Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = Ca-looping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3755 KB  
Review
Comparative Performance Analysis of Bioenergy with Carbon Capture and Storage (BECCS) Technologies
by Letizia Cretarola and Federico Viganò
Energies 2025, 18(18), 4800; https://doi.org/10.3390/en18184800 - 9 Sep 2025
Viewed by 432
Abstract
This study presents a comprehensive performance assessment of combustion-based options for Bioenergy with Carbon Capture and Storage (BECCS), widely regarded as key enablers of future climate neutrality. From 972 publications (2000–2025), 16 sources are identified as providing complete data. Seven technologies are considered: [...] Read more.
This study presents a comprehensive performance assessment of combustion-based options for Bioenergy with Carbon Capture and Storage (BECCS), widely regarded as key enablers of future climate neutrality. From 972 publications (2000–2025), 16 sources are identified as providing complete data. Seven technologies are considered: Calcium Looping (CaL), Chemical Looping Combustion (CLC), Hot Potassium Carbonate (HPC), low-temperature solvents (mainly amine-based), molten sorbents, Molten Carbonate Fuel Cells (MCFCs), and oxyfuel. First- and second-law efficiencies are reported for 53 bioenergy configurations (19 reference plants without carbon capture and 34 BECCS systems). Performance is primarily evaluated via the reduction in second-law (exergy) efficiency and the Specific Primary Energy Consumption per CO2 Avoided (SPECCA), both relative to each configuration’s reference plant. MCFC-based systems perform best, followed by CLC; molten sorbents and oxyfuel also show very good performance, although each is documented by a single source. Low-temperature solvents span a wide performance range—from poor to competitive—highlighting the heterogeneity of this category; HPC performs in line with the average of low-temperature solvents. CaL exhibits modest efficiency penalties alongside appreciable energy costs of CO2 capture, a counterintuitive outcome driven by the high performance of the benchmark plants considered in the definition of SPECCA. To account for BECCS-specific features (multiple outputs and peculiar fuels), a dedicated evaluation framework with a revised SPECCA formulation is introduced. Full article
Show Figures

Figure 1

19 pages, 2533 KB  
Article
Temporary Passive Shunt for Visceral Protection During Open Thoracoabdominal Aortic Repair Under Intraoperative Advanced Hemodynamic and Perfusion Monitoring: Tertiary Hospital Institutional Bundle and Preliminary Mid-Term Results
by Ottavia Borghese, Marta Minucci, Elena Jacchia, Pierfrancesco Antonio Annuvolo, Lucia Scurto, Antonio Luparelli, Andrea Russo, Paola Aceto, Tommaso Donati and Yamume Tshomba
J. Clin. Med. 2025, 14(17), 6064; https://doi.org/10.3390/jcm14176064 - 27 Aug 2025
Viewed by 580
Abstract
Background: The perfusion of viscera, kidney, and spinal cord represents one of the main concerns during open repair (OR) of Thoraco-Abdominal Aortic Aneurisms (TAAAs). Passive shunting (PS) has been historically used for intraoperative distal aortic perfusion but has been progressively replaced almost [...] Read more.
Background: The perfusion of viscera, kidney, and spinal cord represents one of the main concerns during open repair (OR) of Thoraco-Abdominal Aortic Aneurisms (TAAAs). Passive shunting (PS) has been historically used for intraoperative distal aortic perfusion but has been progressively replaced almost entirely by partial left-sided heart or total cardiopulmonary bypass with extra-corporeal circulation (ECC). Despite several advantages of these methods, PS still has potential in mitigating some drawbacks of long extracorporeal circuits connected with centrifugal or roller pumps, such as the need for cardiac and great vessels cannulation, priming and large intravascular fluid volume shifts, high heparin dose, immunosuppressive effects, and systemic inflammatory response syndrome. Methods: This study prospectively analyzed data of a cohort of patients who underwent TAAA OR using a PS in a single institution. Outcomes of interest were mortality, rate of mesenteric, renal and spinal cord ischemia, cardiac complications, and intraoperative hemodynamic stability achieved in this setting. Our institutional bundle and a comprehensive literature review about the different configurations and applicability of PS for TAAA OR is also reported. The search was performed based on three databases (PubMed, EMBASE, and Cochrane Library) by two independent reviewers (LS and AA) from inception to 31 December 2023, and the reported clinical results (visceral, renal, and spinal cord complications and mortality) using PS during TAAAs OR were analyzed. Results: Between March 2021 and December 2023, 51 TAAA repairs were performed and eleven patients (n = 8, 73% male; mean age 67 years, range 63–79) were operated using a PS for a total of one (9%) type I, one (9%) type II, two (18%) type III, five (45%) type IV, and two (18%) type V TAAA. In our early experience, PS was indicated for limited staff resources during the COVID-19 pandemic to treat five non-deferable cases. The sixth and seventh patients were selected for PS as they already had a functioning axillo-bifemoral bypass that was used for this purpose. For the most recent cases, PS was chosen as the primary perfusion method according to a score based on clinical and anatomical factors with ECC as a bailout strategy. Selective renal perfusion with cold (4 °C) Custodiol solution was the method of choice for renal protection in all cases while antegrade perfusion of the coeliac trunk and the superior mesenteric artery was assured by PS through a loop graft (8–10mm) proximally anastomosed to the axillary artery (10 patients, 90.9%) or the descending thoracic aorta (one patient, 9%) and distally anastomosed to the infrarenal aorta (3), common iliac (3), or femoral vessels (5). In-hospital mortality was 9% as one patient died on the 10th postoperative day from mesenteric ischemia following hemodynamic instability; permanent spinal cord ischemia rate was 0% and the rate of AKI stage 3 was 9% (one patient). Bailout shifting to ECC was never required. No cardiac complications, nor a significant increase in serum CK-MB were reported in any patient. No prolonged severe intraoperative hypotension episodes (Mean Arterial Pressure < 50 mmHg) were assessed using the Software Acumen Analytics (Edwards LifeSciences, Irvine CA, USA). No peri-operative coagulopathy nor major bleeding was reported. Conclusions: Our experience showed satisfactory outcomes with the use of PS in specifically selected cases. Current data indicate that PS may represent an alternative to ECC techniques during TAAAs OR in high volume centers where assisted extracorporeal circulation could eventually be applied as a bailout strategy. However, due to the small sample size of this and previously published series, more data are needed to clearly define the potential role of such approach during TAAA OR. Full article
(This article belongs to the Special Issue Vascular Surgery: Current Status and Future Perspectives)
Show Figures

Figure 1

19 pages, 1877 KB  
Article
PAM-Independent Cas12a Detection of Specific LAMP Products by Targeting Amplicon Loops
by Konstantin G. Ptitsyn, Leonid K. Kurbatov, Svetlana A. Khmeleva, Daria D. Morozova, Olga S. Timoshenko, Elena V. Suprun, Sergey P. Radko and Andrey V. Lisitsa
Int. J. Mol. Sci. 2025, 26(16), 8014; https://doi.org/10.3390/ijms26168014 - 19 Aug 2025
Viewed by 519
Abstract
A straightforward approach is suggested to selectively recognize specific products of loop-mediated isothermal amplification (LAMP) with the Cas12a nuclease without a need for a protospacer adjacent motif (PAM) in the sequence of LAMP amplicons (LAMPlicons). This strategy is based on the presence of [...] Read more.
A straightforward approach is suggested to selectively recognize specific products of loop-mediated isothermal amplification (LAMP) with the Cas12a nuclease without a need for a protospacer adjacent motif (PAM) in the sequence of LAMP amplicons (LAMPlicons). This strategy is based on the presence of single-stranded DNA loops in LAMPlicons and the ability of Cas12a to be trans-activated via the binding of guide RNA (gRNA) to single-stranded DNA in the absence of PAM. The approach feasibility is demonstrated on Clavibacter species—multiple bacterial plant pathogens that cause harmful diseases in agriculturally important plants. For Clavibacter species, the detection sensitivity of the developed PAM-independent LAMP/Cas12a system was determined by that of LAMP. The overall detection selectivity was enhanced by the Cas12a analysis of LAMPlicons. It was shown that the LAMP/Cas12a detection system can be fine-tuned by carefully designing gRNA to selectively distinguish C. sepedonicus from other Clavibacter species based on single nucleotide substitutions in the targeted LAMPlicon loop. The suggested loop-based Cas12a analysis of LAMPlicons was compatible with the format of a single test tube assay with the option of naked-eye detection. The findings broaden the palette of approaches to designing PAM-independent LAMP/Cas12a detection systems with potential for on-site testing. Full article
(This article belongs to the Special Issue CRISPR/Cas Systems and Genome Editing—3rd Edition)
Show Figures

Figure 1

30 pages, 8715 KB  
Article
Comparison of NMPC and GPU-Parallelized MPPI for Real-Time UAV Control on Embedded Hardware
by Riccardo Enrico, Mauro Mancini and Elisa Capello
Appl. Sci. 2025, 15(16), 9114; https://doi.org/10.3390/app15169114 - 19 Aug 2025
Viewed by 592
Abstract
Unmanned Aerial Vehicles (UAVs) operating in complex environments require advanced control strategies beyond traditional linear approaches. This work presents a comprehensive comparative analysis of Nonlinear Model Predictive Control (NMPC) and Model Predictive Path Integral (MPPI) control for UAV trajectory tracking, with an emphasis [...] Read more.
Unmanned Aerial Vehicles (UAVs) operating in complex environments require advanced control strategies beyond traditional linear approaches. This work presents a comprehensive comparative analysis of Nonlinear Model Predictive Control (NMPC) and Model Predictive Path Integral (MPPI) control for UAV trajectory tracking, with an emphasis on real-time implementation feasibility on embedded hardware. A modular ROS 2 framework enables runtime controller selection using CasADi/Acados for NMPC and JAX for MPPI implementations. Processor-in-the-Loop experiments on NVIDIA Jetson Orin Nano hardware evaluate computational performance under realistic resource constraints. Results demonstrate that MPPI achieves superior tracking performance, with an 18.6% improvement in overall RMSE compared to NMPC (0.8480 m to 0.6897 m) for trajectory following. Both controllers achieve real-time performance on embedded hardware, with GPU acceleration proving critical for MPPI success, enabling a 17.63 ms median computation time versus 31.02 ms for CPU-only execution. Systematic parameter analysis reveals optimal MPPI configurations of 40 horizon steps and 800–1250 samples for balancing performance with computational constraints imposed by the 50 Hz (20 ms) control frequency inherent to PX4 hardware compliance. This study validates that mainstream computational frameworks can deliver satisfactory real-time control performance on standard robotics hardware, significantly enhancing accessibility for practical UAV deployment while providing clear guidelines for control strategy selection in resource-constrained applications. Full article
(This article belongs to the Special Issue Novel Technologies in Navigation and Control)
Show Figures

Figure 1

15 pages, 12180 KB  
Article
CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance
by Xinghan An, Liang Huang and Li Yang
Molecules 2025, 30(15), 3290; https://doi.org/10.3390/molecules30153290 - 6 Aug 2025
Viewed by 618
Abstract
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate [...] Read more.
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate CaO/CaAl-layered double oxide (LDO) composites was developed, where CaAl-LDO serves as a nanostructural stabilizer. The CaAl-LDO precursor enables atomic-level dispersion of components, which upon calcination forms a Ca12Al14O33 “rigid scaffold” that spatially confines CaO nanoparticles and effectively mitigates sintering. Thermogravimetric analysis results demonstrate exceptional cyclic stability; the composite achieves an initial CO2 uptake of 14.5 mmol/g (81.5% of theoretical capacity) and retains 87% of its capacity after 30 cycles. This performance significantly outperforms pure CaO and CaO/MgAl-LDO composites. Physicochemical characterization confirms that structural confinement preserves mesoporous channels, ensuring efficient CO2 diffusion. This work establishes a scalable, instrumentally simple route to high-performance sorbents, offering an efficient solution for carbon capture in energy-intensive industries such as power generation and steel manufacturing. Full article
(This article belongs to the Special Issue Progress in CO2 Storage Materials)
Show Figures

Figure 1

16 pages, 2994 KB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Viewed by 418
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

14 pages, 4225 KB  
Article
DFT Investigation into Adsorption–Desorption Properties of Mg/Ni-Doped Calcium-Based Materials
by Wei Shi, Renwei Li, Xin Bao, Haifeng Yang and Dehao Kong
Crystals 2025, 15(8), 711; https://doi.org/10.3390/cryst15080711 - 3 Aug 2025
Viewed by 595
Abstract
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) [...] Read more.
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) calculations to investigate the mechanism by which Mg and Ni doping improves the adsorption/desorption performance of CaO. The DFT results indicate that Mg and Ni doping can effectively reduce the formation energy of oxygen vacancies on the CaO surface. Mg–Ni co-doping exhibits a significant synergistic effect, with the formation energy of oxygen vacancies reduced to 5.072 eV. Meanwhile, the O2− diffusion energy barrier in the co-doped system was reduced to 2.692 eV, significantly improving the ion transport efficiency. In terms of CO2 adsorption, Mg and Ni co-doping enhances the interaction between surface O atoms and CO2, increasing the adsorption energy to −1.703 eV and forming a more stable CO32− structure. For the desorption process, Mg and Ni co-doping restructured the CaCO3 surface structure, reducing the CO2 desorption energy barrier to 3.922 eV and significantly promoting carbonate decomposition. This work reveals, at the molecular level, how Mg and Ni doping optimizes adsorption–desorption in calcium-based materials, providing theoretical guidance for designing high-performance sorbents. Full article
(This article belongs to the Special Issue Performance and Processing of Metal Materials)
Show Figures

Figure 1

12 pages, 3794 KB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 - 2 Aug 2025
Viewed by 484
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

18 pages, 3111 KB  
Article
Ectopic Recruitment of the CTCF N-Terminal Domain with Two Proximal Zinc-Finger Domains as a Tool for 3D Genome Engineering
by Eugenia A. Tiukacheva, Artem V. Luzhin, Natalia Kruglova, Anastasia S. Shtompel, Grigorii Antonov, Anna Tvorogova, Yegor Vassetzky, Sergey V. Ulianov and Sergey V. Razin
Int. J. Mol. Sci. 2025, 26(15), 7446; https://doi.org/10.3390/ijms26157446 - 1 Aug 2025
Viewed by 1298
Abstract
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated [...] Read more.
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated CTCF fused with programmable DNA-binding module dCas9 and fluorescent tracker EGFP. We found that the recruitment of a chimeric protein based on the CTCF N-terminal domain and two zinc-finger domains to the human HOXD locus leads to the de novo formation of a spatial contact with a nearby cohesin/CTCF-bound region, anchoring several chromatin loops. This chimeric protein did not show binding to CTCF motifs and did not affect the epigenetic and transcription profile of the locus. Recruitment of this chimeric protein is also able to restore chromatin loops, lost after deletion of an endogenous CTCF-binding site. Together, our data indicate that the ectopic recruitment of the CTCF N-terminal part could be an appropriate tool for 3D genome engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2966 KB  
Article
A Microfluidic Chip-Based Integrated Device Combining Aerosol Sampling and LAMP–CRISPR Detection for Airborne Virus Surveillance
by Anlan Zhang, Yuqing Chang, Wen Li, Yuanbao Zhang, Yuqian Wang, Haohan Xie, Tao Zuo, Yu Zhang, Jiyu Xi, Xin Wu, Zewen Wei and Rui Chen
Biosensors 2025, 15(8), 475; https://doi.org/10.3390/bios15080475 - 23 Jul 2025
Viewed by 2711
Abstract
Detecting airborne viruses using an integrated aerosol sampling detection device is of great significance in epidemic prevention and control. Most of the applicable aerosol samplers have a flow rate of less than 1000 L/min, which is insufficient for application in large public spaces. [...] Read more.
Detecting airborne viruses using an integrated aerosol sampling detection device is of great significance in epidemic prevention and control. Most of the applicable aerosol samplers have a flow rate of less than 1000 L/min, which is insufficient for application in large public spaces. Recent research, on the other hand, has revealed the advantages of microfluidic chip-based LAMP–CRISPR in airborne virus detection; however, this promising detection method has yet to be integrated with an aerosol sampler. Herein, we present an aerosol sampling and microfluidic chip-based detection (ASMD) device that couples a high-flow-rate aerosol sampling (HFAS) system with a microfluidic LAMP–CRISPR detection (MLCD) chip for surveilling airborne viruses, as represented by SARS-CoV-2. The HFAS system achieved a 6912 L/min flow rate while retaining a satisfactory collection efficiency, and achieved an enrichment ratio of 1.93 × 107 that facilitated subsequent detection by the MLCD chip. The MLCD chip integrates the whole LAMP–CRISPR procedure into a single chip and is compatible with the HFAS system. Environmental detection experiments show the feasibility of the ASMD device for aerosol sampling and detection. Our ASMD device is a promising tool for large space aerosol detection for airborne virus surveillance. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

15 pages, 6549 KB  
Article
Carbonation Deactivation of Limestone in a Micro-Fluidized Bed Reactor
by P. Asiedu-Boateng, N. Y. Asiedu, G. S. Patience, J. R. McDonough and V. Zivkovic
Catalysts 2025, 15(8), 697; https://doi.org/10.3390/catal15080697 - 22 Jul 2025
Viewed by 501
Abstract
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were [...] Read more.
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were measured in a laboratory-scale micro-fluidized bed reactor through multiple carbonation–calcination cycles. The changes in CO2 capture capacity and conversion with the number of cycles mostly correlated with the changes in the physico-chemical properties: Capture capacity dropped from >60% to <15% after 15 cycles and the surface area dropped to below 5 m2 g−1 from as much as 20 m2 g−1 (for the Oterkpolu). The pore volume of the Nauli limestone was essentially invariant with the number of cycles while it increased for the Buipe limestone, and initially increased and then dropped for the Oterpkolu limestone. This decrease was likely due to sintering and a reduction in the number of micropores. The unusual increase in pore volume after multiple cycles was due to the formation of mesopores with smaller pore diameters. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Figure 1

11 pages, 3435 KB  
Article
Influence of Cr- and Co-Doped CaO on Adsorption Properties: DFT Study
by Wei Shi, Renwei Li, Haifeng Yang, Dehao Kong and Qicheng Chen
Molecules 2025, 30(13), 2820; https://doi.org/10.3390/molecules30132820 - 30 Jun 2025
Cited by 1 | Viewed by 458
Abstract
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. [...] Read more.
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. In this study, the enhancement mechanism of Co and Cr doping in terms of the adsorption properties of CaO was investigated by Density Functional Theory (DFT) calculations. The results indicate that Co and Cr doping shortens the bond length between metal and oxygen atoms, enhances covalent bonding interactions, and reduces the oxygen vacancy formation energy. Meanwhile, the O2− diffusion energy barrier decreased from 4.606 eV for CaO to 3.648 eV for Co-CaO and 2.854 eV for Cr-CaO, which promoted CO2 adsorption kinetics. The CO2 adsorption energy was significantly increased in terms of the absolute value, and a partial density of states (PDOS) analysis indicated that doping enhanced the C-O orbital hybridization strength. In addition, Ca4O4 cluster adsorption calculations indicated that the formation of stronger metal–oxygen bonds on the doped surface effectively inhibited particle migration and sintering. This work reveals the mechanisms of transition metal doping in optimizing the electronic structure of CaO and enhancing CO2 adsorption performance and sintering resistance, which provides a theoretical basis for the design of efficient calcium-based sorbents. Full article
Show Figures

Figure 1

15 pages, 2876 KB  
Article
Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum
by Elzbieta Jursene, Laura Michailova, Simona Jureviciute, Zivile Stankeviciute, Inga Grigoraviciute and Aivaras Kareiva
Materials 2025, 18(12), 2869; https://doi.org/10.3390/ma18122869 - 17 Jun 2025
Cited by 1 | Viewed by 645
Abstract
In this study, phosphogypsum waste collected from a factory dump in Kedainiai, Lithuania, was used for the first time as a starting material in the dissolution–precipitation synthesis of high-quality bioceramic calcium hydroxyapatite (Ca10(PO4)6(OH)2; CHA). The [...] Read more.
In this study, phosphogypsum waste collected from a factory dump in Kedainiai, Lithuania, was used for the first time as a starting material in the dissolution–precipitation synthesis of high-quality bioceramic calcium hydroxyapatite (Ca10(PO4)6(OH)2; CHA). The CHA powders were synthesized using the dissolution–precipitation method, employing phosphogypsum in four different conditions: untreated, dried at 100 °C, dried at 150 °C, and annealed at 1000 °C. Various phosphorus sources were used in the CHA synthesis process: Na2HPO4; a mixture of Na2HPO4 and NaH2PO4; or a combination of Na2HPO4, NaH2PO4, and NaHCO3. These mixtures were allowed to react at 80 °C for 48 h, 96 h, 144 h, and 192 h. X-ray diffraction (XRD) analysis revealed slight variations in the synthesized products depending on the specific starting materials used. Fourier transform infrared spectroscopy (FTIR) was conducted to confirm the structural characteristics of the synthesized CHA samples. The surface microstructure of the synthesized CHA samples differed notably from that of the raw phosphogypsum. All synthesized CHA samples exhibited Type IV nitrogen adsorption–desorption isotherms with H3-type hysteresis loops, indicating the presence of mesoporous structures, typically associated with slit-like pores or aggregates of plate-like particles. To the best of our knowledge, an almost monophasic CHA has been fabricated from phosphogypsum waste for the first time using a newly developed dissolution–precipitation synthesis method. A key challenge in the high-end market is the development of alternative synthesis technologies that are not only more environmentally friendly but also highly efficient. These findings demonstrate that phosphogypsum is a viable and sustainable raw material for CHA synthesis, with promising applications in the medical field, including the production of artificial bone implants. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

37 pages, 2520 KB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Viewed by 2594
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

22 pages, 4120 KB  
Article
Sustainable Phosphate Recovery Using Novel Ca–Mg Bimetallic Modified Biogas Residue-Based Biochar
by Qi Wang, Guanghui Zhuo, Dongxin Xue, Guangcan Zhu and Chu-Ya Wang
Sustainability 2025, 17(11), 5049; https://doi.org/10.3390/su17115049 - 30 May 2025
Viewed by 688
Abstract
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and [...] Read more.
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and Ca-modified biogas residue-based biochar (Ca-Mg/BC) was successfully prepared via a “bimetallic loading-pyrolysis” modification strategy. The optimum temperature for the calcination of the material and the salt solution impregnation concentrations were determined experimentally through optimization of the synthesis conditions. Structural and chemical analyses of Ca–Mg/BC demonstrated that the material contains MgO and CaO. The specific surface area of Ca–Mg/BC was 8.49 times higher than that of the unmodified biochar (BC). The optimized Ca–Mg/BC achieved 95% phosphate removal rate (157.13 mg/g adsorption capacity). FTIR and XPS characterization results indicated the importance of Ca/Mg loading in phosphate capture. MgO and CaO were mainly loaded on the surface of the material and adsorbed phosphate through a chemical reaction. Crucially, the phosphate-laden biochar exhibited potential as a nutrient-enriched soil amendment, opening the material loop from wastewater treatment to agricultural applications. This sustainable strategy simultaneously addresses water pollution control and sustainable development, providing environmentally benign solutions compatible with industrial effluent treatment and sustainable agriculture practices. Full article
Show Figures

Figure 1

Back to TopTop