Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = CapMix cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3030 KB  
Article
Effect of Octacalcium Phosphate on Osteogenic Differentiation of Induced Pluripotent Stem Cells in a 3D Hybrid Spheroid Culture
by Yuki Sugai, Ryo Hamai, Yukari Shiwaku, Takahisa Anada, Kaori Tsuchiya, Tai Kimura, Manami Tadano, Kensuke Yamauchi, Tetsu Takahashi, Hiroshi Egusa and Osamu Suzuki
Biomimetics 2025, 10(4), 205; https://doi.org/10.3390/biomimetics10040205 - 26 Mar 2025
Cited by 2 | Viewed by 956
Abstract
Octacalcium phosphate (OCP) has been shown to exhibit an osteogenic property and, therefore, has been utilized recently as a bone substitute, clinically. However, the stimulatory capacity for induced pluripotent stem (iPS) cells is not known. This study investigated whether OCP enhances osteoblastic differentiation [...] Read more.
Octacalcium phosphate (OCP) has been shown to exhibit an osteogenic property and, therefore, has been utilized recently as a bone substitute, clinically. However, the stimulatory capacity for induced pluripotent stem (iPS) cells is not known. This study investigated whether OCP enhances osteoblastic differentiation of three-dimensionally cultured spheroids of iPS cells compared to hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). Mouse iPS cells were mixed with smaller (less than 53 μm) or larger (300–500 μm) sizes of calcium phosphate (CaP) granules and cultured in a laboratory-developed oxygen-permeable culture chip under minimizing hypoxia for up to 21 days. Osteoblastic differentiation was estimated by the cellular alkaline phosphatase (ALP) activities. The degree of supersaturation (DS) with respect to CaP phases was determined from the media chemical compositions. Incubated CaP materials were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The culture promoted well the formation of hybrid spheroids of CaP materials and iPS cells regardless of the type of materials and their granule sizes. The ALP activity of OCP was about 1.5 times higher than that of β-TCP and HA in smaller granule sizes. FTIR, XRD, and DS analyses showed that larger OCP granules tended to hydrolyze to HA slightly faster than smaller granules with time while HA and β-TCP materials tended to remain unchanged. In conclusion, the results suggest that OCP enhances the osteogenic differentiation of iPS cells more than HA and β-TCP through a mechanism of hydrolyzing to HA. This inherent material property of OCP is essential for enhancing the osteoblastic differentiation of iPS cells. Full article
Show Figures

Figure 1

16 pages, 3377 KB  
Article
Optimizing the Antimicrobial, Antioxidant, and Cytotoxic Properties of Silver Nanoparticles Synthesized from Elephantorrhiza elephantina (Burch.) Extracts: A Comprehensive Study
by Matshoene V. Motene, Charity Maepa and Muendi T. Sigidi
Plants 2025, 14(5), 822; https://doi.org/10.3390/plants14050822 - 6 Mar 2025
Cited by 3 | Viewed by 1178
Abstract
The green synthesis of silver nanoparticles (AgNPs) using Elephantorrhiza elephantina (Burch) bulb extracts and evaluation of their antimicrobial, cytotoxic, and antioxidant properties were investigated. The crude plant extracts were prepared using distilled water, ethanol, and methanol for a comparison. Silver nanoparticles were synthesized [...] Read more.
The green synthesis of silver nanoparticles (AgNPs) using Elephantorrhiza elephantina (Burch) bulb extracts and evaluation of their antimicrobial, cytotoxic, and antioxidant properties were investigated. The crude plant extracts were prepared using distilled water, ethanol, and methanol for a comparison. Silver nanoparticles were synthesized and characterized via UV–Visible spectroscopy (UV–VIS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The formation of silver nanoparticles was confirmed using the UV–VIS spectra at 550 nm. The TEM confirmed the nanoparticle morphology as a mixed dispersed sphere, oval, and triangular shapes with a size range of 7.8 nm to 31.3 nm. The secondary metabolites were detected using TLC, DPPH, and LC-MS. Antimicrobial activity was assessed based on agar-well diffusion; cytotoxicity was examined through MTS assays. Various phytochemical constituents were detected through TLC and LC-MS. The crude extracts and methanol-extract-capped AgNP were able to scavenge free radicals, as shown by the developments of inhibitory bands on the TLC plate. The agar well diffusion test revealed that the AgNP capped methanol extract had potent antimicrobial activity against Gram-positive and Gram-negative multidrug resistant bacteria in comparison with penicillin and neomycin, with inhibition zones ranging between 10 mm and 14 mm for the methanol-extract-capped AgNP. The in vitro MTS assay revealed that methanol crude extracts and methanol-extract-capped AgNP had a less cytotoxic effect on the HEK293 cells in comparison with untreated cells (control). We therefore conclude that methanol was the best reducing solvent with the best overall nanoparticle morphology and performance in antimicrobial and cytotoxicity, in comparison to ethanol and distilled water. Full article
Show Figures

Graphical abstract

17 pages, 5429 KB  
Article
Novel Fast-Setting and Mechanically-Strong Calcium Phosphate Pulp-Capping Cement with Metformin Release to Enhance Dental Pulp Stem Cells
by Mohammad Alenizy, Abdullah Alhussein, Nader Almutairi, Ibrahim Ba-Armah, Tao Ma, Suping Wang, Nageswara R. Pilli, Maureen A. Kane, Michael D. Weir, Abraham Schneider and Hockin H. K. Xu
Bioengineering 2025, 12(1), 13; https://doi.org/10.3390/bioengineering12010013 - 28 Dec 2024
Cited by 1 | Viewed by 1315
Abstract
Traditional pulp-capping materials like mineral trioxide aggregate (MTA) offer excellent biocompatibility and sealing, but limitations such as prolonged setting time, low bioactivity, and high costs persist. Metformin, with its potential in craniofacial regeneration, could enhance dentin synthesis by targeting pulp cells. This study [...] Read more.
Traditional pulp-capping materials like mineral trioxide aggregate (MTA) offer excellent biocompatibility and sealing, but limitations such as prolonged setting time, low bioactivity, and high costs persist. Metformin, with its potential in craniofacial regeneration, could enhance dentin synthesis by targeting pulp cells. This study aimed to: (1) develop a calcium phosphate cement with chitosan (CPCC) with improved physio-mechanical properties; (2) incorporate metformin (CPCC-Met) to assess release; and (3) evaluate human dental pulp stem cells (hDPSCs) response. CPCC was mixed at different powder-to-liquid ratios to evaluate physio-mechanical properties compared to MTA. The optimized CPCC formulation was loaded with 0, 50, 100, and 150 µg of metformin to measure release and assess hDPSCs attachment and proliferation (1, 4, and 7 d) via live/dead imaging and SEM. One-way ANOVA was used for statistical analysis. Results showed CPCC at a 3.25:1 ratio significantly reduced setting time to 41.5 min versus 123 min for MTA (p < 0.05). Metformin release correlated with concentration, and SEM confirmed the presence of a porous, hydroxyapatite-rich surface. Cell viability was consistently high across groups (>93% at 1 d, >95% at 4 d, ≈98% at 7 d), with no significant differences (p > 0.05). These findings suggest that the novel CPCC-Met demonstrates promise as a fast-setting, cost-effective pulp-capping material, offering metformin delivery to enhance dentin repair. Full article
(This article belongs to the Special Issue Recent Progress in Craniofacial Regeneration)
Show Figures

Graphical abstract

14 pages, 5507 KB  
Article
Designing and Optimizing Electrode Materials for Energy Harvesting in CAPMIX Cells
by Belén Lobato, Samantha L. Flores, Lucía dos Santos-Gómez, Ana B. García, Alberto M. Pernía, Miguel J. Prieto, María G. Busto and Ana Arenillas
Nanomaterials 2024, 14(24), 2031; https://doi.org/10.3390/nano14242031 - 18 Dec 2024
Viewed by 1334
Abstract
The growing demand for clean, decentralized energy has increased interest in blue energy, which generates power from water with different salt concentrations. Despite its potential as a renewable, low-cost energy source, optimizing electrode materials remains a challenge. This work presents a nanomaterial developed [...] Read more.
The growing demand for clean, decentralized energy has increased interest in blue energy, which generates power from water with different salt concentrations. Despite its potential as a renewable, low-cost energy source, optimizing electrode materials remains a challenge. This work presents a nanomaterial developed via microwave-assisted sol-gel methodology for blue energy applications, where ion diffusion and charge storage are critical. AX-7 carbon, designed for this study, features wide pores, enhancing ion diffusion. Compared to commercial NORIT carbon, AX-7 has a higher mesopore volume and external surface area, improving its overall performance. The synthesis process has been optimized and scaled up for evaluation in CAPMIX electrochemical cell stacks. Moreover, the lower series resistance (Rs) significantly boosts energy recovery, with AX-7 demonstrating superior performance. This advantage is especially evident during fresh-water cycles, where this material achieves significantly lower Rs compared to the commercial one. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

18 pages, 5236 KB  
Article
Highly Porous 3D Nanofibrous Scaffold of Polylactic Acid/Polyethylene Glycol/Calcium Phosphate for Bone Regeneration by a Two-Step Solution Blow Spinning (SBS) Facile Route
by Vanderlane Cavalcanti da Silva, Déborah dos Santos Gomes, Eudes Leonan Gomes de Medeiros, Adillys Marcelo da Cunha Santos, Isabela Lemos de Lima, Taciane Pedrosa Rosa, Flaviana Soares Rocha, Leticia de Souza Castro Filice, Gelmires de Araújo Neves and Romualdo Rodrigues Menezes
Polymers 2024, 16(21), 3041; https://doi.org/10.3390/polym16213041 - 29 Oct 2024
Cited by 5 | Viewed by 1763
Abstract
This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were [...] Read more.
This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were obtained at two calcium/phosphorus (Ca/P) ratios, 1.67 and 1.1, by SBS and calcination at 1000 °C. They were incorporated in PLA/PEG blends by SBS at 10 and 20 wt% to form 3D hybrid cotton-wool-like scaffolds. Morphological analysis showed that the fibrous scaffolds obtained had a randomly interconnected and highly porous structure. Also, the mean fiber diameter ranged from 408 ± 141 nm to 893 ± 496 nm. Apatite deposited considerably within 14 days in a simulated body fluid (SBF) test for hybrid scaffolds containing a mix of hydroxyapatite (HAp) and tri-calcium phosphate-β (β-TCP) phases. The scaffolds with 20 wt% CaP and a Ca/P ration of 1.1 showed better in vitro bioactivity to induce calcium mineralization for bone regeneration. Cellular tests evidenced that the developed scaffolds can support the osteogenic differentiation and proliferation of pre-osteoblastic MC3T3-E1 cells into mature osteoblasts. The results showed that the developed 3D scaffolds have potential applications for bone tissue engineering. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Graphical abstract

22 pages, 2988 KB  
Article
Managing Microbiota Activity of Apis mellifera with Probiotic (Bactocell®) and Antimicrobial (Fumidil B®) Treatments: Effects on Spring Colony Strength
by Joy Gaubert, Pierre-Luc Mercier, Georges Martin, Pierre Giovenazzo and Nicolas Derome
Microorganisms 2024, 12(6), 1154; https://doi.org/10.3390/microorganisms12061154 - 6 Jun 2024
Cited by 1 | Viewed by 1228
Abstract
Against a backdrop of declining bee colony health, this study aims to gain a better understanding of the impact of an antimicrobial (Fumidil B®, Can-Vet Animal Health Supplies Ltd., Guelph, ON, Canada) and a probiotic (Bactocell®, Lallemand Inc., Montreal, [...] Read more.
Against a backdrop of declining bee colony health, this study aims to gain a better understanding of the impact of an antimicrobial (Fumidil B®, Can-Vet Animal Health Supplies Ltd., Guelph, ON, Canada) and a probiotic (Bactocell®, Lallemand Inc., Montreal, QC, Canada) on bees’ microbiota and the health of their colonies after wintering. Therefore, colonies were orally exposed to these products and their combination before wintering in an environmental room. The results show that the probiotic significantly improved the strength of the colonies in spring by increasing the total number of bees and the number of capped brood cells. This improvement translated into a more resilient structure of the gut microbiota, highlighted by a more connected network of interactions between bacteria. Contrastingly, the antimicrobial treatment led to a breakdown in this network and a significant increase in negative interactions, both being hallmarks of microbiota dysbiosis. Although this treatment did not translate into a measurable colony strength reduction, it may impact the health of individual bees. The combination of these products restored the microbiota close to control, but with mixed results for colony performance. More tests will be needed to validate these results, but the probiotic Bactocell® could be administrated as a food supplement before wintering to improve colony recovery in spring. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 3938 KB  
Article
The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation
by Farai C. Gombedza, Samuel Shin, Jaclyn Sadiua, George B. Stackhouse and Bidhan C. Bandyopadhyay
Int. J. Mol. Sci. 2024, 25(9), 4787; https://doi.org/10.3390/ijms25094787 - 27 Apr 2024
Cited by 2 | Viewed by 1659
Abstract
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. [...] Read more.
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

25 pages, 10118 KB  
Article
Current Source Strategy for Energy Injection from a CapMix Cell
by María G. Busto, Miguel J. Prieto, Juan A. Martín-Ramos, Juan A. Martínez and Alberto M. Pernía
Electronics 2024, 13(1), 42; https://doi.org/10.3390/electronics13010042 - 20 Dec 2023
Cited by 1 | Viewed by 1426
Abstract
Circulation of salty and fresh water through the electrodes of a deionization cell produces a voltage between the electrodes caused by the Capacitive Donnan Potential (CDP). The voltage so generated is very low (100 mV), but this work demonstrates that it is possible [...] Read more.
Circulation of salty and fresh water through the electrodes of a deionization cell produces a voltage between the electrodes caused by the Capacitive Donnan Potential (CDP). The voltage so generated is very low (100 mV), but this work demonstrates that it is possible to develop a power converter suitable to inject this energy into the grid or into energy storage systems; this is a relevant aspect of this paper, for most works in the literature simply dissipate this energy over a resistor. To increase the input voltage, a stack of electrodes is connected in series. A bridgeless rectifier that uses a dual buck–boost converter to operate with both the positive and negative cycles is used to extract the energy from the cell. The topology chosen, which is operated as a current source, can work at extremely low voltage levels and provide power factor correction. After this stage, an H-bridge inverter can be included to inject the energy into the AC grid. The whole system implements a hysteresis control system using the current through the inductor of the power converter as control variable. This paper investigates the influence of such current on the efficiency of the total system. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

7 pages, 722 KB  
Proceeding Paper
MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency
by H. Devi Vara Prasad, Lalat Indu Giri and Kousik Midya
Eng. Proc. 2023, 56(1), 282; https://doi.org/10.3390/ASEC2023-15927 - 8 Nov 2023
Cited by 1 | Viewed by 1476
Abstract
Perovskite solar cells (PSCs) have driven improvements in photovoltaic technology as a promising post-silicon photovoltaic technology. However, their decency in providing efficiency is quite intriguing but remains poor in stability. Advancement in lower dimensional technology indicates the shortcomings of 3D perovskite materials, which [...] Read more.
Perovskite solar cells (PSCs) have driven improvements in photovoltaic technology as a promising post-silicon photovoltaic technology. However, their decency in providing efficiency is quite intriguing but remains poor in stability. Advancement in lower dimensional technology indicates the shortcomings of 3D perovskite materials, which can be overcome by the introduction of 2D perovskites in an appropriate manner. Two-dimensional perovskites have piqued researchers’ interest in photovoltaic technology because of their remarkable structural and electrical properties which yield an increase in stability and enhance its light absorption properties. Therefore, 2D/3D multi-dimensional perovskite solar cells are expected to provide substantial stability and higher efficiency. In this study, 2D perovskite materials such as BA2MA2Pb3I10 and BA2MA2Pb4I13 were used as the capping layer on a 3D MAGeI3 layer to fulfil the mixed-dimensionality. The band alignments of both 2D and 3D perovskite were matched decently and other properties like defect tolerance and other IV characteristics on varying defect densities are provided in this study. Mixed-dimensional perovskite with n = 4 showed increased efficiency with respect to single 3D perovskite in decimals, yet is more stable in harsh environments. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

11 pages, 1524 KB  
Article
Poly(Aspartic Acid) Promotes Odontoblast-like Cell Differentiation in Rat Molars with Exposed Pulp
by Fernanda Furuse Ventura dos Santos, Stefan Habelitz, Fábio Dupart Nascimento, Victor Elias Arana-Chavez and Roberto Ruggiero Braga
J. Funct. Biomater. 2023, 14(11), 537; https://doi.org/10.3390/jfb14110537 - 1 Nov 2023
Cited by 5 | Viewed by 2477
Abstract
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed [...] Read more.
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed in the upper molars of 56 Wistar rats, randomly divided as follows (n = 14): control (no treatment); MTA group—pulp capping with mineral trioxide aggregate (MTA Angelus); pAsp group—application of 20 μL of pAsp solution (25 mg·mL−1); MTA+pAsp group—application of MTA mixed with pAsp (5:1 by mass). Animals were euthanized after 7 or 21 days. Histological sections were submitted to hematoxylin-eosin and Brown and Brenn staining and immunohistochemical analysis for osteopontin (OPN) and dentin matrix protein 1 (DMP 1). Results: At 7 days, an acute inflammatory infiltrate and the presence of disorganized mineralized tissue were observed in all groups. At 21 days, the quality and thickness of the reparative dentin in treated groups were superior to the control, and bacterial contamination was observed in two MTA-pAsp specimens. While all treated groups showed intense immunostaining for OPN at 21 days, only the pAsp group expressed DMP 1, indicating the presence of fully differentiated odontoblast-like cells. Conclusion: Poly(aspartic) acid promoted dentin regeneration in rat molars in the absence of an additional calcium source and may be an alternative to MTA as a pulp-capping agent. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics)
Show Figures

Figure 1

16 pages, 4982 KB  
Article
Hybrid Material Based on Vaccinium myrtillus L. Extract and Gold Nanoparticles Reduces Oxidative Stress and Inflammation in Hepatic Stellate Cells Exposed to TGF-β
by Mara Filip, Ioana Baldea, Luminita David, Bianca Moldovan, Gabriel Cristian Flontas, Sergiu Macavei, Dana Maria Muntean, Nicoleta Decea, Adrian Bogdan Tigu and Simona Valeria Clichici
Biomolecules 2023, 13(8), 1271; https://doi.org/10.3390/biom13081271 - 20 Aug 2023
Cited by 5 | Viewed by 2033
Abstract
(1) Background: The study aimed to investigate the impact of gold nanoparticles capped with Cornus sanguinea (NPCS) and mixed with a fruit extract (Vaccinum myrtillus L.—VL) on human hepatic stellate cells (LX-2) exposed to TGF-β. (2) Methods: NPCS were characterized by UV-Vis, [...] Read more.
(1) Background: The study aimed to investigate the impact of gold nanoparticles capped with Cornus sanguinea (NPCS) and mixed with a fruit extract (Vaccinum myrtillus L.—VL) on human hepatic stellate cells (LX-2) exposed to TGF-β. (2) Methods: NPCS were characterized by UV-Vis, transmission electron microscopy (TEM), zeta potential measurement, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX). The cytotoxic effects of VL, NPCS and of the hybrid compounds obtained by mixing the two components in variable proportions (NPCS-VL) were assessed. LDH activity, MDA levels, secretion of inflammation markers, the expression of fibrogenesis markers and collagen I synthesis were estimated after treating the cells with a mixture of 25:25 μg/mL NPCS and VL. (3) Results: TEM analysis showed that NPCS had spherical morphology and homogenous distribution, while their formation and elemental composition were confirmed by XRD and EDX analysis. TGF-β increased cell membrane damage as well as secretion of IL-1β, IL-1α and TLR4. It also amplified the expression of α-SMA and type III collagen and induced collagen I deposition. NPCS administration reduced the inflammation caused by TGF-β and downregulated α-SMA expression. VL diminished LDH activity and the secretion of proinflammatory cytokines. The NPCS-VL mixture maintained IL-1β, IL-1α, TLR4 and LDH at low levels after TGF-β exposure, but it enhanced collagen III expression. (4) Conclusions: The mixture of NPCS and VL improved cell membrane damage and inflammation triggered by TGF-β and mitigated collagen I deposition, but it increased the expression of collagen III, suggestive of a fibrogenetic effect of the hybrid material. Full article
Show Figures

Figure 1

12 pages, 10332 KB  
Article
Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels’ Chemical and Cellular-Viability Properties
by Mariángela Ivette Guanipa Ortiz, Juliana Jarussi dos Santos, Jonny Burga Sánchez, Ubirajara Pereira Rodrigues-Filho, Flávio Henrique Baggio Aguiar, Klaus Rischka and Débora Alves Nunes Leite Lima
Gels 2023, 9(1), 42; https://doi.org/10.3390/gels9010042 - 4 Jan 2023
Cited by 5 | Viewed by 2767
Abstract
The aim of this research was to develop and characterize the chemical and cellular-viability properties of an experimental high-concentration bleaching gel (35 wt%-H2O2) containing calcium-polyphosphate particles (CaPP) at two concentrations (0.5 wt% and 1.5 wt%). The CaPP submicroparticles were [...] Read more.
The aim of this research was to develop and characterize the chemical and cellular-viability properties of an experimental high-concentration bleaching gel (35 wt%-H2O2) containing calcium-polyphosphate particles (CaPP) at two concentrations (0.5 wt% and 1.5 wt%). The CaPP submicroparticles were synthesized by coprecipitation, keeping a Ca:P ratio of 2:1. The CaPP morphology, size, and chemical and crystal profiles were characterized through scanning and transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction, respectively. The assessed bleaching gels were experimental (without CaPP); 0.5% CaPP; 1.5% CaPP; and commercial. The gels’ pH values and H2O2 concentrations (iodometric titration) were determined. The odontoblast-like cell viability after a gel’s exposure was assessed by the MTT assay. The pH and H2O2 concentration were compared through a repeated-measures analysis of variance (ANOVA) and a Tukey’s test and the cell viability through a one-way ANOVA and a Tukey’s test using a GraphPad Prism (α < 0.05). The CaPP particles were spherical (with Ca and P, 135.7 ± 80.95 nm size) and amorphous. The H2O2 concentration decreased in all groups after mixing (p < 0.001). The 0.5% CaPP resulted in more-stable pH levels and higher viability levels than the experimental one (p < 0.05). The successful incorporation of CaPP had a positive impact on the bleaching gel’s chemical and cellular-viability properties when compared to the experimental gel without these particles. Full article
Show Figures

Graphical abstract

15 pages, 3226 KB  
Article
Fast-Setting Calcium Silicate-Based Pulp Capping Cements—Integrated Antibacterial, Irritation and Cytocompatibility Assessment
by Gabriel Kato, Pedro Sousa Gomes, Karin Hermana Neppelenbroek, Cláudia Rodrigues, Maria Helena Fernandes and Liliana Grenho
Materials 2023, 16(1), 450; https://doi.org/10.3390/ma16010450 - 3 Jan 2023
Cited by 10 | Viewed by 4044
Abstract
Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed formulations are relevant characteristics during the operative management of pulpal exposure, aiming to optimise the work time and improve cross-infection/asepsis [...] Read more.
Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed formulations are relevant characteristics during the operative management of pulpal exposure, aiming to optimise the work time and improve cross-infection/asepsis control. Additionally, clinical success seems to be greatly dependent on the biological performance of the materials that directly contact the living pulp. As such, this work approaches an integrative biological characterisation (i.e., antibacterial, irritation, and cytocompatibility assays) of three fast-setting CSCs—BiodentineTM, TotalFill® BC RRM™ Fast Putty, and Theracal LC®. These cements, after setting for 24 h, presented the expected topography and elemental composition (assessed by scanning electron microscopy, coupled with EDS analysis), in accordance with the information of the manufacturer. The set cements displayed a significant and similar antibiofilm activity against S. mutans, in a direct contact assay. Twenty-four-hour eluates were not irritant in the standardised CAM assay, but elicited distinct dose- and time-dependent cytotoxicity profiles on fibroblastic cells—i.e., Biodentine was devoid of toxicity, TotalFill presented a slight dose-dependent initial toxicity that was easily overcome, and Theracal LC was deleterious at high concentrations. When compared to long-setting ProRoot MTA cement, which highlighted the pursued integrative approach, Biodentine presented a similar profile, but TotalFill and Theracal LC displayed a poorer performance regarding antibiofilm activity/cytocompatibility features, and Theracal LC suggested eventual safety concerns. Full article
(This article belongs to the Special Issue Advance in Biomaterials for Tissue Engineering)
Show Figures

Figure 1

21 pages, 6470 KB  
Article
Sox9 Expression in the Second Heart Field; A Morphological Assessment of the Importance to Cardiac Development with Emphasis on Atrioventricular Septation
by Raymond N. Deepe, Jenna R. Drummond, Renélyn A. Wolters, Emily A. Fitzgerald, Hannah G. Tarolli, Andrew B. Harvey and Andy Wessels
J. Cardiovasc. Dev. Dis. 2022, 9(11), 376; https://doi.org/10.3390/jcdd9110376 - 2 Nov 2022
Cited by 5 | Viewed by 2497
Abstract
Failure to form the septal structures that separate the left and right cardiac chambers results in defects that allow shunting of blood from one side of the heart to the other, leading to the mixing of oxygenated and de-oxygenated blood. The atrioventricular (AV) [...] Read more.
Failure to form the septal structures that separate the left and right cardiac chambers results in defects that allow shunting of blood from one side of the heart to the other, leading to the mixing of oxygenated and de-oxygenated blood. The atrioventricular (AV) mesenchymal complex, consisting of the AV cushions, the Dorsal Mesenchymal Protrusion (DMP), and the mesenchymal cap, plays a crucial role in AV septation. Cells found in these structures derive from different cell lineages. In this study we have investigated the role of the transcription factor Sox9 in the Second Heart Field (SHF) with the emphasis on the formation of the atrioventricular septal complex. Using a mouse model in which Sox9 is conditionally deleted from the SHF we demonstrate that in this model virtually all mouse embryos develop septal abnormalities, including complete atrioventricular septal defects (cAVSDs) and isolated ventricular septal defects. Our morphological analyses indicate that perturbation of the development of the mesenchymal cap appears to play a crucial role in the pathogenesis of the atrial septal defects observed in the AVSDs and suggests that this component of the AV mesenchymal complex might play a more important role in AV septation than previously appreciated. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Figure 1

9 pages, 1222 KB  
Article
The Genomic and Genetic Evolution Analysis of Rabbit Astrovirus
by Qiaoya Zhao, Ye Tian, Liping Liu, Yifei Jiang, Haitao Sun, Shanjie Tan and Bing Huang
Vet. Sci. 2022, 9(11), 603; https://doi.org/10.3390/vetsci9110603 - 31 Oct 2022
Cited by 5 | Viewed by 2030
Abstract
Rabbit astrovirus (RAstV) is a pathogen that causes diarrhea in rabbits, with high infection rate at various stages, which can often cause secondary or mixed infections with other pathogens, bringing great economic losses to the rabbit industry. In this study, 10 samples were [...] Read more.
Rabbit astrovirus (RAstV) is a pathogen that causes diarrhea in rabbits, with high infection rate at various stages, which can often cause secondary or mixed infections with other pathogens, bringing great economic losses to the rabbit industry. In this study, 10 samples were collected from cases of rabbits with diarrhea on a rabbit meat farm in the Shandong area of China. The positive sample for astrovirus detected by RT-PCR was inoculated into an RK 13 cell line. A rabbit astrovirus strain named Z317 was successfully isolated, which produced an obvious cytopathic effect 48 h post-inoculation in the RK 13 cell line. The genome structure of this isolate was studied by high-throughput sequencing, showing that the Z317 strain had the highest similarity with the American strain TN/2208/2010, with 92.43% nucleotide homology, belonging to group MRAstV-23. The basic properties of the Z317 capsid (Cap) protein were analyzed, and 10 liner B cell epitopes were screened with the online biosoft Bepipred 2.0 and SVMTriP, including 445–464, 186–205, 655–674, 88–107, 792–811, 45–64, and 257–276 amino acids. This is the first contribution concerning RAstV genomes in China; more studies are needed to understand the diversity and impact of RAstV on rabbit health. Full article
Show Figures

Figure 1

Back to TopTop