Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = C. weissflogii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2407 KB  
Article
Genome-Wide Mining of Chitinase Diversity in the Marine Diatom Thalassiosira weissflogii and Functional Characterization of a Novel GH19 Enzyme
by Mengzhen Cheng, Shuang Li, Jiahui Wang, Xiaoqi Yang, Delin Duan and Zhanru Shao
Mar. Drugs 2025, 23(4), 144; https://doi.org/10.3390/md23040144 - 26 Mar 2025
Viewed by 726
Abstract
Chitin represents a globally abundant marine polymer with significant ecological and biotechnological value. β-chitin is an important carbon fixation product of diatoms and has a greater range of applications than α- and γ-chitin. However, there has been a paucity of research on the [...] Read more.
Chitin represents a globally abundant marine polymer with significant ecological and biotechnological value. β-chitin is an important carbon fixation product of diatoms and has a greater range of applications than α- and γ-chitin. However, there has been a paucity of research on the characterization of chitin-related enzymes from β-chitin producers. In this study, we performed a genome-wide identification of 38 putative chitinase genes in Thalassiosira weissflogii, a key producer of β-chitin. Through comprehensive analyses of phylogenetic relationships, conserved motifs, structural domains, and subcellular localization predictions, we revealed that T. weissflogii possesses evolutionarily distinct GH18 and GH19 chitinase families exhibiting unique motif and domain configurations. Subcellular localization predictions showed that most TwChis were presumed to be located in the chloroplast, with a few being present in the nucleus and extracellular. The enzymatic activity of TwChi2, a GH19 chitinase, showed that TwChi2 was a member of exochitinase (EC 3.2.1.201) with strong thermal stability (40 °C) and broad substrate adaptability of hydrolyzing bipolymer, 1% and 5% colloidal chitin, α-chitin and β-chitin. Altogether, we analyzed the chitinase gene family and characterized a highly active exochitinase from T. weissflogii, which can catalyze the degradation of both chitin polymers and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of high-value chitin oligosaccharides. Full article
(This article belongs to the Special Issue Omics Technologies and Marine Microbial Natural Product Discovery)
Show Figures

Graphical abstract

17 pages, 3671 KB  
Article
Effect of Nitrogen Sources on Diatoms Growth and Nutritional Value for Enhancing Litopenaeus vannamei Larval Performance
by Reham A. Abdelhay, Mohammad S. El-Mor, Mohammed A. M. Salem, Adham A. Al-Sagheer, Yasmina M. Abd-Elhakim, Bayan A. Hassan and Hossam A. M. Mounes
Animals 2025, 15(4), 466; https://doi.org/10.3390/ani15040466 - 7 Feb 2025
Cited by 3 | Viewed by 1308
Abstract
This study investigated the impact of different nitrogen sources on the growth and biochemical composition of two diatom species, Chaetoceros calcitrans and Thalassiosira weissflogii, and evaluated their use as live feed for Litopenaeus vannamei larvae. Diatoms were cultured in a Conway medium [...] Read more.
This study investigated the impact of different nitrogen sources on the growth and biochemical composition of two diatom species, Chaetoceros calcitrans and Thalassiosira weissflogii, and evaluated their use as live feed for Litopenaeus vannamei larvae. Diatoms were cultured in a Conway medium supplemented with four nitrogen sources: potassium nitrate (control), urea, ammonium sulfate, and ammonium nitrate. In a separate experiment, white-leg shrimp larvae (300 larvae/L) at stage Nauplius 6 were fed diets consisting of C. calcitrans, T. weissflogii, or a combination of both diatoms under controlled conditions. The results indicated that urea, ammonium nitrate, and ammonium sulfate significantly enhanced the growth and nutrient composition of C. calcitrans and T. weissflogii compared to the control (potassium nitrate). In C. calcitrans, ammonium nitrate significantly increased protein and lipid contents, while carbohydrate levels were the highest in the control. Similarly, urea and ammonium sulfate treatments yielded the highest lipid levels, whereas the control exhibited the lowest. For T. weissflogii, the control achieved the highest cell count on day 4, but ammonium nitrate significantly improved protein and lipid contents while reducing carbohydrate levels. A mixed diet of C. calcitrans and T. weissflogii significantly enhanced growth performance and reduced mortality rates in L. vannamei larvae compared to single-species diets. In conclusion, the findings indicated that ammonium nitrate was an efficient nitrogen source for enhancing diatom growth. Additionally, combining C. calcitrans and T. weissflogii as a diet improved growth and survival of L. vannamei larvae, offering practical implications for aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 1355 KB  
Article
The Effect of Phosphorus Concentration on the Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii
by Ning Zhang, Di Peng, Xiangyu Rui, Wenquan Zheng, Zhenglin Zeng, Xianghu Huang, Changling Li and Feng Li
Mar. Drugs 2024, 22(12), 541; https://doi.org/10.3390/md22120541 - 30 Nov 2024
Viewed by 1346
Abstract
The production of fucoxanthin and fatty acids in Conticribra weissflogii has been examined, but the role of elements like phosphorus in their mutualistic interactions is not well understood. To fill this gap, our study utilized potassium dihydrogen phosphate (KH2PO4) [...] Read more.
The production of fucoxanthin and fatty acids in Conticribra weissflogii has been examined, but the role of elements like phosphorus in their mutualistic interactions is not well understood. To fill this gap, our study utilized potassium dihydrogen phosphate (KH2PO4) as a source of phosphorus to examine its impact on the synthesis of fucoxanthin and fatty acids in C. weissflogii. Our findings revealed that at a phosphorus concentration of 10 mg L−1, the cell density (9.5 × 105 cells mL−1), carotenoid concentration (1.67 mg g−1), fucoxanthin concentration (0.91 mg L−1), and fucoxanthin content (1.33 mg g−1) were maximized. Additionally, at a phosphorus concentration of 20 mg L−1, cell dry weight (0.76 ± 0.08 g L−1), total fatty acid content, saturated fatty acids, and unsaturated fatty acids were all at their highest levels, making this concentration optimal for EPA accumulation. In conclusion, manipulating the phosphorus concentration can enhance the levels of fucoxanthin and unsaturated fatty acids in C. weissflogii, offering valuable insights into the co-production of these two high-value compounds within this species. Full article
(This article belongs to the Special Issue Advances in Marine-Derived Fucoxanthin Studies)
Show Figures

Figure 1

10 pages, 1321 KB  
Article
Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii
by David Kwame Amenorfenyo, Feng Li, Xiangyu Rui, Xianghu Huang and Changling Li
Mar. Drugs 2024, 22(11), 504; https://doi.org/10.3390/md22110504 - 6 Nov 2024
Cited by 1 | Viewed by 1792
Abstract
Enhancing microalgal growth and bioactive compound production is becoming a duty for improving photosynthetic microorganisms. In this study, the growth, carotenoid, and fatty acid profiles of Conticribra weissflogii were studied under four different silicate concentrations and silicate-deficient conditions in an f/2 medium with [...] Read more.
Enhancing microalgal growth and bioactive compound production is becoming a duty for improving photosynthetic microorganisms. In this study, the growth, carotenoid, and fatty acid profiles of Conticribra weissflogii were studied under four different silicate concentrations and silicate-deficient conditions in an f/2 medium with continuous aeration, light intensity (30 ± 2 µmol m−2 s−1), salinity (25 ± 2‰), pH (8), and temperature (25 ± 2 °C). At the end of the experiment, we observed that a silicate concentration of 120 mg L−1 produced the maximum biomass dry weight (0.86 g L−1), carotenoid content (1.63 µg mL−1), and fucoxanthin content (1.23 mg g−1) in C. weissflogii. The eicosapentaenoic acid (EPA) (11,354.37 µg g−1), docosahexaenoic acid (DHA) (2516.16 µg g−1), gamma-linolenic acid (C18:3n6) (533.51 µg g−1), and arachidonic acid (C20:4n6) (1261.83 µg g−1) contents were significantly higher at Si 120 mg L−1. The results further showed the maximum fatty acid content in C. weissflogii at Si 120 mg L−1. However, the silicate-deficient conditions (Si 0 mg L−1) resulted in higher levels of saturated fatty acids (38,038.62 µg g−1). This study presents a practical approach for the large-scale optimization of biomass, carotenoid, fucoxanthin, and fatty acid production in C. weissflogii for commercial purposes. Full article
(This article belongs to the Special Issue Marine Biorefinery for Bioactive Compounds Production)
Show Figures

Figure 1

19 pages, 2004 KB  
Article
Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants
by Natália Čmiková, Przemysław Łukasz Kowalczewski, Dominik Kmiecik, Aneta Tomczak, Agnieszka Drożdżyńska, Mariusz Ślachciński, Jakub Królak and Miroslava Kačániová
Foods 2024, 13(13), 2160; https://doi.org/10.3390/foods13132160 - 8 Jul 2024
Cited by 16 | Viewed by 4467
Abstract
Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira [...] Read more.
Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira weissflogii, and Tisochrysis lutea. We conducted comprehensive analyses of their nutritional profiles, encompassing protein content, individual amino acid composition, mineral and trace element levels, fatty acid profiles (including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs)), polyphenol compositions, and vitamin B content. The antioxidant activity of the ethanolic extracts was evaluated using two methods: ABTS and DPPH radical scavenging assay. The total protein content of the microalgae ranged from 34.09 ± 0.39% to 42.45 ± 0.18%, with the highest concentration observed in T. weissflogii. Essential amino acids such as histidine, threonine, lysine, valine, isoleucine, leucine, phenylalanine, and methionine were present in concentrations ranging from 0.53 ± 0.02 to 12.55 ± 2.21 g/16 g N. Glutamic acid emerged as the most abundant amino acid, with concentrations ranging from 6.73 ± 0.82 to 12.55 ± 2.21 g/16 g N. Among the microalgae species, T. chuii exhibited the highest concentrations of calcium (Ca) and manganese (Mn), while C. muelleri showed prominence in magnesium (Mg), sodium (Na), and iron (Fe). T. weissflogii stood out for its potassium (K) content, and T. lutea contained notable amounts of copper (Cu), zinc (Zn), and lead (Pb). Regarding fatty acid profiles, Nannochloropsis sp. and T. chuii were predominantly composed of SFA, while C. muelleri and T. weissflogii were rich in MUFA. PUFAs dominated the fatty acid profile of T. lutea, which also exhibited the most diverse range of polyphenolic substances. We also analyzed the B vitamin content, with T. lutea displaying the highest concentrations of niacin (B3) and riboflavin (B2). Antioxidant activity was confirmed for all microalgae tested using DPPH and ABTS radical IC50 (mg/mL) converted to Trolox equivalent (TEAC). These findings underscore the substantial potential of the examined microalgae species as sources of biologically valuable substances characterized by rapid growth and relatively undemanding cultivation conditions. Full article
(This article belongs to the Special Issue Plant-Based Food:From Nutritional Value to Health Benefits)
Show Figures

Figure 1

10 pages, 5717 KB  
Article
Effect of Iron Concentration on the Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii
by Ke Peng, David Kwame Amenorfenyo, Xiangyu Rui, Xianghu Huang, Changling Li and Feng Li
Mar. Drugs 2024, 22(3), 106; https://doi.org/10.3390/md22030106 - 24 Feb 2024
Cited by 4 | Viewed by 2340
Abstract
The production of fucoxanthin and fatty acids in Conticribra weissflogii has been examined, but there is still a lack of understanding regarding the impact of trace elements, including iron, on their co-production. To address this knowledge gap, this study investigated the effects of [...] Read more.
The production of fucoxanthin and fatty acids in Conticribra weissflogii has been examined, but there is still a lack of understanding regarding the impact of trace elements, including iron, on their co-production. To address this knowledge gap, this study investigated the effects of FeCl3·6H2O on the growth, fucoxanthin, and fatty acids of C. weissflogii. The findings revealed that the highest cell density (1.9 × 106 cells mL−1), cell dry weight (0.89 ± 0.15 g L−1), and total fatty acid concentration (83,318.13 µg g−1) were achieved at an iron concentration of 15.75 mg L−1, while the maximum carotenoid and fucoxanthin contents were obtained at an iron concentration of 3.15 mg L−1. The study demonstrated that the content of the active substance in C. weissflogii could be increased by adjusting the iron concentration, providing new information as to the more efficient co-production of fucoxanthin and fatty acids and offering experimental support for large-scale production. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Figure 1

13 pages, 2780 KB  
Article
Effects of Temperature, Light and Salt on the Production of Fucoxanthin from Conticribra weissflogii
by Feng Li, Xiangyu Rui, David Kwame Amenorfenyo, Yao Pan, Xianghu Huang and Changling Li
Mar. Drugs 2023, 21(9), 495; https://doi.org/10.3390/md21090495 - 16 Sep 2023
Cited by 5 | Viewed by 2393
Abstract
Fucoxanthin is a natural active substance derived from diatoms that is beneficial to the growth and immunity of humans and aquatic animals. Temperature, light and salinity are important environmental factors affecting the accumulation of diatom actives; however, their effects on the production of [...] Read more.
Fucoxanthin is a natural active substance derived from diatoms that is beneficial to the growth and immunity of humans and aquatic animals. Temperature, light and salinity are important environmental factors affecting the accumulation of diatom actives; however, their effects on the production of fucoxanthin in C. weissflogii are unclear. In this study, single-factor experiments are designed and followed by an orthogonal experiment to determine the optimal combination of fucoxanthin production conditions in C. weissflogii. The results showed that the optimum conditions for fucoxanthin production were a temperature of 30 °C, a light intensity of 30 umol m−2 s−1 and a salinity of 25. Under these conditions, the cell density, biomass, carotenoid content and fucoxanthin content of C. weissflogii reached 1.97 × 106 cell mL−1, 0.76 g L−1, 2.209 mg L−1 and 1.372 mg g−1, respectively, which were increased to 1.53, 1.71, 2.50 and 1.48 times higher than their initial content. The work sought to give useful information that will lead to an improved understanding of the effective method of cultivation of C. weissflogii for natural fucoxanthin production. Full article
(This article belongs to the Special Issue Advances in Marine-Derived Fucoxanthin Studies)
Show Figures

Figure 1

12 pages, 16703 KB  
Article
Effects of Different Nitrogen Concentrations on Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii
by Xiangyu Rui, David Kwame Amenorfenyo, Ke Peng, Haoming Li, Linfei Wang, Xianghu Huang, Changling Li and Feng Li
Mar. Drugs 2023, 21(2), 106; https://doi.org/10.3390/md21020106 - 1 Feb 2023
Cited by 6 | Viewed by 2848
Abstract
Fucoxanthin and fatty acids are active substances that are beneficial to the growth and immunity of humans and aquatic animals. However, relatively few species have been exploited for fucoxanthin and fatty acids in the industry. At the same time, due to its low [...] Read more.
Fucoxanthin and fatty acids are active substances that are beneficial to the growth and immunity of humans and aquatic animals. However, relatively few species have been exploited for fucoxanthin and fatty acids in the industry. At the same time, due to its low extract content, poor stability, high production cost, and serious seasonal and regional limitations, the industry cannot normally meet the greater demand of the international market. Therefore, this experiment seeks to improve the fucoxanthin and fatty acid content of C. weissflogii by adjusting the nitrogen concentration in the culture medium. It was found that when the nitrogen concentration was 150 mg L−1, the cell number was 1.5 × 106 cell mL−1, and the average biomass was 0.75 g L−1. The mean value of carotenoid concentration was 2.179 mg L−1. The average concentration of fucoxanthin was 1.547 mg g−1. When the nitrogen concentration was 75 mg L−1, the fatty acid content reached its highest. By adjusting the concentration of nitrogen, the contents of fucoxanthin and fatty acids were increased. The results provided a theoretical basis for commercial extraction of fucoxanthin and fatty acids and further promoted the industrialization of fucoxanthin and fatty acids. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Figure 1

14 pages, 858 KB  
Article
Effect of Microalgal Diets on Sunray Venus Clam (Macrocallista nimbosa) Production and Fatty Acid Profile
by Edward Perri, Leslie Sturmer, Paul S. Wills, John Baldwin and Susan Laramore
Fishes 2023, 8(2), 72; https://doi.org/10.3390/fishes8020072 - 26 Jan 2023
Cited by 3 | Viewed by 2508
Abstract
The sunray venus (sunray) clam, Macrocallista nimbosa, is an alternative clam species reared in hard clam hatcheries in Florida. Current feeding practices follow those used for hard clam culture. This study aimed to identify whether a hard clam bi-algal Tisochrysis lutea and [...] Read more.
The sunray venus (sunray) clam, Macrocallista nimbosa, is an alternative clam species reared in hard clam hatcheries in Florida. Current feeding practices follow those used for hard clam culture. This study aimed to identify whether a hard clam bi-algal Tisochrysis lutea and Chaetoceros neogracile diet was an optimal diet for post-set sunray clams or whether other microalgal dietary combinations could improve production. Six dietary bi-, tri-, or tetra-algal combinations consisting of four microalgae species (Tisochrysis lutea, Diacronema lutheri, Chaetoceros neogracile, and Thalassiosira weissflogii) were fed for 6 weeks; the growth, survival, and fatty acid profiles of post-set clams were evaluated. Clams fed equal proportions of T. lutea, D. lutheri, C. neogracile, and T. weissflogii had higher growth, while those fed equal proportions of T. lutea and C. neogracile had higher survival. The poorest-performing diet consisted solely of diatoms. A contrasting polyunsaturated fatty acid (PUFA) profile was found in post-set clams fed flagellate- or diatom-only diets. Clams fed the bi-algal flagellate diet had a higher percentage of docosahexaenoic acid (DHA) but a lower percentage of (n-6) PUFA, whereas those fed the bi-algal diatom diet had a higher percentage of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) but a lower percentage of DHA. The percentages were similar and neither very high nor very low in clams fed the remaining dietary treatments. The results of this study show that sunray venus post-set clams can be successfully produced when fed a typical hard clam bi-algal flagellate and diatom diet, but they indicate that growth may be accelerated by the addition of other microalgae species. Full article
(This article belongs to the Special Issue Live Feeds for Sustainable Aquaculture)
Show Figures

Figure 1

30 pages, 507 KB  
Review
Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications
by Olga Babich, Stanislav Sukhikh, Viktoria Larina, Olga Kalashnikova, Egor Kashirskikh, Alexander Prosekov, Svetlana Noskova, Svetlana Ivanova, Imen Fendri, Slim Smaoui, Slim Abdelkafi, Philippe Michaud and Vyacheslav Dolganyuk
Plants 2022, 11(6), 780; https://doi.org/10.3390/plants11060780 - 15 Mar 2022
Cited by 78 | Viewed by 16663
Abstract
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, [...] Read more.
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1–2 h at the extraction temperature of 25–40 °C. A 30–50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities. Full article
(This article belongs to the Special Issue Cyanobacteria, Algae, and Plants; from Biology to Biotechnology)
13 pages, 1780 KB  
Article
Fatty Acid Profiles of Selected Microalgae Used as Live Feeds for Shrimp Postlarvae in Vietnam
by Thao Duc Mai, Kim Jye Lee-Chang, Ian D. Jameson, Tung Hoang, Ngoc Bao Anh Cai and Hung Quoc Pham
Aquac. J. 2021, 1(1), 26-38; https://doi.org/10.3390/aquacj1010004 - 22 Oct 2021
Cited by 20 | Viewed by 6304
Abstract
The importance of microalgal lipids for the survival and growth of shrimp postlarvae has been recognized in a range of studies. Microalgae with fast growth rates and high levels of polyunsaturated fatty acids (PUFA) are considered vital to maximise production and minimise cost [...] Read more.
The importance of microalgal lipids for the survival and growth of shrimp postlarvae has been recognized in a range of studies. Microalgae with fast growth rates and high levels of polyunsaturated fatty acids (PUFA) are considered vital to maximise production and minimise cost in shrimp larviculture. The lipid content and fatty acid composition of microalgae used in shrimp production varies substantially between the algal classes and species being used in Vietnam. This study aims to characterise microalgal lipid and fatty acid (FA) profiles and evaluate the most promising species under growth conditions that are most suitable for shrimp aquaculture. Here, we report that the highest lipid contents were obtained in the Haptophyta microalgae, Tisochrysis lutea and Isochrysis galbana, at 90.3 and 61.1 mg/g, respectively. In contrast, two of the most popular diatom species being used for shrimp larval cultivation in Vietnam, Thalassiosira pseudonana and T. weissflogii, displayed the lowest lipid contents at 16.1 mg/g. Other microalgal species examined showed lipid contents ranging from 28.6 to 55 mg/g. Eicosapentaenoic acid (EPA, 20:5ω3) ranged from 0.6 to 29.9% across the species, with docosahexaenoic acid (DHA, 22:6ω3) present at 0.01 to 11.1%; the two omega (ω)–3 long-chain (LC, ≥C20) LC-PUFA varied between the microalgae groups. Polar lipids were the main lipid class, ranging from 87.2 to 97.3% of total lipids, and triacylglycerol was detected in the range of 0.01 to 2.5%. Saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) increased and PUFA decreased with increasing growth temperatures. This study demonstrated the differences in the lipid contents and FA profiles across 10 microalgal species and the effect of the higher temperature growing conditions encountered in Vietnam. Full article
Show Figures

Figure 1

25 pages, 11477 KB  
Article
Biochemical Effects of Two Pesticides in Three Different Temperature Scenarios on the Diatom Thalassiosira weissflogii
by Andreia F. Mesquita, Fernando J. M. Gonçalves, Carolina P. Rocha, João C. Marques and Ana M. M. Gonçalves
Processes 2021, 9(7), 1247; https://doi.org/10.3390/pr9071247 - 19 Jul 2021
Cited by 13 | Viewed by 3370
Abstract
The exponential increase of the human population demands the overuse of fertilizers and pesticides in agriculture practices to suppress food production needs. The excessive use of these chemicals (fertilizers and pesticides) can comport deleterious effects to the ecosystems, including aquatic systems and communities. [...] Read more.
The exponential increase of the human population demands the overuse of fertilizers and pesticides in agriculture practices to suppress food production needs. The excessive use of these chemicals (fertilizers and pesticides) can comport deleterious effects to the ecosystems, including aquatic systems and communities. Oxyfluorfen is a fluorine-based herbicide, and its application has increased, since it is seen as an alternative to control glyphosate-resistant weeds. Copper sulfate is an inorganic pesticide based on copper which is being used in several chemical formulations, and it is the second main constituent of fungicides. Besides the known effects of such products in organisms, climatic changes pose an additional issue, being a main concern among scientists and politicians worldwide, since these alterations may worsen ecosystems’ and organisms’ sensitivity to stress conditions, such as the exposure to pollutants. Thalassiosira weissflogii (Grunow) G. A. Fryxell & Hasle, 1977 plays an important role in aquatic food webs as a primary producer and an essential food source to zooplankton. Thus, alterations on the diatom’s abundance and nutritional value may lead to consequences along the trophic chain. However, few studies have evaluated the biochemical impacts of oxyfluorfen and copper sulfate exposure on diatoms. This study intends to (1) evaluate the effects on the growth rate of both contaminants on T. weissfloggi at three temperatures, considering the actual scenario of climatic changes, and (2) assess biochemical changes on the diatom when exposed to the chemicals at different temperatures. To achieve these aims, the marine diatom was exposed to the two chemicals individually at different temperatures. The results showed an increase in the growth rate with increasing temperatures. Oxyfluorfen exhibited higher toxicity than copper sulfate. At the biochemical level, the microalgae were greatly affected when exposed to oxyfluorfen at 20 °C and 25 °C and when exposed to copper sulfate at 15 °C. Moreover, a general increase was observed for the polysaccharide content along the copper sulfate and oxyfluorfen concentrations. Therefore, the contaminants show the ability to interfere with the diatom growth and the nutritive value, with their effects dependent on the temperature. Full article
(This article belongs to the Special Issue Environmental Risk Assessment Processes and Ecotoxicology)
Show Figures

Figure 1

21 pages, 479 KB  
Article
Contrasting Strategies of Photosynthetic Energy Utilization Drive Lifestyle Strategies in Ecologically Important Picoeukaryotes
by Kimberly H. Halsey, Allen J. Milligan and Michael J. Behrenfeld
Metabolites 2014, 4(2), 260-280; https://doi.org/10.3390/metabo4020260 - 29 Apr 2014
Cited by 36 | Viewed by 10812
Abstract
The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization [...] Read more.
The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments. Full article
(This article belongs to the Special Issue Metabolism in Phototrophic Prokaryotes and Algae)
Show Figures

Graphical abstract

Back to TopTop