detection of skin tissue autofluorescence with a high signal-to-noise ratio under the drive of a simple power supply and a single-chip microcontroller. The detection time is less than 0.1 s. To enhance the stability of the system, a pressure sensor was incorporated. This pressure sensor can monitor the pressure exerted by the skin on the detection system during the testing process, thereby improving the accuracy of the detection signal. The developed system features a compact structure, user-friendliness, and a favorable signal-to-noise ratio of the detection signal, holding significant application potential in future assessments of skin aging and the risk of diabetic complications. Full article
Show Figures

Figure 1

29 pages, 8416 KB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 3589
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

19 pages, 4492 KB  
Article
Ergonomic Innovation: A Modular Smart Chair for Enhanced Workplace Health and Wellness
by Zilvinas Rakauskas, Vytautas Macaitis, Aleksandr Vasjanov and Vaidotas Barzdenas
Sensors 2025, 25(13), 4024; https://doi.org/10.3390/s25134024 - 27 Jun 2025
Viewed by 1675
Abstract
The increasing prevalence of sedentary lifestyles poses significant global health challenges, including obesity, diabetes, musculoskeletal disorders, and cardiovascular issues. This paper presents the design and development of a universal smart chair system aimed at mitigating the adverse effects of prolonged sitting. The proposed [...] Read more.
The increasing prevalence of sedentary lifestyles poses significant global health challenges, including obesity, diabetes, musculoskeletal disorders, and cardiovascular issues. This paper presents the design and development of a universal smart chair system aimed at mitigating the adverse effects of prolonged sitting. The proposed solution integrates a pressure sensor, vibration motors, an LED strip, and Bluetooth Low-Energy (BLE) communication into a modular and adaptable design. Powered by an STM32WB55CGU6 microcontroller and a rechargeable lithium-ion battery system, the smart chair monitors sitting duration and the user’s posture, and provides alerts through tactile, visual, and auditory notifications. A complementary mobile application allows users to customize sitting time thresholds, monitor activity, and assess battery status. Designed for universal compatibility, the system can be adapted to various chair types. Technical and functional testing demonstrated reliable performance, with the chair operating for over eight workdays on a single charge. The smart chair offers an innovative, cost-effective approach to improving workplace ergonomics and health outcomes, with potential for further enhancements such as posture monitoring. A pilot study with 83 students at VILNIUS TECH showed that the smart chair detected correct posture with 94.78% accuracy, and 97.59% of users responded to alerts by adjusting their posture within an average of 3.27 s. Full article
(This article belongs to the Collection Sensors for Globalized Healthy Living and Wellbeing)
Show Figures

Figure 1

28 pages, 1791 KB  
Article
Speech Recognition-Based Wireless Control System for Mobile Robotics: Design, Implementation, and Analysis
by Sandeep Gupta, Udit Mamodiya and Ahmed J. A. Al-Gburi
Automation 2025, 6(3), 25; https://doi.org/10.3390/automation6030025 - 24 Jun 2025
Cited by 2 | Viewed by 3158
Abstract
This paper describes an innovative wireless mobile robotics control system based on speech recognition, where the ESP32 microcontroller is used to control motors, facilitate Bluetooth communication, and deploy an Android application for the real-time speech recognition logic. With speech processed on the Android [...] Read more.
This paper describes an innovative wireless mobile robotics control system based on speech recognition, where the ESP32 microcontroller is used to control motors, facilitate Bluetooth communication, and deploy an Android application for the real-time speech recognition logic. With speech processed on the Android device and motor commands handled on the ESP32, the study achieves significant performance gains through distributed architectures while maintaining low latency for feedback control. In experimental tests over a range of 1–10 m, stable 110–140 ms command latencies, with low variation (±15 ms) were observed. The system’s voice and manual button modes both yield over 92% accuracy with the aid of natural language processing, resulting in training requirements being low, and displaying strong performance in high-noise environments. The novelty of this work is evident through an adaptive keyword spotting algorithm for improved recognition performance in high-noise environments and a gradual latency management system that optimizes processing parameters in the presence of noise. By providing a user-friendly, real-time speech interface, this work serves to enhance human–robot interaction when considering future assistive devices, educational platforms, and advanced automated navigation research. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

35 pages, 14963 KB  
Article
Research on the Digital Twin System of Welding Robots Driven by Data
by Saishuang Wang, Yufeng Jiao, Lijun Wang, Wenjie Wang, Xiao Ma, Qiang Xu and Zhongyu Lu
Sensors 2025, 25(13), 3889; https://doi.org/10.3390/s25133889 - 22 Jun 2025
Viewed by 1766
Abstract
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital [...] Read more.
With the rise of digital twin technology, the application of digital twin technology to industrial automation provides a new direction for the digital transformation of the global smart manufacturing industry. In order to further improve production efficiency, as well as realize enterprise digital empowerment, this paper takes a welding robot arm as the research object and constructs a welding robot arm digital twin system. Using three-dimensional modeling technology and model rendering, the welding robot arm digital twin simulation environment was built. Parent–child hierarchy and particle effects were used to truly restore the movement characteristics of the robot arm and the welding effect, with the help of TCP communication and Bluetooth communication to realize data transmission between the virtual segment and the physical end. A variety of UI components were used to design the human–machine interaction interface of the digital twin system, ultimately realizing the data-driven digital twin system. Finally, according to the digital twin maturity model constructed by Prof. Tao Fei’s team, the system was scored using five dimensions and 19 evaluation factors. After testing the system, we found that the combination of digital twin technology and automation is feasible and achieves the expected results. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 1792 KB  
Article
A High-Sensitivity, Bluetooth-Enabled PCB Biosensor for HER2 and CA15-3 Protein Detection in Saliva: A Rapid, Non-Invasive Approach to Breast Cancer Screening
by Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Cheng-Tse Tsai, Yu-Siang Chou, Chun-Wei Chiu, Yu-Te Liao, Dan Neal, Coy D. Heldermon, Mateus G. Rocha and Josephine F. Esquivel-Upshaw
Biosensors 2025, 15(6), 386; https://doi.org/10.3390/bios15060386 - 15 Jun 2025
Cited by 1 | Viewed by 2231
Abstract
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive [...] Read more.
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive biopsies and time-intensive laboratory procedures. In this study, we present a biosensor integrated with a reusable printed circuit board (PCB) and functionalized glucose test strips designed for rapid and non-invasive HER2 detection in saliva. The biosensor achieved a limit of detection of 10−15 g/mL, 4 to 5 orders of magnitude more sensitive than the enzyme-linked immunosorbent assay (ELISA), with a sensitivity of 95/dec and a response time of 1 s. In addition to HER2, the biosensor also detects cancer antigen 15-3 (CA15-3), another clinically relevant breast cancer biomarker. The CA15-3 test demonstrated an equally low limit of detection, 10−15 g/mL, and a higher sensitivity, 190/dec, further validated using human saliva samples. Clinical validation using 29 saliva samples confirmed our biosensor’s ability to distinguish between healthy, in situ breast cancer, and invasive breast cancer patients. The system, which integrates a Bluetooth Low-Energy (BLE) module, enables remote monitoring, reduces hospital visits, and enhances accessibility for point-of-care and mobile screening applications. This ultra-sensitive, rapid, and portable biosensor can serve as a promising alternative for breast cancer detection and monitoring, particularly in rural and underserved communities. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

17 pages, 3923 KB  
Article
The Parametrization of Electromagnetic Emissions and Hazards from a Wearable Device for Wireless Information Transfer with a 2.45 GHz ISM Band Antenna
by Patryk Zradziński, Jolanta Karpowicz and Krzysztof Gryz
Appl. Sci. 2025, 15(12), 6602; https://doi.org/10.3390/app15126602 - 12 Jun 2025
Viewed by 690
Abstract
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of [...] Read more.
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of parameterizing the absorption of electromagnetic radiation in the user’s body adjacent to the antenna in various locations. The modeled exposure scenarios concerned a body-worn device with a 2.45 GHz ISM band antenna (used, e.g., for Wi-Fi 2G/Bluetooth applications). The antennas were modeled as follows: (1) located directly on the body (considered to be a model of a disposable, adhesive device) or (2) next to the body (considered to be a model of a classic, reusable, wearable electronic device located inside a plastic housing). Several body sections adjacent to the antenna were considered: head, arm, forearm, and chest (simplified and anatomical body models were used). The numerical models of the exposure scenarios were verified by relevant laboratory tests using physical models. It was found that the use of simplified models of the human body (numerical or physical) may be sufficient when analyzing antenna performance and SAR in a user’s body, such as in studies regarding microwave imaging and sensing, wireless implantable devices, wireless body-area networks or SAR estimation. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

Back to TopTop