Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = Burkholderia cepacia complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 415 KB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 - 31 Jul 2025
Viewed by 1162
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

13 pages, 717 KB  
Article
In Vitro Activity of Cefiderocol and Aztreonam/Avibactam Against Gram-Negative Non-Fermenting Bacteria: A New Strategy Against Highly Antibiotic-Resistant Infectious Agents
by Jan Závora, Václava Adámková, Alžběta Studená and Gabriela Kroneislová
Antibiotics 2025, 14(8), 762; https://doi.org/10.3390/antibiotics14080762 - 29 Jul 2025
Viewed by 1137
Abstract
Background/Objectives: Non-fermenting Gram-negative bacilli (NFGNB) represent a significant clinical challenge due to their intrinsic and acquired resistance, particularly in immunocompromised patients. Infections cause by NFGNB are associated with high morbidity and mortality, especially among patients with cystic fibrosis and hematologic malignancies. This study [...] Read more.
Background/Objectives: Non-fermenting Gram-negative bacilli (NFGNB) represent a significant clinical challenge due to their intrinsic and acquired resistance, particularly in immunocompromised patients. Infections cause by NFGNB are associated with high morbidity and mortality, especially among patients with cystic fibrosis and hematologic malignancies. This study aimed to assess the in vitro susceptibility of clinically relevant NFGNB isolates to two newer antibiotics, cefiderocol and aztreonam/avibactam, and an established antibiotic, trimethoprim/sulfamethoxazole. Methods: This retrospective, monocentric study analysed 94 NFGNB isolates (30 Pseudomonas aeruginosa, 30 Acinetobacter sp., 24 Stenotrophomonas maltophilia, and 10 Burkholderia cepacia complex). Susceptibility testing for cefiderocol, aztreonam/avibactam, and trimethoprim/sulfamethoxazole was conducted using gradient strip method. MIC values were interpreted using EUCAST breakpoints, ECOFFs, or alternative criteria when necessary. Results: All S. maltophilia isolates were susceptible to cefiderocol (FCR) and aztreonam/avibactam (A/A) based on ECOFFs, with one strain resistant to trimethoprim–sulfamethoxazole (COT). Burkholderia cepacia complex strains also showed high susceptibility to FCR, with only one isolate exceeding the ECOFF for A/A, and 20% resistant to COT. All Acinetobacter sp. isolates were susceptible to FCR; however, most MIC values clustered at or just below the ECOFF value. In P. aeruginosa, one isolate was resistant to FCR, and three isolates (10%) were resistant to A/A. Interestingly, confirmed carbapenemase producers remained susceptible to both FCR and A/A. Most A/A MIC values for P. aeruginosa were just below the ECOFF. Conclusions: Cefiderocol and aztreonam/avibactam demonstrated promising in vitro activity against clinically relevant NFGNB, including carbapenem-resistant strains. These findings support their potential role as therapeutic options for difficult-to-treat infections, particularly in immunocompromised patients. Full article
Show Figures

Figure 1

65 pages, 3461 KB  
Review
Pharmaceutical Contamination by Biofilms Formed of the Burkholderia cepacia Complex: Public Health Risks
by Giorgio Silva-Santana, Francisca Letícia Sousa Sales, Alícia Ribeiro Aguiar and Marcelo Luiz Lima Brandão
Processes 2025, 13(5), 1270; https://doi.org/10.3390/pr13051270 - 22 Apr 2025
Cited by 3 | Viewed by 3680
Abstract
Biofilms formation by the Burkholderia cepacia complex (Bcc) poses a considerable risk to hospital environments, particularly for immunocompromised individuals. These bacteria exhibit notable resistance to disinfectants and antibiotics, mainly due to their ability to adhere to biotic and abiotic surfaces, forming highly persistent [...] Read more.
Biofilms formation by the Burkholderia cepacia complex (Bcc) poses a considerable risk to hospital environments, particularly for immunocompromised individuals. These bacteria exhibit notable resistance to disinfectants and antibiotics, mainly due to their ability to adhere to biotic and abiotic surfaces, forming highly persistent biofilms, contamination, and pharmaceutical solutions. These microbial structures function as protective shields, impeding the effective action of antimicrobial compounds and facilitating the occurrence of chronic infections and outbreaks in healthcare settings. The high genetic plasticity of the Bcc, evidenced by the presence of multiple chromosomes and the ease of horizontal gene transfer, further enhances its capacity for adaptation and treatment resistance. Moreover, the ability of the Bcc to survive in aquatic environments and withstand unfavorable conditions heightens concerns regarding the contamination of pharmaceutical products. This study examines the molecular mechanisms underlying Bcc biofilm formation, its impact on hospital infections, and the challenges associated with its eradication. It also discusses the current detection techniques available and innovative approaches to mitigating contamination in pharmaceutical products. In summary, a thorough understanding of the mechanisms underlying Bcc biofilm formation and maintenance is crucial for implementing more effective preventive measures and minimizing the risks associated with hospital infections. Full article
(This article belongs to the Special Issue Microbial Biofilms: Latest Advances and Prospects)
Show Figures

Figure 1

31 pages, 4512 KB  
Review
Rare or Unusual Non-Fermenting Gram-Negative Bacteria: Therapeutic Approach and Antibiotic Treatment Options
by Nicholas Geremia, Andrea Marino, Andrea De Vito, Federico Giovagnorio, Stefano Stracquadanio, Agnese Colpani, Stefano Di Bella, Giordano Madeddu, Saverio Giuseppe Parisi, Stefania Stefani and Giuseppe Nunnari
Antibiotics 2025, 14(3), 306; https://doi.org/10.3390/antibiotics14030306 - 16 Mar 2025
Cited by 6 | Viewed by 5310
Abstract
Non-fermenting Gram-negative bacteria (NFGNB) are a heterogeneous group of opportunistic pathogens increasingly associated with healthcare-associated infections. While Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia are well known, rarer species such as Burkholderia cepacia complex, Achromobacter spp., Chryseobacterium spp., Elizabethkingia spp., Ralstonia spp., [...] Read more.
Non-fermenting Gram-negative bacteria (NFGNB) are a heterogeneous group of opportunistic pathogens increasingly associated with healthcare-associated infections. While Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia are well known, rarer species such as Burkholderia cepacia complex, Achromobacter spp., Chryseobacterium spp., Elizabethkingia spp., Ralstonia spp., and others pose emerging therapeutic challenges. Their intrinsic and acquired resistance mechanisms limit effective treatment options, making targeted therapy essential. Objectives: This narrative review summarizes the current understanding of rare and unusual NFGNB, their clinical significance, resistance profiles, and evidence-based therapeutic strategies. Methods: A literature review was conducted using PubMed, Scopus, and Web of Science to identify relevant studies on the epidemiology, antimicrobial resistance, and treatment approaches to rare NFGNB. Results: Rare NFGNB exhibits diverse resistance mechanisms, including β-lactamase production, efflux pumps, and porin modifications. Treatment selection depends on species-specific susceptibility patterns, but some cornerstones can be individuated. Novel β-lactam/β-lactamase inhibitors and combination therapy approaches are being explored for multidrug-resistant isolates. However, clinical data remain limited. Conclusions: The increasing incidence of rare NFGNB requires heightened awareness and a tailored therapeutic approach. Given the paucity of clinical guidelines, antimicrobial stewardship and susceptibility-guided treatment are crucial in optimizing patient outcomes. Full article
Show Figures

Figure 1

7 pages, 1447 KB  
Case Report
The First Case of a Cat Infected with Burkholderia pseudomultivorans, a Member of the Burkholderia cepacia Complex
by Yuji Fujii, Akihisa Suwa, Yuzo Tsuyuki, Kumiko Koyama, Junko Nio-Kobayashi and Kentaro Yoshii
Vet. Sci. 2024, 11(11), 559; https://doi.org/10.3390/vetsci11110559 - 12 Nov 2024
Cited by 2 | Viewed by 1532
Abstract
The Burkholderia cepacia complex (Bcc) is a group of bacteria with similar biological properties which are an important cause of opportunistic infections. Identification of the Bcc species is important to understand clinical outcomes in human patients. However, there are few studies of Bcc [...] Read more.
The Burkholderia cepacia complex (Bcc) is a group of bacteria with similar biological properties which are an important cause of opportunistic infections. Identification of the Bcc species is important to understand clinical outcomes in human patients. However, there are few studies of Bcc species infecting companion animals such as cats. This report shows for the first time an infection with B. pseudomultivorans, a member of Bcc, in veterinary medicine. A 9-year-old, FIV-positive, mixed-breed cat was subjected to immunosuppressive therapy, developed septic shock, and died. In the bone marrow specimen collected postmortem, numerous short bacilli—some of which were phagocytosed by leukocytes—were observed. By bacteriological examination, the Bcc-like bacteria were isolated from the bone marrow sample. Genetic analysis showed that the recA gene sequence detected from the present case exhibited the highest homology (98–100%) to that of B. pseudomultivorans. Based on these examinations, the present case was diagnosed as B. pseudomultivorans infection. The findings of this study highlight the need for investigation of the Bcc species in veterinary practice to help in treatment decisions and the prognostic evaluation of Bcc infections. Full article
Show Figures

Figure 1

14 pages, 610 KB  
Review
Phage Therapy: An Alternative Approach to Combating Multidrug-Resistant Bacterial Infections in Cystic Fibrosis
by Mario Cocorullo, Giovanni Stelitano and Laurent Robert Chiarelli
Int. J. Mol. Sci. 2024, 25(15), 8321; https://doi.org/10.3390/ijms25158321 - 30 Jul 2024
Cited by 7 | Viewed by 5157
Abstract
Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus [...] Read more.
Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus. These infections still remain an important issue, despite the therapy for CF having considerably improved in recent years. Moreover, prolonged exposure to antibiotics in combination favors the development and spread of multi-resistant bacteria; thus, the development of alternative strategies is crucial to counter antimicrobial resistance. In this context, phage therapy, i.e., the use of phages, viruses that specifically infect bacteria, has become a promising strategy. In this review, we aim to address the current status of phage therapy in the management of multidrug-resistant infections, from compassionate use cases to ongoing clinical trials, as well as the challenges this approach presents in the particular context of CF patients. Full article
(This article belongs to the Special Issue Molecular Insight into Approaches against Cystic Fibrosis Infections)
Show Figures

Figure 1

20 pages, 2881 KB  
Article
Surface-Exposed Protein Moieties of Burkholderia cenocepacia J2315 in Microaerophilic and Aerobic Conditions
by António M. M. Seixas, Carolina Silva, Joana M. M. Marques, Patrícia Mateus, Manuel J. Rodríguez-Ortega, Joana R. Feliciano, Jorge H. Leitão and Sílvia A. Sousa
Vaccines 2024, 12(4), 398; https://doi.org/10.3390/vaccines12040398 - 9 Apr 2024
Cited by 2 | Viewed by 2382
Abstract
Burkholderia cepacia complex infections remain life-threatening to cystic fibrosis patients, and due to the limited eradication efficiency of current treatments, novel antimicrobial therapies are urgently needed. Surface proteins are among the best targets to develop new therapeutic strategies since they are exposed to [...] Read more.
Burkholderia cepacia complex infections remain life-threatening to cystic fibrosis patients, and due to the limited eradication efficiency of current treatments, novel antimicrobial therapies are urgently needed. Surface proteins are among the best targets to develop new therapeutic strategies since they are exposed to the host’s immune system. A surface-shaving approach was performed using Burkholderia cenocepacia J2315 to quantitatively compare the relative abundance of surface-exposed proteins (SEPs) expressed by the bacterium when grown under aerobic and microaerophilic conditions. After trypsin incubation of live bacteria and identification of resulting peptides by liquid chromatography coupled with mass spectrometry, a total of 461 proteins with ≥2 unique peptides were identified. Bioinformatics analyses revealed a total of 53 proteins predicted as localized at the outer membrane (OM) or extracellularly (E). Additionally, 37 proteins were predicted as moonlight proteins with OM or E secondary localization. B-cell linear epitope bioinformatics analysis of the proteins predicted to be OM and E-localized revealed 71 SEP moieties with predicted immunogenic epitopes. The protegenicity higher scores of proteins BCAM2761, BCAS0104, BCAL0151, and BCAL0849 point out these proteins as the best antigens for vaccine development. Additionally, 10 of the OM proteins also presented a high probability of playing important roles in adhesion to host cells, making them potential targets for passive immunotherapeutic approaches. The immunoreactivity of three of the OM proteins identified was experimentally demonstrated using serum samples from cystic fibrosis patients, validating our strategy for identifying immunoreactive moieties from surface-exposed proteins of potential interest for future immunotherapies development. Full article
(This article belongs to the Special Issue Vaccinomics: Omics-System Biology Approach in Vaccine Development)
Show Figures

Figure 1

42 pages, 1346 KB  
Review
Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex
by Alexander J. Badten and Alfredo G. Torres
Vaccines 2024, 12(3), 313; https://doi.org/10.3390/vaccines12030313 - 15 Mar 2024
Cited by 5 | Viewed by 5057
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). [...] Read more.
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups. Full article
Show Figures

Figure 1

13 pages, 2365 KB  
Article
A Polyclonal Antibody against a Burkholderia cenocepacia OmpA-like Protein Strongly Impairs Pseudomonas aeruginosa and B. multivorans Virulence
by António M. M. Seixas, Sara C. Gomes, Carolina Silva, Leonilde M. Moreira, Jorge H. Leitão and Sílvia A. Sousa
Vaccines 2024, 12(2), 207; https://doi.org/10.3390/vaccines12020207 - 17 Feb 2024
Cited by 4 | Viewed by 2422
Abstract
Despite advances in therapies, bacterial chronic respiratory infections persist as life-threatening to patients suffering from cystic fibrosis (CF). Pseudomonas aeruginosa and bacteria of the Burkholderia cepacia complex are among the most difficult of these infections to treat, due to factors like their resistance [...] Read more.
Despite advances in therapies, bacterial chronic respiratory infections persist as life-threatening to patients suffering from cystic fibrosis (CF). Pseudomonas aeruginosa and bacteria of the Burkholderia cepacia complex are among the most difficult of these infections to treat, due to factors like their resistance to multiple antibiotics and ability to form biofilms. The lack of effective antimicrobial strategies prompted our search for alternative immunotherapies that can effectively control and reduce those infections among CF patients. Previous work from our group showed that the anti-BCAL2645 goat polyclonal antibody strongly inhibited Burkholderia cenocepacia to adhere and invade cultured epithelial cells. In this work, we showed that the polyclonal antibody anti-BCAL2645 also strongly inhibited the ability of P. aeruginosa to form biofilms, and to adhere and invade the human bronchial epithelial cell line CFBE41o-. The polyclonal antibody also inhibited, to a lesser extent, the ability of B. multivorans to adhere and invade the human bronchial epithelial cell line CFBE41o. We also show that the ability of B. cenocepacia, P. aeruginosa and B. multivorans to kill larvae of the Galleria mellonella model of infection was impaired when bacteria were incubated with the anti-BCAL2645 antibody prior to the infection. Our findings show that an antibody against BCAL2645 possesses a significant potential for the development of new immunotherapies against these three important bacterial species capable of causing devastating and often lethal infections among CF patients. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

16 pages, 1331 KB  
Review
Septic Transfusion Reactions Involving Burkholderia cepacia Complex: A Review
by Margarita Salamanca-Pachon, Nohora Isabel Guayacan-Fuquene and Michel-Andres Garcia-Otalora
Microorganisms 2024, 12(1), 40; https://doi.org/10.3390/microorganisms12010040 - 25 Dec 2023
Cited by 2 | Viewed by 1997
Abstract
This review was conducted to assess the global incidence of transfusion-transmitted infections (TTIs) caused by contamination of blood components with the Burkholderia cepacia complex (Bcc). Our search encompassed various specialized databases such as Medline/PubMed, Web of Science, Scopus, Scielo, ScienceDirect, and ClinicalKey. An [...] Read more.
This review was conducted to assess the global incidence of transfusion-transmitted infections (TTIs) caused by contamination of blood components with the Burkholderia cepacia complex (Bcc). Our search encompassed various specialized databases such as Medline/PubMed, Web of Science, Scopus, Scielo, ScienceDirect, and ClinicalKey. An analysis of the literature revealed a total of eleven reported cases where blood components contaminated with Bcc had been transfused, resulting in sepsis among the affected patients. Of these cases, eight were documented in the literature, while the remaining three occurred within the institution involving the authors of this review. A comparative examination was conducted, considering factors such as primary diagnosis, transfused blood component, time elapsed between transfusion and manifestation of symptoms, administration of antibiotics, and final outcome. Interestingly, regardless of the storage temperature, all blood components were found to be susceptible to Bcc contamination. Furthermore, the cases investigated revealed diverse sources of contamination, and it was observed that all the affected patients had compromised immune systems due to underlying illnesses. Based on these findings, a series of preventive strategies were derived to mitigate and decrease the occurrence of similar cases. Full article
(This article belongs to the Special Issue Safety of Platelet Components: Past, Present and Future)
Show Figures

Figure 1

11 pages, 657 KB  
Article
Carbapenemase-Producing Bacteria Isolated from ICU Patients of a Peruvian Government Hospital during the COVID-19 Pandemic: A Descriptive Analysis
by David García-Cedrón, Magaly De La Cruz Noriega, Luis Cabanillas-Chirinos, Nélida Milly Otiniano, Walter Rojas-Villacorta, Waldo Salvatierra-Espinola, Karen Diaz Del Aguila and Manuela Luján-Velásquez
Medicina 2023, 59(10), 1763; https://doi.org/10.3390/medicina59101763 - 3 Oct 2023
Cited by 2 | Viewed by 3085
Abstract
Background and Objectives: In Peru, the presence of antimicrobial-resistant bacteria is a constant concern in hospitals and has likely increased in frequency during the pandemic. The objective of the study was to analyze the frequency of carbapenemase-producing bacteria resistant to two carbapenems (Imipenem [...] Read more.
Background and Objectives: In Peru, the presence of antimicrobial-resistant bacteria is a constant concern in hospitals and has likely increased in frequency during the pandemic. The objective of the study was to analyze the frequency of carbapenemase-producing bacteria resistant to two carbapenems (Imipenem and Meropenem), which were isolated from Peruvian patients in the intensive care unit of the Victor Lazarte Echegaray Hospital in Trujillo (Peru) during the COVID-19 pandemic. Materials and Methods: The biological samples of the patients hospitalized in the ICU were processed in the Microbiology Diagnostic Laboratory of the Víctor Lazarte Echegaray Hospital between May 2021 and March 2022. Antimicrobial sensitivity was determined with the automated system AutoScan-4, and for the identification of the type of carbapenemase, the RESISIT-3 O.K.N K-SET cassettes were used. Results: The results show that 76 cultures (76/129) had resistance to the two carbapenems (imipenem or meropenem), where the most frequent were Klebsiella pneuomoniae (31.6%), Pseudomonas aeruginosa (26.3%), and Acinetobacter baumannii (14.5%). Pseudomonas aeruginosa cultures showed at least three carbapenemase types (KPC, NDM, and OXA-48), while A. baumannii, Escherichia coli, and Burkholderia cepacia complex presented at least two carbapenemases (NDM and OXA-48). The carbapenemase NDM was detected in Enterobacter cloacae, Morganella morganii, and Proteus mirabilis, while KPC was present in all Klebsiella pneumoniae and Klebsiella oxytoca cultures. Conclusions: The samples from patients hospitalized in the Victor Lazarte Echegaray Hospital ICU showed a high prevalence of imipenem- and meropenem-resistant bacteria. These findings are relevant and concerning from the perspective of antibiotic-resistant bacteria monitoring, control, and disinfection. Thus, an appropriate antibiotic policy must be implemented. Full article
(This article belongs to the Special Issue Antimicrobial Resistance, and Stewardship)
Show Figures

Figure 1

10 pages, 256 KB  
Review
Haematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease
by M. A. Slatter and A. R. Gennery
J. Clin. Med. 2023, 12(18), 6083; https://doi.org/10.3390/jcm12186083 - 20 Sep 2023
Cited by 8 | Viewed by 2900
Abstract
Chronic granulomatous disease (CGD) is an inborn error of immunity due to defects in the transport or function of subunits of nicotinamide adenine dinucleotide phosphate oxidase, the enzyme that generates the phagocyte respiratory burst responsible for intracellular killing of engulfed micro-organisms. Patients present [...] Read more.
Chronic granulomatous disease (CGD) is an inborn error of immunity due to defects in the transport or function of subunits of nicotinamide adenine dinucleotide phosphate oxidase, the enzyme that generates the phagocyte respiratory burst responsible for intracellular killing of engulfed micro-organisms. Patients present with infectious or inflammatory complications. Common bacterial pathogens include Staphylococcus aureus and Burkholderia cepacia complex. Fungal pathogens include Aspergillus species, particularly Aspergillus fumigatus. Inflammatory complications most commonly manifest as inflammatory bowel disease or lung disease. Granulomata are the distinguishing histological feature. Haematopoietic stem cell transplantation (HSCT) was first considered for CGD in the early 1970’s. Since then, refinements in transplant technique, donor selection, conditioning regimens, and graft engineering have widened the option of HSCT to most patients with CGD. This review charts the progress made in HSCT for CGD. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Graphical abstract

12 pages, 417 KB  
Review
Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens
by Mario Cocorullo, Laurent R. Chiarelli and Giovanni Stelitano
Vaccines 2023, 11(7), 1221; https://doi.org/10.3390/vaccines11071221 - 9 Jul 2023
Cited by 6 | Viewed by 4588
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to [...] Read more.
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far. Full article
(This article belongs to the Special Issue Infectious Disease Immunotherapy Research)
Show Figures

Figure 1

22 pages, 5735 KB  
Article
Identification by Reverse Vaccinology of Three Virulence Factors in Burkholderia cenocepacia That May Represent Ideal Vaccine Antigens
by Samuele Irudal, Viola Camilla Scoffone, Gabriele Trespidi, Giulia Barbieri, Maura D’Amato, Simona Viglio, Mariagrazia Pizza, Maria Scarselli, Giovanna Riccardi and Silvia Buroni
Vaccines 2023, 11(6), 1039; https://doi.org/10.3390/vaccines11061039 - 30 May 2023
Cited by 11 | Viewed by 3225
Abstract
The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug [...] Read more.
The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them—BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates. Full article
Show Figures

Figure 1

16 pages, 2614 KB  
Article
Propidium Monoazide (PMAxx)-Recombinase Polymerase Amplification Exo (RPA Exo) Assay for Rapid Detection of Burkholderia cepacia Complex in Chlorhexidine Gluconate (CHX) and Benzalkonium Chloride (BZK) Solutions
by Soumana Daddy Gaoh, Ohgew Kweon and Youngbeom Ahn
Microorganisms 2023, 11(6), 1401; https://doi.org/10.3390/microorganisms11061401 - 26 May 2023
Cited by 6 | Viewed by 2810
Abstract
Both sterile and non-sterile pharmaceutical products, which include antiseptics, have been recalled due to Burkholderia cepacia complex (BCC) contamination. Therefore, minimizing the frequency of outbreaks may be conducive to the development of a quick and sensitive approach that can distinguish between live and [...] Read more.
Both sterile and non-sterile pharmaceutical products, which include antiseptics, have been recalled due to Burkholderia cepacia complex (BCC) contamination. Therefore, minimizing the frequency of outbreaks may be conducive to the development of a quick and sensitive approach that can distinguish between live and dead loads of BCC. We have assessed an exo probe-based recombinase polymerase amplification (RPA) with 10 µM propidium monoazide (PMAxx) for selective detection of live/dead BCC cells in various concentrations of antiseptics (i.e., chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions) after 24 h. The optimized assay conducted using a set of primer–probes targeting gbpT was performed at 40 °C for 20 min and shows a detection limit of 10 pg/µL of genomic DNA from B. cenocepacia J2315, equivalent to 104 colony-forming units (CFU/mL). The specificity of a newly designed primer and probe was 80% (20 negatives out of 25). The readings for total cells (i.e., without PMAxx) from 200 µg/mL CHX using PMAxx-RPA exo assay was 310 relative fluorescence units (RFU), compared to 129 RFU with PMAxx (i.e., live cells). Furthermore, in 50–500 µg/mL BZK-treated cells, a difference in the detection rate was observed between the PMAxx-RPA exo assay in live cells (130.4–459.3 RFU) and total cells (207.82–684.5 RFU). This study shows that the PMAxx-RPA exo assay appears to be a valid tool for the simple, rapid and presumptive detection of live BCC cells in antiseptics, thereby ensuring the quality and safety of pharmaceutical products. Full article
Show Figures

Figure 1

Back to TopTop