Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = CD11b+Ly6G−

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5298 KB  
Article
Neuregulin-1 (NRG1) Binds to the Allosteric Binding Site (Site 2) and Suppresses Allosteric Integrin Activation by Inflammatory Cytokines: A Potential Mechanism of Anti-Inflammatory and Anti-Fibrosis Action of NRG1
by Yoko K. Takada and Yoshikazu Takada
Cells 2025, 14(8), 617; https://doi.org/10.3390/cells14080617 - 21 Apr 2025
Cited by 1 | Viewed by 788
Abstract
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to [...] Read more.
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to bind to site 2 and allosterically activates integrins and induces inflammatory signals (e.g., IL-6 and TNF secretion). Thus, site 2 is involved in inflammatory signaling. Neuregulin-1 (NRG1) is known to suppresses the progression of inflammatory diseases, fibrosis, and insulin resistance. But, the mechanism of anti-inflammatory action of NRG1 is unclear. We previously showed that NRG1 binds to the classical RGD-binding site (site 1). Mutating the 3 Lys residues that are involved in site 1 binding (NRG1 3KE mutant) is defective in binding to site 1 and in ErbB3-mediated mitogenic signals. Docking simulation predicted that NRG1 binds to site 2. We hypothesized that NRG1 acts as an antagonist of site 2 and blocks allosteric activation by multiple cytokines. Here, we describe that NRG1 binds to site 2 but does not activate soluble αvβ3 or αIIbβ3 in 1 mM Ca2+, unlike inflammatory cytokines. Instead, NRG1 suppressed integrin activation by several inflammatory cytokines, suggesting that NRG1 acts as a competitive inhibitor of site 2. Wild-type NRG1 is not suitable for long-term treatment due to its mitogenicity. We showed that the non-mitogenic NRG1 3KE mutant still bound to site 2 and inhibited allosteric activation of soluble and cell-surface integrins, suggesting that NRG1 3KE may have potential as a therapeutic. Full article
Show Figures

Figure 1

15 pages, 4925 KB  
Article
C3-Liposome Delivery of MUC1 Peptide and TLR Agonists Enhances Adaptive Immunity and Results in Sex-Based Tumor Growth Differences
by Shahab Soltani, Ameneh Arabi, Kristine Mann, Austin Hess, Holly A. Martinson and Max Kullberg
Pharmaceutics 2025, 17(4), 468; https://doi.org/10.3390/pharmaceutics17040468 - 3 Apr 2025
Viewed by 828
Abstract
Background: Mucin-1 (MUC1) is a glycoprotein that is hypoglycosylated and overexpressed in most adenocarcinomas, making it a promising target for cancer vaccines. Our group previously demonstrated that C3 (OPSS)-liposomes enhance antigen uptake by antigen-presenting cells (APCs) via the complement C3 pathway and, [...] Read more.
Background: Mucin-1 (MUC1) is a glycoprotein that is hypoglycosylated and overexpressed in most adenocarcinomas, making it a promising target for cancer vaccines. Our group previously demonstrated that C3 (OPSS)-liposomes enhance antigen uptake by antigen-presenting cells (APCs) via the complement C3 pathway and, when combined with toll-like receptor (TLR) agonists, reduce tumor growth in murine cancer models. Methods: In the present study, we evaluate the immunogenicity of MUC1 peptide vaccines encapsulated in C3-liposomes, with and without TLR agonists, using MUC1-tolerant transgenic mice challenged with Lewis lung carcinoma (LLC.MUC1) cells. To assess vaccine effectiveness, tumor volumes were measured, and flow cytometry and ELISA and ELISPOT assays were used to assess the immune response. Results: Both male and female C57BL/6 transgenic mice vaccinated with MUC1 C3-liposomes developed significantly smaller tumors than those vaccinated with free MUC1 peptide or PBS. Notably, a sex-dependent response emerged in mice vaccinated with MUC1 C3-liposomes with TLR agonists (TLR4, TLR7/8, and TLR9); male mice exhibited greater tumor suppression than females. Flow cytometry analysis revealed that female mice had significantly higher levels of CD11b+, LY6C+, and LY6G+ MDSC cells, suggesting a potential mechanism for the sex difference. Additionally, MUC1 C3-liposome vaccination elicited robust adaptive immune responses, including significantly higher levels of IFN-γ-producing T cells and MUC1-specific IgG antibodies compared to non-encapsulated MUC1 or TLR adjuvant-only formulations. Conclusions: These findings underscore the potential of C3-liposome-based antigen vaccines to enhance anti-tumor immunity and highlight the impact of sex differences in vaccine efficacy. Full article
(This article belongs to the Special Issue Lipid Nanostructures as Drug Carriers for Cancer Therapy)
Show Figures

Figure 1

18 pages, 4555 KB  
Article
AHR Agonist ITE Boosted PD1 Antibody’s Effects by Inhibiting Myeloid-Derived Cells Suppressive Cells in an Orthotopic Mouse Glioma Model
by Pei Gong, Lijiao Zhao, Yunlong Ma, Qiuting Shu, Hui Sun, Jing Lu, Fanhua Meng and Fang Wan
Pharmaceuticals 2025, 18(4), 471; https://doi.org/10.3390/ph18040471 - 27 Mar 2025
Viewed by 656
Abstract
Background: Glioblastoma is “cold”. Consequently, immune checkpoint blockade therapy has failed to improve patients‘ survival, which is negatively correlated with patients’ peripheral MDSC counts. AHR is known to mediate immune-suppressive functions of certain tryptophan metabolites such as kynurenine; yet, there lack of reports [...] Read more.
Background: Glioblastoma is “cold”. Consequently, immune checkpoint blockade therapy has failed to improve patients‘ survival, which is negatively correlated with patients’ peripheral MDSC counts. AHR is known to mediate immune-suppressive functions of certain tryptophan metabolites such as kynurenine; yet, there lack of reports on how AHR agonists affect glioma immunity. Methods/Objectives: We hypothesized that ITE could synergize with PD1 antibody as AHR is one major node of immune-suppressive pathways, and tested it using an immune-competent mouse glioma model. Results: The combination of ITE+PD1 antibody glioma MDSC was significantly reduced, along with increased infiltration of the CD4−CD8+ and CD4+CD8+ T cells, leading to extended mouse survival. ITE treatment alone significantly reduces the infiltration of CD11b+Ly6G+Ly6Clo cells, namely PMN-MDSCs, and neutrophils, while the combination with PD1 antibody significantly reduces all MDSCs plus neutrophils. The presence of ITE inhibits the expression of IL11 and the in vitro induction of MDSCs from mouse PBMCs by IL11. The identification of the ITE-AHR-IL11-MDSC pathway provides more mechanistic insights into AHR’s effects. The fact that ITE, which is otherwise immune-suppressive, can activate immunity in glioma indicates that searching for drugs targeting AHR should go beyond antagonists. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

23 pages, 5560 KB  
Article
Myeloid Cell Mobilization and Recruitment by Human Mesothelioma in NSG-SGM3 Mice
by Vadim V. Shindyapin, Ekaterina O. Gubernatorova, Ekaterina A. Gorshkova, Nelya R. Chicherina, Fedor A. Sysonov, Anastasia S. Yakovleva, Daria A. Bogdanova, Oleg N. Demidov, Mariya V. Samsonova, Vladimir P. Baklaushev, Gaukhar M. Yusubalieva and Marina S. Drutskaya
Cells 2024, 13(24), 2135; https://doi.org/10.3390/cells13242135 - 23 Dec 2024
Viewed by 1548
Abstract
Malignant pleural mesothelioma is a neoplasm that is often detected late due to nonspecific symptoms. This study utilized NSG-SGM3 mice to examine interactions between a human-derived mesothelioma reporter cell line (MZT-Luc2-mCherry) and the host’s myeloid compartment. Tumor growth was assessed using optical tomography, [...] Read more.
Malignant pleural mesothelioma is a neoplasm that is often detected late due to nonspecific symptoms. This study utilized NSG-SGM3 mice to examine interactions between a human-derived mesothelioma reporter cell line (MZT-Luc2-mCherry) and the host’s myeloid compartment. Tumor growth was assessed using optical tomography, while cytokine/chemokine production was analyzed via multiplex assay. Histological and immunohistochemical analyses validated the epithelioid mesothelioma phenotype. In vitro mesothelioma cells secreted factors associated with myeloid cell chemoattraction and functions supporting the previously reported myeloid-biased secretory phenotype. In line with this, post-engraftment analysis revealed increased neutrophil-like Ly6G+ populations and decreased Ly6C+ inflammatory monocytes in the blood of tumor-bearing mice. Significant Ly6G+ cell infiltration was observed in the tumor, while CD11b+ myeloid cells were localized primarily in the tumor periphery. Tumor lysates showed increased levels of neutrophil chemoattractants and G-CSF, suggesting a previously not reported role of neutrophils in mesothelioma progression. This novel model provides a platform for studying mesothelioma–host interactions, focusing on the myeloid compartment. It may also serve as a tool to facilitate the development of new therapeutic strategies targeting myeloid cell-mediated mechanisms in mesothelioma. Full article
Show Figures

Figure 1

27 pages, 4435 KB  
Article
Remote Ischemic Post-Conditioning (RIC) Mediates Anti-Inflammatory Signaling via Myeloid AMPKα1 in Murine Traumatic Optic Neuropathy (TON)
by Naseem Akhter, Jessica Contreras, Mairaj A. Ansari, Andrew F. Ducruet, Md Nasrul Hoda, Abdullah S. Ahmad, Laxman D. Gangwani, Kanchan Bhatia and Saif Ahmad
Int. J. Mol. Sci. 2024, 25(24), 13626; https://doi.org/10.3390/ijms252413626 - 19 Dec 2024
Cited by 2 | Viewed by 1747
Abstract
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have [...] Read more.
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial. AMPKα1 is the catalytic subunit of the heterotrimeric enzyme AMPK, the master regulator of cellular energetics and metabolism. The α1 isoform predominates in immune cells including macrophages (Mφs). Myeloid-specific AMPKα1 KO mice were generated by crossing AMPKα1Flox/Flox and LysMcre to carry out the study. We induced TON in mice by using a controlled impact system. Mice (mixed sex) were randomized in six experimental groups for Sham (mock); Sham (RIC); AMPKα1F/F (TON); AMPKα1F/F (TON+RIC); AMPKα1F/F LysMCre (TON); AMPKα1F/F LysMCre (TON+RIC). RIC therapy was given every day (5–7 days following TON). Data were generated by using Western blotting (pAMPKα1, ICAM1, Brn3 and GAP43), immunofluorescence (pAMPKα1, cd11b, TMEM119 and ICAM1), flow cytometry (CD11b, F4/80, CD68, CD206, IL-10 and LY6G), ELISA (TNF-α and IL-10) and transmission electron microscopy (TEM, for demyelination and axonal degeneration), and retinal oxygenation was measured by a Unisense sensor system. First, we observed retinal morphology with funduscopic images and found TON has vascular inflammation. H&E staining data suggested that TON increased retinal inflammation and RIC attenuates retinal ganglion cell death. Immunofluorescence and Western blot data showed increased microglial activation and decreased retinal ganglion cell (RGCs) marker Brn3 and axonal regeneration marker GAP43 expression in the TON [AMPKα1F/F] vs. Sham group, but TON+RIC [AMPKα1F/F] attenuated the expression level of these markers. Interestingly, higher microglia activation was observed in the myeloid AMPKα1F/F KO group following TON, and RIC therapy did not attenuate microglial expression. Flow cytometry, ELISA and retinal tissue oxygen data revealed that RIC therapy significantly reduced the pro-inflammatory signaling markers, increased anti-inflammatory macrophage polarization and improved oxygen level in the TON+RIC [AMPKα1F/F] group; however, RIC therapy did not reduce inflammatory signaling activation in the myeloid AMPKα1 KO mice. The transmission electron microscopy (TEM) data of the optic nerve showed increased demyelination and axonal degeneration in the TON [AMPKα1F/F] group, and RIC improved the myelination process in TON [AMPKα1F/F], but RIC had no significant effect in the AMPKα1 KO mice. The myeloid AMPKα1c deletion attenuated RIC induced anti-inflammatory macrophage polarization, and that suggests a molecular link between RIC and immune activation. Overall, these data suggest that RIC therapy provided protection against inflammation and neurodegeneration via myeloid AMPKα1 activation, but the deletion of myeloid AMPKα1 is not protective in TON. Further investigation of RIC and AMPKα1 signaling is warranted in TON. Full article
(This article belongs to the Special Issue New Therapeutic Targets for Neuroinflammation and Neurodegeneration)
Show Figures

Figure 1

15 pages, 3498 KB  
Article
The Gut–Lung Axis During Ethanol Exposure and a Pseudomonas aeruginosa Bacterial Challenge
by Anthony Santilli, Yingchun Han, Hannah Yan, Naseer Sangwan and Gail A. M. Cresci
Biomedicines 2024, 12(12), 2757; https://doi.org/10.3390/biomedicines12122757 - 3 Dec 2024
Cited by 1 | Viewed by 1430
Abstract
Background: Susceptibility to and severity of pulmonary infections increase with ethanol consumption. We have previously shown that ethanol-induced changes in the gut microbiome disrupt gut homeostasis, allowing for the translocation of proinflammatory mediators into the circulation and eliciting an immune response in the [...] Read more.
Background: Susceptibility to and severity of pulmonary infections increase with ethanol consumption. We have previously shown that ethanol-induced changes in the gut microbiome disrupt gut homeostasis, allowing for the translocation of proinflammatory mediators into the circulation and eliciting an immune response in the lung. Additionally, targeting the gut with butyrate supplementation not only rescues ethanol-induced disruptions to gut health but also reverses aspects of immune dysregulation in the lungs. Here, we assessed the impact of this connection on a subsequent infectious challenge. Methods: To assess if ethanol-induced alterations to the gut microbiome could also impact the host response to a pulmonary infectious challenge, we employed a chronic-binge ethanol-feeding mouse model followed by a nasal instillation of Pseudomonas aeruginosa. Results: In addition to altering gut microbiome composition and metabolism, ethanol consumption also disrupted the local immune response as demonstrated by suppressed cecal SIgA levels, a decreased presence of CD3+CD8a+ cytotoxic T cells in the proximal colon mucosa, and depleted CD3+CD8a+ T cells and CD11c+CD8a+ dendritic cells in the mesenteric lymph nodes. Circulatory Ly6G+CD11b+ neutrophils increased, indicating a systemic change in immune-cell presence with ethanol exposure. Ethanol exposure increased CD11c+CD64+ macrophages and Ly6G+CD11b+ neutrophils in the lungs, with neutrophil populations being further exacerbated during a bacterial challenge with Pseudomonas aeruginosa. Lipocalin 2, a marker of oxidative stress, was also elevated with ethanol consumption, though not with infection. Conclusions: These data suggest that ethanol-induced changes in the gut microbiome and immune environment are linked to dysfunctional immune responses in the intestine, blood, and the lungs, compromising the pulmonary immune response during an infectious challenge in mice. Full article
(This article belongs to the Special Issue Advanced Research in Pulmonary Pathophysiology)
Show Figures

Figure 1

13 pages, 5345 KB  
Article
Targeting Myeloid Cells in Head and Neck Squamous Cell Carcinoma: A Kinase Inhibitor Library Screening Approach
by Mohamed Y. Zaky, Jessy John, Monika Vashisht, Priya Singh, Mohammad A. I. Al-Hatamleh, Karen Siddoway, Zhangguo Chen and Jing H. Wang
Int. J. Mol. Sci. 2024, 25(22), 12277; https://doi.org/10.3390/ijms252212277 - 15 Nov 2024
Cited by 2 | Viewed by 1518
Abstract
Head and neck squamous cell carcinoma (HNSCC) is highly enriched with tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). However, effective therapeutic agents targeting tumor-associated myeloid cells in HNSCC are currently lacking. Here, we employed a unique co-culture system [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is highly enriched with tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). However, effective therapeutic agents targeting tumor-associated myeloid cells in HNSCC are currently lacking. Here, we employed a unique co-culture system to investigate how HNSCC cells affect tumor-associated myeloid cells. We found that the presence of cancer cells significantly enhances myeloid cell proliferation and promotes TAM differentiation. To identify potential therapeutic agents, we screened a custom library of 70 kinase inhibitors to assess their effects on distinct subsets of tumor-associated myeloid cells. We discovered specific inhibitors that differentially suppressed the populations of TAMs, monocytic MDSCs (M-MDSCs), or polymorphonuclear MDSCs (PMN-MDSCs), suggesting that inhibiting different targets could reduce distinct subsets of tumor-associated myeloid cells. Conversely, some inhibitors were found to increase the population of CD11b+Ly6GLy6C myeloid cells. Among the promising inhibitors tested, vatalanib, a VEGF-R inhibitor, demonstrated significant in vivo efficacy at inhibiting tumor growth and reducing tumor-associated myeloid cells, thereby underscoring its potential as a therapeutic agent. Our findings highlight specific kinase inhibitors with differential modulatory effects on HNSCC-associated myeloid subsets and caution the application of some as anti-cancer drugs. This experimental system may provide a robust platform for identifying new agents targeting tumor-associated myeloid cells in HNSCC and beyond, and for elucidating mechanistic insights into tumor-myeloid cell interaction. Full article
Show Figures

Figure 1

13 pages, 4334 KB  
Article
Limited Alleviation of Lysosomal Acid Lipase Deficiency by Deletion of Matrix Metalloproteinase 12
by Martin Buerger, Melina Amor, Alena Akhmetshina, Valentina Bianco, Bianca Perfler, Armin Zebisch, Thomas Weichhart and Dagmar Kratky
Int. J. Mol. Sci. 2024, 25(20), 11001; https://doi.org/10.3390/ijms252011001 - 13 Oct 2024
Viewed by 2777
Abstract
Lysosomal acid lipase (LAL) is the only known enzyme that degrades cholesteryl esters and triglycerides at an acidic pH. In LAL deficiency (LAL-D), dysregulated expression of matrix metalloproteinase 12 (MMP-12) has been described. The overexpression of MMP-12 in myeloid lineage cells causes an [...] Read more.
Lysosomal acid lipase (LAL) is the only known enzyme that degrades cholesteryl esters and triglycerides at an acidic pH. In LAL deficiency (LAL-D), dysregulated expression of matrix metalloproteinase 12 (MMP-12) has been described. The overexpression of MMP-12 in myeloid lineage cells causes an immune cell dysfunction resembling that of Lal knockout (Lal KO) mice. Both models develop progressive lymphocyte dysfunction and expansion of myeloid-derived suppressor (CD11b+ Gr-1+) cells. To study whether MMP-12 might be a detrimental contributor to the pathology of LAL-D, we have generated Lal/Mmp12 double knockout (DKO) mice. The phenotype of Lal/Mmp12 DKO mice closely resembled that of Lal KO mice, while the weight and morphology of the thymus were improved in Lal/Mmp12 DKO mice. Cytological examination of blood smears showed a mildly reversed lymphoid-to-myeloid shift in DKO mice. Despite significant decreases in CD11b+ Ly6G+ cells in the peripheral blood, bone marrow, and spleen of Lal/Mmp12 DKO mice, the hematopoietic bone marrow progenitor compartment and markers for neutrophil chemotaxis were unchanged. Since the overall severity of LAL-D remains unaffected by the deletion of Mmp12, we conclude that MMP-12 does not represent a viable target for treating the inflammatory pathology in LAL-D. Full article
(This article belongs to the Special Issue Peroxisome and Lysosome in Health and Disease)
Show Figures

Figure 1

27 pages, 4276 KB  
Article
Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice
by Yun Li, Zhuofan Lei, Rodney M. Ritzel, Junyun He, Simon Liu, Li Zhang and Junfang Wu
Cells 2024, 13(18), 1584; https://doi.org/10.3390/cells13181584 - 20 Sep 2024
Cited by 2 | Viewed by 2053
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the [...] Read more.
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6CCX3CR1+ microglia, CD45hiLy6C+Ly6G monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Full article
(This article belongs to the Collection Cell Biology of Spinal Cord Injury and Repair)
Show Figures

Figure 1

24 pages, 10859 KB  
Article
Immunomodulatory Effects of a Probiotic Mixture: Alleviating Colitis in a Mouse Model through Modulation of Cell Activation Markers and the Gut Microbiota
by Hye-Myung Ryu, S. M. Shamsul Islam, Bushra Riaz, Hasan M. Sayeed, Bunsoon Choi and Seonghyang Sohn
Int. J. Mol. Sci. 2024, 25(16), 8571; https://doi.org/10.3390/ijms25168571 - 6 Aug 2024
Cited by 1 | Viewed by 2398
Abstract
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for [...] Read more.
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for managing UC, studies are still ongoing to identify the best probiotics or probiotic mixtures for clinical applications. This study aimed to determine the efficacy of a multi-strain probiotic mixture in mitigating intestinal inflammation in a colitis mouse model induced by dextran sulfate sodium. Specifically, a multi-strain probiotic mixture consisting of Tetragenococcus halophilus and Eubacterium rectale was used to study its impact on colitis symptoms. Anti-inflammatory effects were evaluated using ELISA and flow cytometry. The configuration of gut microbial communities was determined using 16S rRNA metagenomic analysis. According to this study, colitis mice treated with the probiotic mixture experienced reduced weight loss and significantly less colonic shortening compared to untreated mice. Additionally, the treated mice exhibited increased levels of forkhead box P3 (Foxp3) and interleukin 10, along with decreased expression of dendritic cell activation markers, such as CD40+, CD80+, and CD83+, in peripheral blood leukocytes and intraepithelial lymphocytes. Furthermore, there was a significant decrease in the frequencies of CD8+N.K1.1+ cells and CD11b+Ly6G+ cells. In terms of the gut microbiota, probiotic-mixture treatment of colitis mice significantly increased the abundance of the phyla Actinobacteria and Verrucomicrobia (p < 0.05). These results provide valuable insights into the therapeutic promise of multi-strain probiotics, shedding light on their potential to alleviate colitis symptoms. This research contributes to the ongoing exploration of effective probiotic interventions for managing inflammatory bowel disease. Full article
(This article belongs to the Special Issue Gut Microbiota in Gastroenterology and Hepatology 2.0)
Show Figures

Figure 1

22 pages, 168912 KB  
Article
Heterogeneous Patterns of Endothelial NF-κB p65 and MAPK c-Jun Activation, Adhesion Molecule Expression, and Leukocyte Recruitment in Lung Microvasculature of Mice with Sepsis
by Zhendong Wang, Erna-Zulaikha Dayang, Peter J. Zwiers, Martha L. Hernandez Garcia, Matthijs Luxen, Matijs van Meurs, Jill Moser, Jan A. A. M. Kamps and Grietje Molema
Biomedicines 2024, 12(8), 1672; https://doi.org/10.3390/biomedicines12081672 - 26 Jul 2024
Viewed by 1793
Abstract
Background: Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial [...] Read more.
Background: Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial cells (EC) participate in this process by facilitating tethering, rolling, adhesion, and transmigration of leukocytes via adhesion molecules on their cell surface. In in vivo studies, endothelial nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and mitogen-activated protein kinase (MAPK) c-Jun intracellular signal transduction pathways were reported to regulate the expression of adhesion molecules. Methods: Mice underwent cecal ligation and puncture (CLP) to induce polymicrobial sepsis and were sacrificed at different time points up to 72 h after sepsis onset. Immunohistochemistry and reverse transcription–quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine the kinetics of nuclear localization of p65 and c-Jun in EC, expression and location of adhesion molecules E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Furthermore, the extent and location of leukocyte recruitment were assessed based on Ly6G staining of neutrophils, cluster determinant (CD) 3 staining of T lymphocytes, and CD68 staining of macrophages. Results: In all pulmonary microvascular beds, we identified p65 and c-Jun nuclear accumulation in a subset of endothelial cells within the first 24 h after CLP-sepsis initiation. E-selectin protein was expressed in a subset of microvessels at 4 and 7 h after sepsis initiation, while VCAM-1 was expressed in a scattered pattern in alveolar tissue and microvessels, without discernible changes during sepsis development. CLP-induced sepsis predominantly promoted the accumulation of neutrophils and T lymphocytes 4 and 7 h after disease onset. Neutrophil accumulation occurred in all pulmonary microvascular beds, while T lymphocytes were present in alveolar tissue and postcapillary venules. Taken together, nuclear localization of p65 and c-Jun in EC and neutrophil recruitment could be associated with induced E-selectin expression in the pulmonary microvessels in CLP-septic mice at the early stage of the disease. In alveolar capillaries, on the other hand, activation of these molecular pathways and leukocyte accumulation occurred in the absence of E-selectin or VCAM-1. Conclusions: Endothelial activation and leukocyte recruitment in sepsis-induced lung injury are regulated by multiple, heterogeneously controlled mechanisms, which vary depending on the type of microvascular bed involved. Full article
(This article belongs to the Special Issue Microcirculation in Health and Diseases)
Show Figures

Graphical abstract

24 pages, 8623 KB  
Article
Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment
by Tonie Farris, Salvador González-Ochoa, Muna Mohammed, Harshana Rajakaruna, Jane Tonello, Thanigaivelan Kanagasabai, Olga Korolkova, Akiko Shimamoto, Alla Ivanova and Anil Shanker
Int. J. Mol. Sci. 2024, 25(13), 7406; https://doi.org/10.3390/ijms25137406 - 5 Jul 2024
Viewed by 2486
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to [...] Read more.
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2−/− female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2−/− female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2−/− brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2−/− hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2−/− mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health. Full article
(This article belongs to the Special Issue Immunometabolic Disorders in Aging and Disease)
Show Figures

Figure 1

22 pages, 7463 KB  
Article
Ly6Chi Monocytes Are Metabolically Reprogrammed in the Blood during Inflammatory Stimulation and Require Intact OxPhos for Chemotaxis and Monocyte to Macrophage Differentiation
by Gareth S. D. Purvis, Eileen McNeill, Benjamin Wright, Keith M. Channon and David R. Greaves
Cells 2024, 13(11), 916; https://doi.org/10.3390/cells13110916 - 26 May 2024
Cited by 3 | Viewed by 3432
Abstract
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking [...] Read more.
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6GLy6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

16 pages, 6456 KB  
Article
Effects of Diabetes Mellitus on Corneal Immune Cell Activation and the Development of Keratopathy
by Pier Luigi Surico, Akitomo Narimatsu, Katayoon Forouzanfar, Rohan Bir Singh, Sara Shoushtari, Reza Dana and Tomas Blanco
Cells 2024, 13(6), 532; https://doi.org/10.3390/cells13060532 - 18 Mar 2024
Cited by 8 | Viewed by 3765
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has [...] Read more.
Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has not been elucidated yet. For further insights into the underlying immunopathologic processes, we utilized streptozotocin-induced mice to model type 1 DM (T1D) and B6.Cg-Lepob/J mice to model type 2 DM (T2D). We evaluated the animals for the development of clinical manifestations of DK. Four weeks post-induction, the total frequencies of corneal CD45+CD11b+Ly-6G myeloid cells, with enhanced gene and protein expression levels for the proinflammatory cytokines TNF-α and IL-1β, were higher in both T1D and T2D animals. Additionally, the frequencies of myeloid cells/mm2 in the sub-basal neural plexus (SBNP) were significantly higher in T1D and T2D compared to non-diabetic mice. DK clinical manifestations were observed four weeks post-induction, including significantly lower tear production, corneal sensitivity, and epitheliopathy. Nerve density in the SBNP and intraepithelial terminal endings per 40x field were lower in both models compared to the normal controls. The findings of this study indicate that DM alters the immune quiescent state of the cornea during disease onset, which may be associated with the progressive development of the clinical manifestations of DK. Full article
(This article belongs to the Special Issue Molecular Insights into Corneal Wound Healing and Inflammation)
Show Figures

Graphical abstract

13 pages, 2331 KB  
Article
HER-2 Expression in Colorectal Cancer and Its Correlation with Immune Cell Infiltration
by Di Yang, Bo Wang, Yinuo Li, Jingyao Zhang, Xuantong Gong, Hao Qin, Yan Wang, Yahui Zhao and Yong Wang
Biomedicines 2023, 11(11), 2889; https://doi.org/10.3390/biomedicines11112889 - 25 Oct 2023
Cited by 2 | Viewed by 2310
Abstract
Background: This study aimed to investigate the effect of increased HER-2 expression on tumor-infiltrating lymphocytes (TILs) and determine its impact on the prognosis of colorectal cancer (CRC) patients; Methods: HER-2, CD4, CD8, CD19, LY6G, CD56, CD68, CD11b, and EpCam expression in CRC tissues [...] Read more.
Background: This study aimed to investigate the effect of increased HER-2 expression on tumor-infiltrating lymphocytes (TILs) and determine its impact on the prognosis of colorectal cancer (CRC) patients; Methods: HER-2, CD4, CD8, CD19, LY6G, CD56, CD68, CD11b, and EpCam expression in CRC tissues and adjacent paracancerous tissues were assessed using multiplex fluorescence immunohistochemical staining. The correlation between HER-2 expression and the number of TILs in CRC tissues was analyzed. Kaplan–Meier and Cox proportional hazards models were used to analyze survival outcomes; Results: The expression of HER-2 in tumor tissues was higher than that in paracancerous tissues (1.31 ± 0.45 vs. 0.86 ± 0.20, p < 0.05). Additionally, there was an increase in the numbers of CD4+, CD8+, CD19+, and CD68+ cells in CRC tissues (14.11 ± 1.10 vs. 3.40 ± 0.18, p < 0.005; 0.16 ± 0.12 vs. 0.04 ± 0.04, p < 0.005; 0.71 ± 0.46 vs. 0.25 ± 0.13, p < 0.0005; 0.27 ± 0.24 vs. 0.03 ± 0.11, p < 0.05). An increase in HER-2 expression was positively correlated with an increase in CD4, CD8, and CD19 (p < 0.0001). In HER-2-positive CRC tissues, CD68 expression was increased (0.80 ± 0.55 vs. 0.25 ± 0.22, p < 0.05). In HER-2-upregulated CRC tissues, CD4, CD8, CD19, CD68, CD11b, Ly6G, and CD56 expressions were elevated (0.70 ± 0.37 vs. 0.32 ± 0.17, p = 0.03; 0.22 ± 0.13 vs. 0.09 ± 0.06, p = 0.03; 0.31 ± 0.19 vs. 0.12 ± 0.08, p = 0.02; 1.05 ± 0.62 vs. 0.43 ± 0.21, p < 0.01; 1.34 ± 0.81 vs. 0.53 ± 0.23, p < 0.01; 0.50 ± 0.31 vs. 0.19 ± 0.10, p < 0.01; 1.26 ± 0.74 vs. 0.52 ± 0.24, p < 0.01). Furthermore, increased HER-2 expression was an independent risk factor for recurrence-free survival (RFS) in patients (p < 0.01, HR = 3.421); Conclusions: The increased expression of HER-2 and its relationship with immune cells will provide new insights for immunotherapy in CRC patients. Full article
(This article belongs to the Special Issue Biomedicines: 10th Anniversary)
Show Figures

Graphical abstract

Back to TopTop