Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (814)

Search Parameters:
Keywords = CO2 cured

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 631 KB  
Article
The Nrf2 Inhibitor Brusatol Promotes Human Osteosarcoma (MG63) Growth and Blocks EB1089-Induced Differentiation
by Emily Stephens, Alexander Greenhough and Jason P. Mansell
Int. J. Mol. Sci. 2025, 26(19), 9675; https://doi.org/10.3390/ijms26199675 - 3 Oct 2025
Abstract
Survival rates for those with metastatic osteosarcoma (OS) have not improved over the last four decades. It is imperative that novel approaches to treating and curing OS be sought. We, therefore, turned our attention to Brusatol (Bru), a naturally occurring Nrf2 inhibitor reported [...] Read more.
Survival rates for those with metastatic osteosarcoma (OS) have not improved over the last four decades. It is imperative that novel approaches to treating and curing OS be sought. We, therefore, turned our attention to Brusatol (Bru), a naturally occurring Nrf2 inhibitor reported to elicit anti-cancer effects in a multitude of tumour models. Importantly there is emerging evidence that Nrf2 is implicated in chemoradiotherapy resistance in OS and that inhibiting Nrf2 may represent a desirable route to treating OS. Surprisingly, using the human OS cell line, MG63, we actually found that Bru promoted cell growth. Compared to control, normoxic cultures, the application of Bru (50 nM) over 3 days led to an increase in cell number by approximately 1.7-fold. A similar outcome occurred for cells under hypoxic conditions, although the extent of cell growth was significantly less at around 1.3-fold. Furthermore, Bru prevented MG63 differentiation in response to co-treatment with the calcitriol analogue, EB1089, and the lipid growth factor, lysophosphatidic acid. The extent of inhibition was profound at approximately 2.8-fold. The application of the Nrf2 activator, dimethyl fumarate, did not rescue these phenotypes. Whilst Bru has shown promise in other cancer models, it would appear, from our findings, that this agent may not be suitable for the treatment of OS. Full article
(This article belongs to the Section Molecular Oncology)
24 pages, 4210 KB  
Article
Influence of Mineral Fillers on the Curing Process and Thermal Degradation of Polyethylene Glycol Maleate–Acrylic Acid-Based Systems
by Gulsym Burkeyeva, Anna Kovaleva, Danagul Muslimova, David Havlicek, Abylaikhan Bolatbay, Yelena Minayeva, Aiman Omasheva, Elmira Zhakupbekova and Margarita Nurmaganbetova
Polymers 2025, 17(19), 2675; https://doi.org/10.3390/polym17192675 - 3 Oct 2025
Abstract
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at [...] Read more.
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at 20 °C can be described by the modified Kamal autocatalytic model; the critical degree of conversion (αc) decreases with increasing content of the unsaturated polyester pEGM and in the presence of fillers. In particular, for unfilled systems, αc was 0.77 for pEGM45 and 0.60 for pEGM60. TGA results demonstrated that higher pEGM content and the incorporation of fillers lead to increased thermal stability and residual mass, along with a reduction in the maximum decomposition rate (dTGₘₐₓ). Calculations using the Kissinger–Akahira–Sunose and Friedman methods also confirmed an increase in the activation energy of thermal degradation (Ea): EKAS was 419 kJ/mol for pEGM45 and 470 kJ/mol for pEGM60, with the highest values observed for pEGM60 systems with fillers (496 kJ/mol for SiO2 and 514 kJ/mol for CaCO3). Rheological studies employing three-interval thixotropy tests revealed the onset of thixotropic behavior upon filler addition and an increase in structure recovery after deformation of up to 56%. These findings underscore the potential of pEGM-based systems for low-temperature curing and for the design of composite materials with improved thermal resistance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 3975 KB  
Article
Accelerated Carbonation for Improving Mechanical Performance of Sustainable Fiber-Cements Containing Lime Sludge
by Rudicler Pereira Ramos, Felipe Vahl Ribeiro, Cristian da Conceição Gomes, Thamires Alves da Silveira, Arthur Behenck Aramburu, Neftali Lenin Villarreal Carreno, Angela Azevedo de Azevedo and Rafael de Avila Delucis
Appl. Mech. 2025, 6(4), 73; https://doi.org/10.3390/applmech6040073 - 30 Sep 2025
Abstract
The combined effects of accelerated carbonation and lime sludge incorporation on the mechanical and durability performance of fiber-cement composites were assessed in this study. Lime sludge was used to replace 0%, 10%, and 20% of the cement in the composites, which were then [...] Read more.
The combined effects of accelerated carbonation and lime sludge incorporation on the mechanical and durability performance of fiber-cement composites were assessed in this study. Lime sludge was used to replace 0%, 10%, and 20% of the cement in the composites, which were then autoclave-cured and carbonated more quickly for two or eight hours. With LS20-C8 (20% lime sludge, 8 h carbonation) achieving the highest carbonation efficiency (74.0%), X-ray diffraction (XRD) verified the gradual conversion of portlandite into well-crystallized calcium carbonate (CaCO3). In terms of mechanical performance, LS20-C8 outperformed the control by increasing toughness by 16.7%, flexural strength by 14.2%, compressive strength by 14.6%, and compressive modulus by 20.3%. The properties of LS20-C8 were better preserved after aging under wetting-drying cycles, as evidenced by lower losses of toughness (10.0%) and compressive strength (10.1%) compared to the control (14.6% and 18.3%, respectively). The mechanical improvements were explained by optical microscopy, which showed decreased porosity and an enhanced fiber–matrix interface. Overall, the findings show that adding lime sludge to accelerated carbonation improves durability, toughness, strength, and stiffness while decreasing porosity. This method helps to value industrial byproducts and is a sustainable and efficient way to create long-lasting fiber-cement composites. Full article
Show Figures

Figure 1

16 pages, 3709 KB  
Article
The Influence of the Photoinitiating System on Residual Monomer Contents and Photopolymerization Rate of a Model Pigmented UV/LED Nail Gel Formulation
by Paulina Bednarczyk and Kamil Rożniakowski
Coatings 2025, 15(10), 1125; https://doi.org/10.3390/coatings15101125 - 28 Sep 2025
Abstract
This study investigates the influence of photoinitiating systems on the degree of methacrylate group conversion and the rate of polymerization in UV/LED-curable nail gel formulations. Camphorquinone and Eosin Y, commonly used in medical and dental applications, were evaluated in bimolecular systems with onium [...] Read more.
This study investigates the influence of photoinitiating systems on the degree of methacrylate group conversion and the rate of polymerization in UV/LED-curable nail gel formulations. Camphorquinone and Eosin Y, commonly used in medical and dental applications, were evaluated in bimolecular systems with onium and iodonium salts, thiols, and amines as co-initiators. Real-time FT-IR spectroscopy was employed to monitor polymerization under dual-LED irradiation (365 nm and 405 nm). The results demonstrate that the tested systems, inspired by photocurable medical products, exhibit significant potential for application in highly pigmented nail gels, achieving efficient curing with low residual monomer content. Full article
(This article belongs to the Special Issue Advances in Polymer Composites, Coatings and Adhesive Materials)
Show Figures

Figure 1

20 pages, 5226 KB  
Article
Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry
by Ricardo Acosta Ortiz, Alan Isaac Hernández Jiménez, José de Jesús Ku Herrera, Roberto Yañez Macías and Aida Esmeralda García Valdez
Polymers 2025, 17(19), 2594; https://doi.org/10.3390/polym17192594 - 25 Sep 2025
Abstract
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol [...] Read more.
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), and 4,4′-methylenebis(N,N-diallylaniline) (ACA4). This unique combination enables the simultaneous activation of four polymerization mechanisms: radical photopolymerization, thiol-ene coupling, thiol-Michael addition, and anionic ring-opening, within a single resin matrix. A key innovation lies in the exothermic nature of DADS photopolymerization, which initiates and sustains ETES curing at room temperature, enabling 3D printing without thermal assistance. This represents a significant advancement over conventional systems that require elevated temperatures or post-curing steps. The resulting hybrid poly(acrylate–co-ether–co-thioether) network exhibits enhanced mechanical integrity, shape memory behavior, and intrinsic self-healing capabilities. Dynamic Mechanical Analysis revealed a shape fixity and recovery of 93%, while self-healing tests demonstrated a 94% recovery of viscoelastic properties, as evidenced by near-overlapping storage modulus curves compared to a reference sample. This integrated approach broadens the design space for multifunctional photopolymers and establishes a versatile platform for advanced applications in soft robotics, biomedical devices, and sustainable manufacturing. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

19 pages, 12868 KB  
Article
Terpene-Derived Bioelastomers for Advanced Vulcanized Rubbers and High-Impact Acrylonitrile–Butadiene–Styrene
by Ilse Magaña, José Luis González Zapata, Hened Saade, Teresa Córdova, Adali Castañeda Facio, José Alejandro Díaz Elizondo, Luis Valencia, Héctor Ricardo López-González and Ramón Díaz de León
Processes 2025, 13(10), 3052; https://doi.org/10.3390/pr13103052 - 24 Sep 2025
Viewed by 11
Abstract
The increasing demand for sustainable materials has propelled the development of bio-based elastomers derived from renewable terpenes. This study presents the synthesis of high-cis poly(butadiene-co-terpene) copolymers using coordination chain transfer polymerization with neodymium-based catalysts, enabling precise control of molecular weight [...] Read more.
The increasing demand for sustainable materials has propelled the development of bio-based elastomers derived from renewable terpenes. This study presents the synthesis of high-cis poly(butadiene-co-terpene) copolymers using coordination chain transfer polymerization with neodymium-based catalysts, enabling precise control of molecular weight and microstructure. Two terpene monomers, β-myrcene and trans-β-farnesene, were incorporated up to 45 wt% without compromising the elastomeric 1,4-cis polybutadiene segments. The copolymers were evaluated as impact modifiers in acrylonitrile–butadiene–styrene (ABS) and as vulcanizable rubber formulations. ABS containing bio-based copolymers exhibited distinct rubber morphologies, including elongated and rod-like particles with average particle diameters greater than 1042 nm and rubber phase volume fraction values ≥ 0.49, resulting in improved impact resistance exceeding 580 J/m and elongation at break higher than 12%. Vulcanized rubbers incorporating terpene segments displayed tunable curing kinetics, mechanical properties, and dynamic mechanical behavior, with notable increases in elongation (up to ~520%) and elasticity attributed to lower crosslink density (<1.20 × 10−4 mol/mL). Additionally, its energy dissipation capacity has been enhanced compared to the high-cis polybutadiene. These findings highlight the potential of terpene-derived bioelastomers as sustainable alternatives to fossil-based rubbers, offering comparable or enhanced performance for engineering polymer applications. The study underscores important structure–property relationships, providing a foundation for further optimization toward industrial adoption. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 1245 KB  
Article
Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain
by Phimthong Khamjapo, Lucas Vinicius Santini Ceneviva, Yusuke Nakata, Yuki Miyahara and Takeharu Tsuge
Polymers 2025, 17(18), 2561; https://doi.org/10.3390/polym17182561 - 22 Sep 2025
Viewed by 229
Abstract
This study aimed to evaluate the physical properties and biodegradability of sulfur-vulcanized polyhydroxyalkanoates (PHAs) with unsaturated side chains. As a vulcanizable PHA, poly(3-hydroxybutyrate-co-3-hydroxy-5-hexenoate) [P(3HB-co-3H5HE)] was biosynthesized with a 3H5HE fraction of 3–47 mol% using recombinant Escherichia coli and subsequently [...] Read more.
This study aimed to evaluate the physical properties and biodegradability of sulfur-vulcanized polyhydroxyalkanoates (PHAs) with unsaturated side chains. As a vulcanizable PHA, poly(3-hydroxybutyrate-co-3-hydroxy-5-hexenoate) [P(3HB-co-3H5HE)] was biosynthesized with a 3H5HE fraction of 3–47 mol% using recombinant Escherichia coli and subsequently vulcanized with varying sulfur contents (2–20 per hundred resin, phr) in the presence of zinc oxide, stearic acid, and 2-mercaptobenzothiazole as curing agents. The vulcanized PHA copolymers were insoluble in chloroform, indicating the formation of a cross-linked network. Raman spectroscopy revealed the functional loss of the double bonds in the polymers. After the vulcanization with 5 phr sulfur, the tensile strength and elongation at break of P(3HB-co-47 mol% 3H5HE) increased from 0.6 MPa to 6.3 MPa and from 430% to 813%, respectively. This sample exhibited low tensile set (8%) after 200% elongation, indicating rubber-like properties. Although biodegradability decreased with increasing crosslink density, vulcanized P(3HB-co-3H5HE) exhibited a greater degradation potential than vulcanized rubber but was lower than that of non-vulcanized P(3HB-co-3H5HE). These findings demonstrate that sulfur vulcanization can enhance the resilience of unsaturated PHAs, making them suitable for elastomeric and environmental applications. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Figure 1

29 pages, 10965 KB  
Article
Influence of Hydration and Natural Carbonation Evolution on the Gas Permeability and Microstructure of Blended Cement Pastes
by Tomasz Tracz, Tomasz Zdeb, Krzysztof Witkowski and Daniel Szkotak
Materials 2025, 18(18), 4416; https://doi.org/10.3390/ma18184416 - 22 Sep 2025
Viewed by 231
Abstract
The high density of the internal structure of new-generation cementitious composites, such as high-performance and ultra-high-performance concretes, necessitates the use of advanced methods for evaluating their transport properties, particularly those employing a gaseous medium. The developed gas permeability method for cement pastes, based [...] Read more.
The high density of the internal structure of new-generation cementitious composites, such as high-performance and ultra-high-performance concretes, necessitates the use of advanced methods for evaluating their transport properties, particularly those employing a gaseous medium. The developed gas permeability method for cement pastes, based on a modified RILEM-Cembureau approach, has proven to be highly accurate, reliable, and extremely sensitive to changes in the porosity characteristics of such composites. The article contains the results of a study of the mass transport capabilities of blended cement pastes, characterised by variable water–cement ratios. Two types of cements were used in the study: with the addition of fly ash and blast furnace slag. Ordinary Portland cement was used as the reference binder. The tests were conducted after long-term curing under natural conditions, i.e., after 90 days and 2 years. The assessment of open porosity was carried out through three techniques: helium pycnometry, mercury intrusion porosimetry, and water saturation. Permeability, on the other hand, was measured using a customized approach tailored for uniform paste materials. Microstructural changes were also analysed in the context of natural hydration carbonation progress. The results presented allowed a quantitative description of the effects of the w/c ratio, the presence of additives, and the progress of hydration and carbonation on the porosity of pastes and their permeability to gas flow. The two-year curing period of the pastes exposed to natural CO2 resulted in a reduction of the permeability coefficient k ranging from 11% to 74%, depending on the type of cement and the water-to-cement (w/c) ratio. This decrease was caused by the continued progress of hydration and simultaneous carbonation. The results of the research presented are of interest from both an engineering and scientific point of view in the context of long-term microstructural changes and the mass transport abilities of cement pastes associated with these processes. The extensive range of materials compositions investigated makes it possible to analyse the durability and tightness of many cementitious composites over long periods of service. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 3315 KB  
Article
Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications
by Jin-Su Kim, Jun-Pil Hwang, Chang-Hong Lee and Jang-Ho Jay Kim
Materials 2025, 18(18), 4315; https://doi.org/10.3390/ma18184315 - 15 Sep 2025
Viewed by 347
Abstract
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. [...] Read more.
The global generation of industrial waste is increasing rapidly, with much of it either landfilled or discharged into marine environments, resulting in severe environmental pollution. To address this issue, extensive research has been conducted on utilizing waste materials as partial replacements for cement. Although concrete incorporating industrial by-products offers environmental advantages—such as reducing pollution and lowering CO2 emissions—its application has been limited by poor early-age performance. In South Korea, the annual production of ferronickel slag (FNS) now exceeds 2,000,000 tons, yet its usage remains minimal. To improve this early-age performance, researchers have applied steam curing (SC), a method widely used in precast concrete, which can enhance the utilization of FNS-containing concrete. Some studies have individually evaluated the mechanical or microstructural properties of SC effects, but the combined effects of FNS and SC replacement in precast concrete have rarely been addressed. This study applied SC, a method widely used in precast concrete production, to improve the performance of FNS concrete and conducted a comprehensive evaluation to promote its practical application. For this purpose, ordinary Portland cement (OPC) was partially replaced with FNS at rates of 10%, 20%, and 30%. To assess the effects, tests were conducted on hydration heat, SEM, and XRD, along with evaluations of compressive and splitting tensile strength. Results identified 20% as the optimal replacement ratio. At this ratio, chloride penetration resistance and freeze–thaw durability were also assessed. Furthermore, FNS concrete was evaluated under both natural curing (NC, 28 days) and SC conditions to simulate precast production. Under NC, mechanical properties declined as the FNS content increased, whereas under SC, the performance of the 20% replacement mixture was comparable to that of the control. In addition, the chloride diffusion coefficient and freeze–thaw resistance were improved by 11% and 2%, respectively, under SC compared to NC. This study evaluated the feasibility of FNS-containing concrete, and further studies should be conducted to investigate the structural performance of FNS-containing reinforced concrete via methods such as flexural, shear, splicing, and debonding experiments. Full article
Show Figures

Figure 1

10 pages, 2348 KB  
Article
Valorization of Glass Fiber Waste (VCAS) as a Precursor in Alkali-Activated Systems Cured at Room Temperature–Influence of SiO2/Na2O Molar Ratio
by Mauro Mitsuuchi Tashima, Lourdes Soriano, Ester Gimenez-Carbo, José Monzó, María Victoria Borrachero and Jordi Payá
Materials 2025, 18(18), 4260; https://doi.org/10.3390/ma18184260 - 11 Sep 2025
Viewed by 287
Abstract
Alkali-activated materials are a promising alternative for reducing CO2 emissions and raw materials consumption due to their capacity to reuse waste materials. In this study, glass fiber-derived waste (vitreous calcium aluminosilicate, VCAS) is used as a precursor in alkali-activated systems for long [...] Read more.
Alkali-activated materials are a promising alternative for reducing CO2 emissions and raw materials consumption due to their capacity to reuse waste materials. In this study, glass fiber-derived waste (vitreous calcium aluminosilicate, VCAS) is used as a precursor in alkali-activated systems for long curing age at room temperature. Here, the influence of SiO2/Na2O molar ratio on the mechanical, mineralogical, and microstructural properties is assessed. The XRD pattern, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) studies demonstrated the evolution of microstructure even after 28 curing days yielding a dense-compact microstructure, and according to the compressive strength results in mortars, about 100 MPa in compression was achieved after 360 curing days for 0.48 and 0.55 SiO2/Na2O molar ratio, confirming the stability of this system at room temperature. Full article
Show Figures

Figure 1

34 pages, 15017 KB  
Article
Alkali-Activated Stabilization of Silt Soil Using Garlic Husk Ash: Mechanical, Microstructural, and Durability Performance
by Mehmet Ugur Yılmazoglu
Appl. Sci. 2025, 15(18), 9944; https://doi.org/10.3390/app15189944 - 11 Sep 2025
Viewed by 337
Abstract
This study aims to evaluate the usability of agricultural wastes such as rice husk ash (RHA) and garlic husk ash (GHA) in improving silt soils by the alkali activation method. During the stabilization process, samples prepared with binder systems containing sodium hydroxide (SH) [...] Read more.
This study aims to evaluate the usability of agricultural wastes such as rice husk ash (RHA) and garlic husk ash (GHA) in improving silt soils by the alkali activation method. During the stabilization process, samples prepared with binder systems containing sodium hydroxide (SH) and sodium silicate (SS) at different SH/SS ratios (1, 3, and 9) and additive rates (0%, 4.5%, and 9%) were cured in two different curing environments (cured at ambient temperature—AC and cured in oven at 35 °C—OC) for 7, 28, 56, and 90 days. Mechanical behavior was evaluated by unconfined compressive strength (UCS) and unconsolidated-undrained triaxial compression (UU) tests; environmental strength was analyzed by 25 and 50 cycles of freeze–thaw (F–T) tests. Microstructure development was investigated by SEM and XRD analyses, while sustainability assessment was carried out with carbon footprint (kg·CO2/kg) and carbon efficiency (CI) parameters. The findings showed that mixtures containing 9% RHA and a high SH/SS ratio provided high strength in both AC and OC environments. While using GHA alone provided limited mechanical performance, it increased the binding capacity by creating a synergistic effect when used with RHA. Oven-curing environment increased the speed of pozzolanic reactions and the development of the binder phase, resulting in denser microstructures. In addition, the RHA additive played a critical role in maintaining the resistance against freeze–thaw cycles. Carbon emission analyses revealed that SH and SS had high carbon loads, while RHA and GHA additives provided environmentally sustainable solutions with low carbon footprint and high strength. As a result, alkaline activation systems with RHA and GHA additives offer a strong alternative for sustainable soil improvement applications with high strength and environmental durability. Full article
(This article belongs to the Special Issue Emerging Technologies of Sustainable Building Materials)
Show Figures

Figure 1

20 pages, 8748 KB  
Article
Effect of Basalt Fibers on the Performance of CO2-Cured Recycled Aggregate Concrete Composite Slab–Column Assemblies with Bolted Connections Under NaCl Erosion
by Di Wang, Yuanfeng Wu, Zhiqiang Xu, Na Xu, Chuanqi Li, Xu Tian, Feiting Shi and Hui Wang
Coatings 2025, 15(9), 1053; https://doi.org/10.3390/coatings15091053 - 8 Sep 2025
Viewed by 567
Abstract
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss [...] Read more.
Basalt fibers possess high tensile strength and excellent corrosion resistance, properties that may enhance the chloride resistance of recycled aggregate concrete (RAC) structures. Nevertheless, the effects of basalt fibers on RAC structures under chloride attack remain poorly understood. This study investigates mass loss and the deterioration of key mechanical properties in basalt fiber-reinforced RAC composite slab–column assemblies (RAC composite assemblies) subjected to NaCl freeze–thaw cycles (F-Cs) and dry–wet alternations (D-As) and further explores the damage mechanisms of the concrete matrix through microscopic characterization. The results show that, compared with NaCl F-Cs, NaCl D-As have a more pronounced impact on the performance degradation of RAC composite slab–column assemblies. Moreover, basalt fibers effectively mitigate the deterioration of RAC composite assemblies in chloride-rich environments, particularly under NaCl D-As, where their protective effect is more evident. At 2.5 vol% fiber content, impact toughness peaked at an 83.7% improvement after 30 D-As, while flexural toughness showed a maximum enhancement of 773.6% after 100 F-Cs. Scanning electron microscopy energy-dispersive spectroscopy (SEM-EDS) analysis revealed a marked increase in Cl content within RAC, with NaCl D-As causing more severe erosion than NaCl F-Cs. Additionally, basalt fibers significantly inhibited chloride ion penetration and associated erosion in RAC. These findings provide valuable insights into utilizing basalt fibers to enhance the durability of RAC in coastal infrastructure exposed to chloride attacks. Further research on long-term performance and fiber parameter optimization is needed to support practical implementation. Full article
Show Figures

Figure 1

24 pages, 2397 KB  
Article
Carbonation Treatments for Durable Low-Carbon Recycled Aggregate Concrete
by Ruth Saavedra and Miren Etxeberria
Materials 2025, 18(17), 4168; https://doi.org/10.3390/ma18174168 - 5 Sep 2025
Viewed by 822
Abstract
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This [...] Read more.
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This study analyses the impact of carbonated recycled aggregates and CO2 curing on improving the properties of commercial structural self-compacting concrete. Recycled aggregate concretes (RACs) were produced using 50% and 60% coarse recycled concrete aggregate (RCA), in carbonated and uncarbonated forms, and two types of cement—ordinary Portland cement (CEM I) and CEM II/B-M Portland composite cement containing 24% less clinker than CEM I—all with similar compressive strengths. After evaluating the CO2 curing process, the physical, mechanical, shrinkage, and durability properties (including suction and carbonation resistance) of the concretes were assessed. The properties of the RACs were compared with those achieved by conventional concrete, to generate insights for developing a highly sustainable concrete manufacturing process. Taking all the assessed properties into account, the CO2 curing process improved concrete’s properties. In addition, RAC-C50-I concrete (using CEM I with carbonated RCA) and RAC50-II (using CEM IIB and uncarbonated RCA) exhibited the greatest durability, resulting in reductions in sorptivity values of 40% and 45%, and decreases in the carbonation coefficient of 16% and 21%, respectively, compared to concrete without CO2 curing. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

13 pages, 3105 KB  
Article
Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments
by Keiji Houjou, Haruhisa Akiyama and Kazumasa Shimamoto
Materials 2025, 18(17), 4166; https://doi.org/10.3390/ma18174166 - 5 Sep 2025
Viewed by 664
Abstract
In this study, specimens cured with an epoxy adhesive were subjected to fatigue tests, which were conducted under air and water atmospheres at room temperature, because few studies have been conducted on the deformation behavior versus time (number of cycles) of the combined [...] Read more.
In this study, specimens cured with an epoxy adhesive were subjected to fatigue tests, which were conducted under air and water atmospheres at room temperature, because few studies have been conducted on the deformation behavior versus time (number of cycles) of the combined degradation due to moisture and cyclic stress. The epoxy adhesive was cured into plates and then cut into dumbbell-shaped specimens. Micro surface cracks were introduced into the specimen surfaces. The fatigue limit of smooth specimens without cracks in water improved compared to that in air. However, when a pre-crack was introduced at the specimen surface, all specimens fractured from the crack in water and showed the same strength as in air. Fracture toughness showed no significant difference in values between the fatigue tests in air and water. The loss factor, compliance, and creep deformation increased significantly in the fatigue tests in water compared to those for the tests in air. The specimens after testing showed that the C=O peak intensity was the same for immersion in water, fatigue in water, and fatigue in air. Therefore, no change in the chemical structure occurred during any of the loading tests. Full article
Show Figures

Figure 1

20 pages, 690 KB  
Case Report
B-Cell Acute Lymphoblastic Leukemia in a Child with Down Syndrome and High-Risk Genomic Lesions
by Cristina-Crenguţa Albu, Florin Bica, Laura Nan, Lucia Bubulac, Claudia Florina Bogdan-Andreescu, Ionuţ Vlad Şerbanică, Cristian-Viorel Poalelungi, Emin Cadar, Andreea-Mariana Bănățeanu and Alexandru Burcea
Curr. Issues Mol. Biol. 2025, 47(9), 704; https://doi.org/10.3390/cimb47090704 - 1 Sep 2025
Viewed by 473
Abstract
Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, with cure rates exceeding 80% due to advancements in treatment protocols and supportive care. However, in children with Down syndrome (DS), ALL (DS-ALL) presents distinct genomic and clinical challenges. These include mutations [...] Read more.
Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, with cure rates exceeding 80% due to advancements in treatment protocols and supportive care. However, in children with Down syndrome (DS), ALL (DS-ALL) presents distinct genomic and clinical challenges. These include mutations in Janus kinase 2 (JAK2), neuroblastoma RAS viral oncogene homolog (NRAS), and E1A-binding protein p300 (EP300), as well as cytokine receptor-like factor 2 (CRLF2) rearrangements—such as P2RY8-CRLF2 fusion—and intrachromosomal amplification of chromosome 21 (iAMP21). These aberrations are associated with poor prognosis and increased risk of relapse. The objective of this study was to present a unique DS-ALL case with five concurrent high-risk genomic lesions and to contextualize its management in light of existing literature, emphasizing minimal residual disease (MRD)-guided therapy and supportive care. Case Report and Results: We present the case of a three-year-old boy with DS and B-cell ALL (B-ALL), in whom multiple high-risk genomic features co-occurred. Despite these adverse prognostic markers, the patient achieved complete remission following an intensive high-dose induction protocol. We also discuss therapeutic strategies that aim at balancing individualized treatment approaches with optimized supportive care to reduce toxicity and minimize relapse risk. Conclusions: This case underlines the importance of comprehensive molecular diagnostics, serial MRD monitoring, and personalized multidisciplinary care in DS-ALL. Full article
(This article belongs to the Special Issue Early Molecular Diagnosis and Comprehensive Treatment of Tumors)
Show Figures

Figure 1

Back to TopTop