Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,713)

Search Parameters:
Keywords = CXCL8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 9253 KB  
Review
The Path Towards Effective Long-Lasting Tissue-Targeted Prime/Pull/Keep Herpes Simplex Therapeutic Vaccines
by Afshana Quadiri, Yassir Lekbach, Elhoucine Elfatimi, Swayam Prakash, Hawa Vahed, Sweta Karan, Azizur Rehman, Sarah Xue Le Ng, Chhaya Maurya, Reilly Chow and Lbachir BenMohamed
Vaccines 2025, 13(9), 908; https://doi.org/10.3390/vaccines13090908 (registering DOI) - 27 Aug 2025
Abstract
The development of vaccines against many infectious diseases has been a great success of medical science over the last century. However, despite numerous efforts, effective vaccines for herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) remain elusive. Since 1920s, a range [...] Read more.
The development of vaccines against many infectious diseases has been a great success of medical science over the last century. However, despite numerous efforts, effective vaccines for herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) remain elusive. Since 1920s, a range of therapeutic vaccine candidates, primarily focusing on neutralizing antibodies, have failed to confer robust and durable protective immunity against recurrent herpes. Recent advances in omics, artificial intelligence, and deep learning have opened new horizons for the rational design of tissue-targeted herpes vaccine strategies for inducing potent and durable HSV-specific CD4+ and CD8+ TRM cell immunity at both the sensory ganglia (central immunity), the site of latency/reactivation cycle, and the mucocutaneous epithelial tissues (peripheral immunity), the site of viral replication that causes herpetic lesions. Prime/Pull/Keep ocular and genital herpes vaccine candidates (PPK vaccines) have recently shown success in pre-clinical animal model trials of recurrent ocular and genital herpes. These PPK vaccines used “asymptomatic” epitopes/antigens to prime CD4+ and CD8+ T cells (Prime); primed T cells are then pulled towards the infected central and peripheral epithelial tissues using T cell-attracting chemokines, such as CXCL11 (Pull), followed by survival cytokines (IL-2, IL-7 and/or IL-15) or mucosal chemokines (CXCL17 and/or CCL28) to maintain the “pulled” tissue-resident T cells longer within infected tissues (Keep). We discuss recent efforts in designing a clinically adapted, all-in-one PPK mucosal therapeutic vaccine that would require a single administration to sequentially trigger all three PPK steps of priming, recruiting, and maintaining antiviral, tissue-resident, protective T cells at the primary sites of viral entry and latency. Full article
(This article belongs to the Special Issue Herpes Simplex Virus Infection, Immunity, and Vaccine Development)
Show Figures

Figure 1

23 pages, 12278 KB  
Article
Angiogenesis-Related Genes Predict Outcomes and Immune Traits in Skin Melanoma
by Latchezara Vladova, Ilias Georgakopoulos-Soares and Apostolos Zaravinos
Int. J. Mol. Sci. 2025, 26(17), 8254; https://doi.org/10.3390/ijms26178254 - 26 Aug 2025
Abstract
The interplay between angiogenesis and the immune system is intricate, with the potential to either enhance or repress the immune response. Angiogenesis-related genes (ARGs) are significant for the development, growth, and immune response of tumors. Understanding their prognostic significance and molecular characteristics in [...] Read more.
The interplay between angiogenesis and the immune system is intricate, with the potential to either enhance or repress the immune response. Angiogenesis-related genes (ARGs) are significant for the development, growth, and immune response of tumors. Understanding their prognostic significance and molecular characteristics in skin melanoma can guide and refine therapeutic strategies. Here, we analyzed the TCGA-SKCM dataset and explored the ARG expression between skin melanoma and normal skin, as well as between primary and metastatic tumors. Kaplan–Meier analyses were conducted to assess the overall, disease-specific, and progression-free survival. Additionally, comprehensive immune profiling was carried out utilizing advanced bioinformatics tools to evaluate immune checkpoint gene expression and immune cell infiltration. Our findings highlighted strong prognostic associations for S100A4, ITGAV, and COL3A1. Molecular characterization showed a significant upregulation of PTK2, CXCL6, COL3A1, COL5A2, PF4, TNFRSF21, LRPAP1, VTN, TIMP1, SPP1, and OLR1 in SKCM compared to that in normal skin. Immune analyses, including Immune Checkpoint Gene Analysis, Immune Infiltration Analysis, Immune Cell Analysis, and Immune Cell Profiling, demonstrated both positive and negative correlations between ARGs expression and immune cell infiltration, emphasizing the multifaceted role of these genes in immune modulation. The study underscores the prognostic relevance of ARGs in skin melanoma and their contribution to tumor immunity. Overall, our findings expand our understanding of melanoma immunogenetics, suggesting the use of angiogenesis-related genes not merely as vascular regulators, but also as immune modulators. Full article
(This article belongs to the Special Issue Melanoma: Molecular Mechanisms and Therapy)
Show Figures

Figure 1

13 pages, 803 KB  
Communication
Sex-Specific Differences in Adipose IRF5 Expression and Its Association with Inflammation and Insulin Resistance in Obesity
by Shihab Kochumon, Noelle Benobaid, Ashraf Al Madhoun, Shaima Albeloushi, Nourah Almansour, Fatema Al-Rashed, Sardar Sindhu, Fahd Al-Mulla and Rasheed Ahmad
Int. J. Mol. Sci. 2025, 26(17), 8229; https://doi.org/10.3390/ijms26178229 - 25 Aug 2025
Viewed by 94
Abstract
Interferon regulatory factor 5 (IRF5) plays a pivotal role in innate immune responses and macrophage polarization. Although its role in obesity-associated inflammation has been described, sex-specific differences in adipose IRF5 expression and its association with immune and metabolic markers remain poorly defined. To [...] Read more.
Interferon regulatory factor 5 (IRF5) plays a pivotal role in innate immune responses and macrophage polarization. Although its role in obesity-associated inflammation has been described, sex-specific differences in adipose IRF5 expression and its association with immune and metabolic markers remain poorly defined. To evaluate sex-specific associations between adipose tissue (AT) IRF5 expression and key inflammatory and metabolic markers in overweight and obese individuals. Subcutaneous AT samples from overweight/obese male and female subjects were analyzed for IRF5 expression using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Correlation and multiple linear regression analyses were performed to identify its associations with inflammatory gene expression and metabolic parameters including insulin, glucose, HOMA-IR, and adipokines. RF5 gene and protein levels were significantly elevated in the AT of overweight/obese females compared to males (p < 0.0001), with expression increasing progressively with BMI in females but not in males. Despite these sex-dependent expression levels, IRF5 demonstrated consistent, sex-independent positive correlations with several core immune and inflammatory markers, including CCR5, CD11c, CD16, CD163, FOXP3, RUNX1, and MyD88. However, distinct sex-specific patterns emerged: in males, IRF5 correlated positively with classical pro-inflammatory markers such as IL-2, IL-6, IL-8, TNF-α, and IRAK1; whereas in females, IRF5 was associated with a broader array of immune markers, including chemokines (CCL7, CXCL11), pattern recognition receptors (TLR2, TLR8, TLR9), and macrophage markers (CD68, CD86), along with anti-inflammatory mediators such as IL-10 and IRF4. Notably, IRF5 expression in overweight/obese males, but not females, was significantly associated with metabolic dysfunction, showing positive correlations with fasting blood glucose, HbA1c, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) levels. Multiple regression analyses revealed sex-specific predictors of IRF5 expression, with metabolic (HOMA-IR) and inflammatory (IRAK1, MyD88) markers emerging in males, while immune-related genes (RUNX1, CD68, CCL7, MyD88) predominated in females. These findings underscore a sex-divergent role of IRF5 in AT, with implications for differential regulation of immune-metabolic pathways in obesity and its complications. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

27 pages, 5513 KB  
Article
Brucella-Induced Impairment of Decidualization and Its Impact on Trophoblast Function and Inflammatory Profile
by Lucía Zavattieri, Rosario Macchi, Andrea Mercedes Canellada, Matías Arturo Pibuel, Daniela Poodts, Mariana Cristina Ferrero and Pablo Cesar Baldi
Int. J. Mol. Sci. 2025, 26(17), 8189; https://doi.org/10.3390/ijms26178189 - 23 Aug 2025
Viewed by 177
Abstract
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to [...] Read more.
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to invade the decidua and to undergo tubulogenesis, critical for proper implantation and placental development, are normally promoted by decidual cells. We evaluated whether Brucella infection of human endometrial stromal cells (T-HESC cell line) affects their ability to decidualize and to promote trophoblast functions. Infection of T-HESC cells with either B. abortus, B. suis, or B. melitensis resulted in deficient decidualization (as revealed by reduced prolactin levels) and an increased production of proinflammatory chemokines (C-X-C motif chemokine ligand 8 -CXCL8- and C-C motif chemokine ligand 2 -CCL2-) as compared to uninfected cells subjected to decidualization stimuli. In addition, conditioned media (CM) from infected decidualized T-HESC induced an inflammatory response (CXCL8, CCL2 and interleukin-6 -IL-6) in human trophoblasts (Swan-71 cell line) but reduced their ability to produce progesterone. Trophoblasts preincubated with this CM also had reduced migration, invasion, and tubulogenesis capacities, and this impairment was mediated, at least in part, by CXCL8 and CCL2. Moreover, infection of decidual stromal cells impaired the adhesion and spreading of blastocyst-like spheroids formed by Swan-71 cells. Brucella infection also affected the chemotactic capacity of decidual stromal cells for trophoblasts. Overall, these results suggest that Brucella infection of endometrial stromal cells impairs key processes required for successful implantation and placental development. Full article
Show Figures

Graphical abstract

22 pages, 7786 KB  
Article
Exploring the In Vitro Mechanism of Action of β-Acetoxyisovalerylalkannin on Inflammatory Skin Diseases Using Network-Based Pharmacology and Non-Targeted Metabolomics
by Yinglan Ma, Xuehong Ma, Yue Ma, Liuqian Peng, Zixin Zhang, Jinyan Li, Lu Zhang and Jianguang Li
Pharmaceuticals 2025, 18(9), 1249; https://doi.org/10.3390/ph18091249 - 22 Aug 2025
Viewed by 200
Abstract
Objective: Lithospermum erythrorhizon has been extensively used for the clinical treatment of skin diseases, but its material basis and mechanism of action remain unclear. This study integrates network pharmacology, untargeted metabolomics, and in vitro experimental validation to elucidate the anti-inflammatory effects and underlying [...] Read more.
Objective: Lithospermum erythrorhizon has been extensively used for the clinical treatment of skin diseases, but its material basis and mechanism of action remain unclear. This study integrates network pharmacology, untargeted metabolomics, and in vitro experimental validation to elucidate the anti-inflammatory effects and underlying mechanisms of β-acetoxyisovalerylalkannin, a bioactive naphthoquinone compound isolated from Arnebiae Radix, using inflammatory skin disease models. Methods: Core targets for β-Acetoxyisovalerylalkannin and skin inflammation were identified via network pharmacology and validated through molecular docking. In vitro assays assessed β-Acetoxyisovalerylalkannin’s impact on keratinocyte proliferation, migration, apoptosis, and inflammatory factors (CXCL1, CXCL2, CXCL8, CCL20, IFN-γ, MCP-1, TNF-α, NF-κB). Non-targeted metabolomics identified differential metabolites and pathways. Results: Network pharmacology revealed 66 common targets significantly enriched in the MAPK/STAT3 signaling pathway. In vitro, β-Acetoxyisovalerylalkannin suppressed proliferative viability and hypermigration and induced apoptosis in HaCaTs. Moreover, it downregulated the mRNA levels of inflammatory markers (CXCL1, CXCL2, CXCL8, CCL20, IFN-γ, MCP-1, TNF-α, and NF-κB) by inhibiting the activation of the MAPK/STAT3 signaling pathway. Metabolomics identified 177 modified metabolites, associating them with the arginine/proline, glycine/serine/threonine, glutathione, and nitrogen metabolic pathways. Conclusions: β-Acetoxyisovalerylalkannin exerts protective effects against skin inflammation by reducing abnormal cell proliferation and inflammatory responses, promoting apoptosis, and effectively improving the metabolic abnormalities of HaCaTs. β-Acetoxyisovalerylalkannin is, therefore, a potential therapeutic option for mitigating skin inflammation-related damage. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 11776 KB  
Article
Transcriptomic Identification of Immune-Related Hubs as Candidate Predictor Biomarkers of Therapeutic Response in Psoriasis
by Elisabet Cantó, María Elena del Prado, Eva Vilarrasa, Anna López-Ferrer, Francisco Javier García Latasa de Araníbar, Maria Angels Ortiz, Marta Gut, Maria Mulet, Anna Esteve-Codina, Ruben Osuna-Gómez, Albert Guinart-Cuadra, Luís Puig and Silvia Vidal
Int. J. Mol. Sci. 2025, 26(17), 8118; https://doi.org/10.3390/ijms26178118 - 22 Aug 2025
Viewed by 152
Abstract
Psoriasis is a chronic inflammatory skin disease driven by genetic, environmental, and immune factors. While biologics like adalimumab (anti-TNFα) and risankizumab (anti-IL-23) have improved outcomes, patient response variability remains unclear. This study examined immune-related transcriptomic differences between lesional (L) and non-lesional (NL) psoriatic [...] Read more.
Psoriasis is a chronic inflammatory skin disease driven by genetic, environmental, and immune factors. While biologics like adalimumab (anti-TNFα) and risankizumab (anti-IL-23) have improved outcomes, patient response variability remains unclear. This study examined immune-related transcriptomic differences between lesional (L) and non-lesional (NL) psoriatic skin, focusing on immune-related hub genes, their plasma levels, and their correlations with severity and treatment response. Patients with moderate-to-severe psoriasis were enrolled before treatment with anti-TNFα (n = 16) or anti-IL-23 (n = 18). Plasma and paired L and NL skin biopsies were collected for RNA sequencing. Gene ontology enrichment analysis found four immune-related terms enriched in L skin: T-helper 17, granulocyte and lymphocyte chemotaxis, and antimicrobial humoral response. A protein–protein interaction network identified ten immune-related hub genes upregulated in L skin that correlated with clinical severity. Patients with prior treatments expressed distinctive gene profiles. Plasma levels of CCL20 strongly correlated with disease severity. Decision tree models identified CCL20 expression in skin and plasma levels of IL-6 and CXCL8 as candidate predictors for anti-TNFα response. Similarly, skin expression of CXCL8, IL-6, and CXCL10, alongside plasma levels of CCL20, IL-6, and CXCL8, may predict anti-IL-23 response. Ten immune-related hubs may serve as possible biomarkers for disease severity and therapeutic response in psoriasis. Full article
(This article belongs to the Special Issue New Breakthroughs in Molecular Diagnostic Tools for Human Diseases)
Show Figures

Figure 1

26 pages, 6772 KB  
Article
Adaptive and Pathological Changes of the Cardiac Muscle in a Mouse Model of Renocardiac Syndrome: The Role of Nestin-Positive Cells
by Polina A. Abramicheva, Ilya A. Sokolov, Arina A. Druzhinina, Daria M. Potashnikova, Nadezda V. Andrianova, Dmitry S. Semenovich, Vasily N. Manskikh, Ljubava D. Zorova, Elmira I. Yakupova, Ivan M. Vikhlyantsev, Olga S. Tarasova, Dmitry B. Zorov and Egor Y. Plotnikov
Int. J. Mol. Sci. 2025, 26(16), 8100; https://doi.org/10.3390/ijms26168100 - 21 Aug 2025
Viewed by 232
Abstract
Renocardiac syndrome type 4 (RCS4) is a common comorbid pathology, but the mechanisms of kidney dysfunction-induced cardiac remodeling and the involvement of cardiac progenitor cells (CPCs) in this process remain unclear. The aim of this study was to investigate the structural and functional [...] Read more.
Renocardiac syndrome type 4 (RCS4) is a common comorbid pathology, but the mechanisms of kidney dysfunction-induced cardiac remodeling and the involvement of cardiac progenitor cells (CPCs) in this process remain unclear. The aim of this study was to investigate the structural and functional changes in the cardiac muscle in RCS4 induced by unilateral ureteral obstruction (UUO) and the role of nestin+ CPCs in these. Heart function and localization of nestin+ cells in the myocardium were assessed using nestin-GFP transgenic mice subjected to UUO for 14 and 28 days. UUO resulted in cardiac hypertrophy, accompanied by an elongation of the QRS wave on the ECG, decreased expression of Cxcl1, Cxcl9, and Il1b, reduced the number of CD11b+ cells, and increased in titin isoform parameters, such as T1/MHC and TT/MHC ratios, without changes in fibrosis markers. The number of nestin+ cells increased in the myocardium with increased duration of UUO and displayed an SCA-1+TBX5+ phenotype, consistent with CPCs. Thus, cardiac pathology in RCS4 was manifested by cardiomyocyte hypertrophy with changes in the electrophysiological phenotype of the heart, not accompanied by fibrosis or inflammation. Nestin+ cardiac cells retained the CPC phenotype during UUO, and their number increased, which suggests their participation in regenerative processes in the heart. Full article
Show Figures

Figure 1

23 pages, 3282 KB  
Article
Metabolic Dysfunction-Associated Steatotic Liver Disease Shapes a Distinct Semaphorin–Cytokine Immune Signature in Severe Community-Acquired Pneumonia
by Branimir Gjurašin, Leona Radmanić Matotek, Lara Šamadan Marković and Neven Papić
Int. J. Mol. Sci. 2025, 26(16), 8095; https://doi.org/10.3390/ijms26168095 - 21 Aug 2025
Viewed by 264
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly recognized as a modulator of infection severity, yet its impact on the immune response in severe community-acquired pneumonia (sCAP) remains poorly understood. In this prospective cohort study of 108 adults with sCAP, we evaluated the [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly recognized as a modulator of infection severity, yet its impact on the immune response in severe community-acquired pneumonia (sCAP) remains poorly understood. In this prospective cohort study of 108 adults with sCAP, we evaluated the prevalence and prognostic impact of MASLD and performed pathogen-stratified immune profiling of cytokines and semaphorins on hospital days 1 and 5. MASLD was present in 50% of patients and independently associated with early respiratory failure (OR 3.8) and vasopressor-dependent shock (OR 4.0), despite similar sCAP severity at baseline. MASLD patients exhibited distinct immune profiles, including elevated baseline serum levels of SEMA3A, SEMA7A, IL-2, IL-10, IL-17A, CXCL10, and TGF-β1, and reduced SEMA5A. By day 5, the MASLD group exhibited a greater decline in pro-inflammatory mediators compared to non-MASLD patients but failed to upregulate reparative mediators such as SEMA4D and TGF-β1, unlike the non-MASLD group. These kinetics may suggest a maladaptive immune response in MASLD, potentially consistent with early immune exhaustion. Immunokinetic patterns were pathogen-specific, including transient increase in IL-17A and IL-10 in Legionella and Mycoplasma infections, and CXCL10, IL-2, IL-17A, TGF-β1 and IL-10 in influenza. Serum IL-10, CXCL10, SEMA3F, SEMA4D and SEMA7A correlated with organ failure and sCAP complications. These findings underscore the clinical importance of the lung–liver axis and suggest that semaphorins could serve as valuable prognostic biomarkers for identifying high-risk patients. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 688 KB  
Article
Cannabis Use Moderates Methamphetamine- and HIV-Related Inflammation: Evidence from Human Plasma Markers
by Jeffrey M. Rogers, Victoria O. Chentsova, Crystal X. Wang, Maria Cecilia Garibaldi Marcondes, Mariana Cherner, Ronald J. Ellis, Scott L. Letendre, Robert K. Heaton, Igor Grant and Jennifer E. Iudicello
Viruses 2025, 17(8), 1143; https://doi.org/10.3390/v17081143 - 20 Aug 2025
Viewed by 285
Abstract
Background: Methamphetamine use, which is disproportionately prevalent among people with HIV, increases risk for cardio- and neurovascular pathology through persistent immune activation and inflammation. Preclinical studies indicate that cannabinoids may reduce markers of pro-inflammatory processes, but data from people with chronic inflammatory conditions [...] Read more.
Background: Methamphetamine use, which is disproportionately prevalent among people with HIV, increases risk for cardio- and neurovascular pathology through persistent immune activation and inflammation. Preclinical studies indicate that cannabinoids may reduce markers of pro-inflammatory processes, but data from people with chronic inflammatory conditions are limited. We examined potentially interacting associations of lifetime methamphetamine use disorder (MUD), recent cannabis use, and HIV with four plasma markers of immune and inflammatory functions. Method: Participants with HIV (PWH, n = 86) and without HIV (PWoH, n = 148) provided urine and blood samples and completed neuromedical, psychiatric, and substance use assessments. Generalized linear models examined main and conditional associations of lifetime MUD, past-month cannabis use, and HIV with plasma concentrations of CXCL10/IP-10, CCL2/MCP-1, ICAM-1, and VCAM-1. Results: PWH displayed higher CXCL10/IP-10 than PWoH. Past-month cannabis use was independently associated with lower CXCL10/IP-10 levels and conditionally lower CCL2/MCP-1, ICAM-1, and VCAM-1 levels among people with lifetime MUD, but only PWoH displayed cannabis-associated lower VCAM-1 levels. Conclusions: Human plasma sample evidence suggests that cannabis use is associated with lower levels of immune and inflammatory molecules in the context of MUD or HIV. Cannabinoid pathways may be worthwhile clinical targets for treating sequelae of chronic inflammatory conditions. Full article
(This article belongs to the Special Issue HIV and Drugs of Abuse, 4th Edition)
Show Figures

Figure 1

11 pages, 377 KB  
Article
Coronary Artery Disease in People Living with HIV May Reflect Their Sensitivity to Inflammation Associated with Cytomegalovirus
by Luna-faye Veld, Shelley Waters, Silvia Lee, Anna C. Hearps, Janine Trevillyan, Ari S. Mushin, Damien Foo, Jennifer Hoy and Patricia Price
Pathogens 2025, 14(8), 822; https://doi.org/10.3390/pathogens14080822 - 20 Aug 2025
Viewed by 134
Abstract
Cytomegalovirus (CMV) is implicated in cardiovascular disease in healthy adults and after transplantation, but analyses in people living with HIV (PLWH) are difficult as almost all have CMV co-infections. Here, we address whether coronary artery disease (CAD) is associated with levels of CMV-reactive [...] Read more.
Cytomegalovirus (CMV) is implicated in cardiovascular disease in healthy adults and after transplantation, but analyses in people living with HIV (PLWH) are difficult as almost all have CMV co-infections. Here, we address whether coronary artery disease (CAD) is associated with levels of CMV-reactive antibodies or with sensitivity to inflammation associated with CMV. PLWH stable on antiretroviral therapy (ART) with a recent diagnosis of CAD were matched with PLWH without CAD. Plasma samples stored at the time of the CAD event and 6, 12, 24 or 36 months earlier (n = 34–55 per group) were used for analyses. Antibodies reactive with a lysate from CMV infected cells were quantitated using an in-house ELISA, and inflammatory biomarkers were assessed using commercial kits. Bivariate analyses demonstrated similar levels of CMV antibodies in PLWH with and without CAD at all time points (p > 0.5). However, in PLWH with CAD, levels of CMV antibody correlated directly with plasma sCD14, LBP, CXCL10 and/or IL-6 at the earlier points. These correlations were not impacted by detectable plasma HIV RNA. Our findings suggest that individual differences in sensitivity to the inflammatory effects of CMV impact upon the development of CAD. Full article
(This article belongs to the Special Issue Immune Pathways and Mechanisms Involved in Viral Infections)
Show Figures

Figure 1

16 pages, 952 KB  
Article
Encephalitis: Predictive Role of Clinical and Diagnostic Data on Outcome—A Monocentric Study
by Deborah K. Erhart, Luisa T. Balz and Hayrettin Tumani
Life 2025, 15(8), 1313; https://doi.org/10.3390/life15081313 - 19 Aug 2025
Viewed by 250
Abstract
Encephalitis is a potentially life-threatening condition with long-term neurological sequelae. However, data on early clinical, demographic, and diagnostic predictors of functional outcomes remain limited. We performed a retrospective monocentric study including 98 patients diagnosed with infectious encephalitis of various etiologies treated in the [...] Read more.
Encephalitis is a potentially life-threatening condition with long-term neurological sequelae. However, data on early clinical, demographic, and diagnostic predictors of functional outcomes remain limited. We performed a retrospective monocentric study including 98 patients diagnosed with infectious encephalitis of various etiologies treated in the University Hospital Ulm between January 2014 and December 2024. Ordinal logistic regression models were applied to evaluate associations between admission characteristics and functional outcome at discharge, as measured by the modified Rankin Scale. Three multivariate models incorporating clinical, demographic, and MRI/EEG variables explained up to 53% of the variance in mRS at discharge (p < 0.001), outperforming models based solely on CSF parameters. Key predictors of poor functional outcome included ‘altered consciousness’ (OR 7.08, p < 0.001), higher ‘mRS at admission’ (OR 0.03–0.07 across categories, p < 0.001), ‘focal/generalized EEG slowing’ (OR 9.97, p < 0.001), ‘epileptiform EEG activity’ (OR 17.49, p < 0.001), ‘MRI: myelitis’ (OR 16.44, p = 0.004), and ‘intrathecal IgM synthesis’ (OR 8.93, p = 0.018). Conversely, ‘longer hospitalization’ (OR 0.13–0.17 for different intervals, p < 0.006) and ‘intrathecal IgG synthesis’ (OR 0.05, p = 0.03) were associated with more favorable outcomes. Despite the single-center and retrospective aspects of this study, our findings underscore a multifactorial pattern of outcome determinants in infectious encephalitis, highlighting the prognostic relevance of initial neurological status, electrophysiological abnormalities, and neuroimaging features. Full article
(This article belongs to the Special Issue Encephalitis: From Molecular Pathophysiology to Therapy)
Show Figures

Figure 1

21 pages, 4323 KB  
Article
Inhibition of the Transcription Factor PU.1 Suppresses Tumor Growth in Mice by Promoting the Recruitment of Cytotoxic Lymphocytes Through the CXCL9-CXCR3 Axis
by Nichita Sleapnicov, Soon-Duck Ha, Shanshan Jenny Zhong, Jackie Duchscher, Sally Ezra, Shawn Shun-Cheng Li and Sung Ouk Kim
Cancers 2025, 17(16), 2684; https://doi.org/10.3390/cancers17162684 - 18 Aug 2025
Viewed by 355
Abstract
Background: Targeting tumor-associated macrophages (TAMs) is a promising immunotherapy for cancers, but current strategies are limited due to strategic caveats. PU.1 is a transcription factor required for macrophage generation and differentiation. To date, the effect of PU.1 inhibition on solid tumors is [...] Read more.
Background: Targeting tumor-associated macrophages (TAMs) is a promising immunotherapy for cancers, but current strategies are limited due to strategic caveats. PU.1 is a transcription factor required for macrophage generation and differentiation. To date, the effect of PU.1 inhibition on solid tumors is unknown. Methods: This study examines the anti-tumor effect of PU.1 inhibition and its mechanism using the small-molecule DB2313 in mouse melanoma and breast tumor models. Results: We found that inhibition of PU.1 by DB2313 suppresses B16-OVA melanoma and 4T1 breast tumor growth in mice. In the melanoma tumor model, DB2313 enhanced tumor recruitment of CD4+ T helper 1 (Th1) and cytotoxic T/natural killer (NK) cells by targeting TAMs. Transcriptome and targeted gene expression analyses revealed that PU.1 inhibition by DB2313 and small-interference RNAs enhances CXCL9 expression in bulk tumors, TAMs, and bone marrow-derived macrophages. The anti-tumor effects of DB2313 were abolished by depleting macrophages with clodronate or inhibiting the CXCL9-CXCR3 chemokine axis using CXCL9- or CXCR3-neutralizing antibodies. Conclusions: These results suggest that pharmacological inhibition of PU.1 suppresses tumor growth by at least promoting the infiltration of lymphocytes into tumors through the CXCL9-CXCR3 chemokine axis. Our study establishes a framework for developing TAM-modulating immunotherapies by targeting the transcriptional factor PU.1. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

13 pages, 293 KB  
Review
Year in Review: Advances in Research in Gout Pathophysiology in 2024
by Rocio Paz Gonzalez and Monica Guma
Gout Urate Cryst. Depos. Dis. 2025, 3(3), 15; https://doi.org/10.3390/gucdd3030015 - 18 Aug 2025
Viewed by 390
Abstract
This review provides an overview of the most significant developments in gout pathophysiology research published in 2024. Thirteen studies were selected based on originality, scientific rigor, and potential clinical impact and grouped into four major categories: inflammation and pain mechanisms (LRRC8 anion channels, [...] Read more.
This review provides an overview of the most significant developments in gout pathophysiology research published in 2024. Thirteen studies were selected based on originality, scientific rigor, and potential clinical impact and grouped into four major categories: inflammation and pain mechanisms (LRRC8 anion channels, CXCL5-CXCR2 axis, CD38 and NAD+ metabolism, PLK1 and NLRP3 inflammasome localization, and IFN1 suppression), biomarkers and proteomics (scRNA-seq reveals monocyte and T-cell flare signatures, and Olink serum profiling reveals a proinflammatory signature in hyperuricemia and also identifies TNFSF14 as a novel flare biomarker, while a multi-omics integrative study implicates TRIM46 as a key causal gene), gut virome, and novel therapies (vagus nerve stimulation, biomimetic nanosystem, and restoration of Urate Oxidase (Uox) function). The studies selected focused primarily on work on subjects other than on hyperuricemia. The findings collectively expand our understanding of gout’s complex pathophysiology and highlight potential strategies for diagnosis, management, and innovative treatments. Full article
16 pages, 1647 KB  
Article
APOBEC1-Dependent RNA Eiting of TNF Signaling Orchestrates Ileal Villus Morphogenesis in Pigs: Integrative Transcriptomic and Editomic Insights
by Wangchang Li, Wenxin Chen, Yancan Wang, Qianqian Wang, Huansheng Yang, Qiye Wang and Bin Wang
Animals 2025, 15(16), 2419; https://doi.org/10.3390/ani15162419 - 18 Aug 2025
Viewed by 191
Abstract
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs [...] Read more.
The ileum serves as the primary site for nutrient digestion and absorption in the intestine, with villus height representing a critical indicator of intestinal absorptive capacity. To investigate the regulatory mechanisms underlying ileal villus development, we conducted a feeding trial using crossbred pigs (Duroc × Landrace × Yorkshire) with an initial body weight of 27.74 ± 0.28 kg, stratifying them into high-villus and low-villus groups based on ileal villus height (n = 4). The results revealed 849 differentially RNA-edited genes (REGs) between the two groups, including 472 hyper-edited genes in the low-villus group and 377 in the high-villus group. Functional enrichment analysis showed that these REGs were significantly enriched in inflammation-related pathways, particularly the TNF signaling pathway and IL-17 signaling pathway, with TNF pathway genes exhibiting notably higher editing levels in the high-villus group. Additionally, 46 differentially expressed genes (DEGs) were identified, comprising 22 upregulated in the low-villus group and 24 in the high-villus group, which were similarly enriched in TNF and IL-17 signaling pathways. Integrated quadrant analysis of the RNA editing and transcriptomic profiles demonstrated that pro-inflammatory genes CXCL10 (C-X-C motif chemokine 10), CCL2 (C-C motif chemokine ligand 2), CREB3L2 (CAMP-responsive element-binding protein 3-like 2), and PIK3R1 (Phosphoinositide-3-kinase regulatory subunit 1) were highly expressed in the low-villus group but exhibited significantly lower RNA editing levels compared to the high-villus group. Furthermore, the expression of the inflammation-suppressive RNA editing enzyme APOBEC1 (apolipoprotein B mRNA editing enzyme catalytic subunit 1) showed correlation with villus height (R = 0.81, p < 0.05). Collectively, our findings indicate that RNA editing dynamics influence the variation in ileal villus height within inflammation-associated pathways, particularly the TNF signaling pathway. Enhanced RNA editing of this pathway may mitigate intestinal inflammation and promote healthy ileal villus developments. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 3458 KB  
Article
Adenosine A2a Receptor Stimulation Mitigates Periodontitis and Is Mitoprotective in Gingival Fibroblasts Promoting Cellular Resilience
by A. C. Morandini, S. Dawson, N. Paladines, N. Adams and E. S. Ramos-Junior
Cells 2025, 14(16), 1266; https://doi.org/10.3390/cells14161266 - 16 Aug 2025
Viewed by 437
Abstract
Adenosine signaling plays protective roles in gingival mitochondrial health and inflammation control, with the ectoenzyme CD73 implicated in periodontitis. Here, we investigated the effects of selective adenosine A2a receptor (A2aR) stimulation using the agonist CGS21680 in a mouse model of ligature-induced periodontitis (LIP) [...] Read more.
Adenosine signaling plays protective roles in gingival mitochondrial health and inflammation control, with the ectoenzyme CD73 implicated in periodontitis. Here, we investigated the effects of selective adenosine A2a receptor (A2aR) stimulation using the agonist CGS21680 in a mouse model of ligature-induced periodontitis (LIP) and in gingival fibroblast mitochondrial function. Mature C57Bl/6 mice underwent LIP and received daily intraperitoneal injections of CGS21680 (0.1 mg/Kg) or saline. After 8 days, gingival tissues and maxillae were analyzed for alveolar bone loss and Il-1β levels. In parallel, murine gingival fibroblasts (mGFs) were treated with Tnf-α (5 ng/mL) ± CGS21680 (10 µM) to assess mitochondrial function, morphology, and quality control. A2aR activation significantly reduced alveolar bone loss and Il-1β expression in vivo. In vitro, CGS21680 suppressed Tnf-α-induced Cxcl10 and Cxcl12 expressions and enhanced Vegf production. Mitochondrial analysis revealed increased mitochondrial complex levels, membrane potential, and mass, alongside reduced reactive oxygen species (ROS), proton leak, and mitochondrial stress. Ultrastructural studies showed elongated, healthier mitochondria and increased pro-fusion markers, indicating enhanced mitochondrial quality control. Overall, A2aR stimulation attenuates periodontal inflammation and confers mitoprotective effects on gingival fibroblasts, supporting its potential as a therapeutic strategy to both mitigate periodontitis progression and preserve tissue bioenergetics supporting cellular resilience. Full article
Show Figures

Graphical abstract

Back to TopTop