Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = C. parviflorus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1251 KB  
Article
Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques
by Shakeel Ahmed, Gokhan Zengin, Selami Selvi, Gunes Ak, Zoltán Cziáky, József Jekő, Maria J. Rodrigues, Luisa Custodio, Roberto Venanzoni, Giancarlo Angeles Flores, Gaia Cusumano and Paola Angelini
Pathogens 2024, 13(9), 795; https://doi.org/10.3390/pathogens13090795 - 13 Sep 2024
Cited by 5 | Viewed by 1913
Abstract
This study investigates the biochemical composition and biological properties of different parts (leaves, roots, and twigs) of two Cistus species (Cistus monspeliasis and Cistus parviflorus). The extracts were analysed using UHPLC-MS/MS to determine their chemical profiling. A range of antioxidant assays [...] Read more.
This study investigates the biochemical composition and biological properties of different parts (leaves, roots, and twigs) of two Cistus species (Cistus monspeliasis and Cistus parviflorus). The extracts were analysed using UHPLC-MS/MS to determine their chemical profiling. A range of antioxidant assays were performed to evaluate the extract’s antioxidant capabilities. The enzyme inhibition studies focused on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase and tyrosinase. In addition, the study examined the antimicrobial effects on different bacteria and yeasts and evaluated the toxicity using the MTT assay. Quinic acid, citric acid, gallic acid, catechin, quercetin derivatives, kaempferol, myricetin, ellagic acid, prodelphinidins, procyanidins, scopoletin, and flavogallonic acid dilactone are the main bioactive compounds found in both species. In enzyme inhibition assays, C. monspeliasis roots exhibited significant activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with the values of 2.58 ± 0.02 mg GALAE/g and 11.37 ± 1.93 mg GALAE/g, respectively. Cytotoxicity studies showed mostly weak toxicity, with some samples moderately reducing viability in RAW and HepG2 cells. These findings underscore the diverse biochemical profiles and bioactive potential of Cistus species, suggesting their utility as natural sources of antioxidants and enzyme inhibitors for pharmaceutical and nutraceutical development. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

15 pages, 3776 KB  
Article
Determination of the Total Phenolics Content and Antioxidant Activity of Extracts from Parts of Plants from the Greek Island of Crete
by Eleftherios Kalpoutzakis, Theodoros Chatzimitakos, Vassilis Athanasiadis, Sofia Mitakou, Nektarios Aligiannis, Eleni Bozinou, Olga Gortzi, Leandros A. Skaltsounis and Stavros I. Lalas
Plants 2023, 12(5), 1092; https://doi.org/10.3390/plants12051092 - 1 Mar 2023
Cited by 32 | Viewed by 7664
Abstract
Oxidative damages are responsible for many adverse health effects and food deterioration. The use of antioxidant substances is well renowned, and as such, much emphasis is placed on their use. Since synthetic antioxidants exhibit potential adverse effects, plant-derived antioxidants are a preferable solution. [...] Read more.
Oxidative damages are responsible for many adverse health effects and food deterioration. The use of antioxidant substances is well renowned, and as such, much emphasis is placed on their use. Since synthetic antioxidants exhibit potential adverse effects, plant-derived antioxidants are a preferable solution. Despite the myriads of plants that exist and the fact that numerous studies have been carried out so far, there are many species that have not been examined so far. Many plants under research exist in Greece. Trying to fill this research gap, the total phenolics content and antioxidant activity of seventy methanolic extracts from parts of Greek plants were evaluated. The total phenolics content was measured by the Folin–Ciocalteau assay. Their antioxidant capacity was calculated by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging test, the Rancimat method based on conductometric measurements, and the thermoanalytical method DSC (Differential Scanning Calorimetry). The tested samples were obtained from several parts of fifty-seven Greek plant species belonging to twenty-three different families. Both a remarkably high phenolic content (with gallic acid equivalents varying between 311.6 and 735.5 mg/g of extract) and radical scavenging activity (IC50 values ranged from 7.2 to 39.0 μg/mL) were found in the extract of the aerial parts of Cistus species (C. creticus subsp. creticus, C. creticus subsp. eriocephalus, C. monspeliensis, C. parviflorus and C. salviifolius), Cytinus taxa (C. hypocistis subsp. hypocistis, C. hypocistis subsp. orientalis and C. ruber), and Sarcopoterium spinosum. Furthermore, the sample of Cytinus ruber showed the highest protection factor (PF = 1.276) regarding the Rancimat method, which was similar to that of butylated hydroxytoluene (BHT) (PF = 1.320). The results indicated that these plants are rich in antioxidant compounds, potentiating their use either as food additives to enhance the antioxidant properties of food products, or protect them from oxidation, or as sources for the preparation of food supplements with antioxidant properties. Full article
(This article belongs to the Special Issue Plant-Derived Food and Health Effect)
Show Figures

Figure 1

20 pages, 2131 KB  
Article
Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species
by Brigitte Lukas, Laura Bragagna, Katharina Starzyk, Klaudia Labedz, Klaus Stolze and Johannes Novak
Plants 2021, 10(4), 615; https://doi.org/10.3390/plants10040615 - 24 Mar 2021
Cited by 27 | Viewed by 4651
Abstract
This investigation focused on the qualitative and quantitative composition of polyphenolic compounds of Mediterranean northern shore Cistus creticus and six further, partly sympatric Cistus species (C. albidus, C. crispus, C. ladanifer, C. monspeliensis, C. parviflorus, C. salviifolius). [...] Read more.
This investigation focused on the qualitative and quantitative composition of polyphenolic compounds of Mediterranean northern shore Cistus creticus and six further, partly sympatric Cistus species (C. albidus, C. crispus, C. ladanifer, C. monspeliensis, C. parviflorus, C. salviifolius). Aqueous extracts of 1153 individual plants from 13 countries were analyzed via high performance liquid chromatography (HPLC). The extracts of C. creticus were primarily composed of two ellagitannins (punicalagin and punicalagin gallate) and nine flavonol glycosides (myricetin and quercetin glycosides, with m-3-O-rhamnoside as the dominant main compound). Differences in the proportions of punicalagin derivatives and flavonol glycosides allowed the classification into two chemovariants. Plants containing punicalagin derivatives and flavonol glycosides were especially abundant in the western and central Mediterranean areas and in Cyprus. From Albania eastwards, punicalagin and punicalagin gallate were of much lesser importance and the predominant chemovariant there was a nearly pure flavonol type. With its two chemovariants, C. creticus takes a central position between the flavonol-rich, purple-flowered clade (besides C. creticus, here represented by C. albidus and C. crispus) and the more ellagitannin-rich, white- or whitish-pink-flowered clade (here represented by C. ladanifer, C. monspeliensis, C. parviflorus and C. salviifolius). The median antioxidative capacity of C. creticus plant material was, with 166 mg Trolox equivalents/g dry wt, about half of the antioxidative capacity of C. ladanifer (301 mg te/g dry wt), the species with the highest antioxidative potential. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

18 pages, 4896 KB  
Article
Diversity, Phylogeny and Plant Growth Promotion Traits of Nodule Associated Bacteria Isolated from Lotus parviflorus
by Ricardo Soares, Jesús Trejo, Maria J. Lorite, Etelvina Figueira, Juan Sanjuán and Isabel Videira e Castro
Microorganisms 2020, 8(4), 499; https://doi.org/10.3390/microorganisms8040499 - 31 Mar 2020
Cited by 27 | Viewed by 6302
Abstract
Lotus spp. are widely used as a forage to improve pastures, and inoculation with elite rhizobial strains is a common practice in many countries. However, only a few Lotus species have been studied in the context of plant-rhizobia interactions. In this study, forty [...] Read more.
Lotus spp. are widely used as a forage to improve pastures, and inoculation with elite rhizobial strains is a common practice in many countries. However, only a few Lotus species have been studied in the context of plant-rhizobia interactions. In this study, forty highly diverse bacterial strains were isolated from root nodules of wild Lotus parviflorus plants growing in two field locations in Portugal. However, only 10% of these isolates could nodulate one or more legume hosts tested, whereas 90% were thought to be opportunistic nodule associated bacteria. Phylogenetic studies place the nodulating isolates within the Bradyrhizobium genus, which is closely related to B. canariense and other Bradyrhizobium sp. strains isolated from genistoid legumes and Ornithopus spp. Symbiotic nodC and nifH gene phylogenies were fully consistent with the taxonomic assignment and host range. The non-nodulating bacteria isolated were alpha- (Rhizobium/Agrobacterium), beta- (Massilia) and gamma-proteobacteria (Pseudomonas, Lysobacter, Luteibacter, Stenotrophomonas and Rahnella), as well as some bacteroidetes from genera Sphingobacterium and Mucilaginibacter. Some of these nodule-associated bacteria expressed plant growth promotion (PGP) traits, such as production of lytic enzymes, antagonistic activity against phytopathogens, phosphate solubilization, or siderophore production. This argues for a potential beneficial role of these L. parviflorus nodule-associated bacteria. Full article
(This article belongs to the Special Issue Plant Microbial Interactions)
Show Figures

Graphical abstract

9 pages, 281 KB  
Article
Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal
by Kusum Sai, Rashmi Thapa, Hari Prasad Devkota and Khem Raj Joshi
Medicines 2019, 6(2), 70; https://doi.org/10.3390/medicines6020070 - 25 Jun 2019
Cited by 18 | Viewed by 6269
Abstract
Background: More than 700 plants are reported to be used for medicinal purposes in Nepal; however, many of them are not studied for their scientific evidences. The aims of the present study were the estimation of the total phenolic and flavonoid contents, and [...] Read more.
Background: More than 700 plants are reported to be used for medicinal purposes in Nepal; however, many of them are not studied for their scientific evidences. The aims of the present study were the estimation of the total phenolic and flavonoid contents, and the evaluation of the free radical scavenging and α-amylase inhibitory activities of five selected medicinal plants from western Nepal: Aeschynanthus parviflorus Wall. (Gesneriaceae), Buddleja asiatica Lour. (Loganiaceae), Carica papaya L. (Caricaceae), Drepanostachyum falcatum (Nees) Keng f. (Gramineae) and Spondias pinnata (L. f.) Kurz (Anacardiaceae). Methods: The total phenolic content (TPC) and total flavonoid content (TFC) were measured using Folin-Ciocalteu’s phenol reagent and aluminium chloride methods, respectively. A 1,1–diphenyl–2–picrylhydrazyl (DPPH) free radical scavenging assay was used to evaluate the free radical scavenging activity and an α-amylase inhibitory assay was carried out to determine the in vitro antidiabetic activity. Results: The phytochemical screening of five hydroalcoholic plant extracts revealed the presence of various secondary metabolites, including alkaloids, flavonoids, reducing sugars, saponins, terpenoids and tannins. The amounts of total phenolics and flavonoids were found to be the highest in B. asiatica leaf extract, which also showed the most potent free radical scavenging activity. Extract of C. papaya fruits showed the highest α-amylase inhibitory activity, whereas the extracts of B. asiatica leaves and S. pinnata leaves exhibited moderate activity. Conclusions: Some of the medicinal plants selected in this study showed high TPC and TFC values and potent bioactivities. These results may provide the scientific evidences of the traditional uses of these plants. However, further detailed studies on bioactive compounds isolation and identification and evaluation of in vivo pharmacological activities should be performed in future. Full article
15 pages, 3198 KB  
Article
The Importance of Conserved Serine for C-Terminally Encoded Peptides Function Exertion in Apple
by Zipeng Yu, Yang Xu, Lin Liu, Yarong Guo, Xisen Yuan, Xinyu Man, Chang Liu, Guodong Yang, Jinguang Huang, Kang Yan, Chengchao Zheng, Changai Wu and Shizhong Zhang
Int. J. Mol. Sci. 2019, 20(3), 775; https://doi.org/10.3390/ijms20030775 - 12 Feb 2019
Cited by 12 | Viewed by 4367
Abstract
Background: The C-terminally encoded peptide (CEP) family has been shown to play vital roles in plant growth. Although a genome-wide analysis of this family has been performed in Arabidopsis, little is known regarding CEPs in apple (Malus domestica). Methods: Here, a [...] Read more.
Background: The C-terminally encoded peptide (CEP) family has been shown to play vital roles in plant growth. Although a genome-wide analysis of this family has been performed in Arabidopsis, little is known regarding CEPs in apple (Malus domestica). Methods: Here, a comprehensive bioinformatics approach was applied to identify MdCEPs in apple, and 12 MdCEP genes were identified and distributed on 6 chromosomes. Results: MdCEP1 peptide had an inhibitory effect on root growth of apple seedlings, indicating that MdCEP1 played a negative role in root development. In addition, the serine and glycine residues remained conserved within the CEP domains, and MdCEP1 lost its function after mutation of these two key amino acids, suggesting that Ser10 and Gly14 residues are crucial for MdCEPs-mediated root growth of apple. Encouragingly, multiple sequence alignment of 273 CEP domains showed that Ser10 residue was evolutionarily conserved in monocot and eudicot plants. MdCEP derivative (Ser to Cys) lost the ability to inhibit the root growth of Nicotiana benthamiana, Setaria italic, Samolous parviflorus, and Raphanus sativus L. and up-regulate the NO3 importer gene NRT2.1. Conclusion: Taken together, Ser10 residue is crucial for CEP function exertion in higher land plants, at least in apple. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop