Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = Cenozoic sediment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3187 KB  
Article
Tectonic Uplift and Hydrocarbon Generation Constraints from Low-Temperature Thermochronology in the Yindongzi Area, Ordos Basin
by Guangyuan Xing, Zhanli Ren, Kai Qi, Liyong Fan, Junping Cui, Jinbu Li, Zhuo Han and Sasa Guo
Minerals 2025, 15(9), 893; https://doi.org/10.3390/min15090893 - 22 Aug 2025
Viewed by 386
Abstract
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area [...] Read more.
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area exhibits a complex structural framework shaped by multiple deformation events, leading to the formation of extensively developed fault systems. Such faulting can adversely affect hydrocarbon preservation. To better constrain the timing of fault reactivation in this area, we carried out an integrated study involving low-temperature thermochronology and burial history modeling. The results reveal a complex, multi-phase thermal-tectonic evolution since the Late Paleozoic. The ZHe ages (291–410 Ma) indicate deep burial and heating related to Late Devonian–Early Permian tectonism and basin sedimentation, reflecting early orogenic activity along the western North China Craton. During the Late Jurassic to Early Cretaceous (165–120 Ma), the study area experienced widespread and differential uplift and cooling, controlled by the Yanshanian Orogeny. Samples on the western side of the fault show earlier and more rapid cooling than those on the eastern side, suggesting a fault-controlled, basinward-propagating exhumation pattern. The cooling period indicated by AHe data and thermal models reflects the Cenozoic uplift, likely induced by far-field compression from the rising northeastern Tibetan Plateau. These findings emphasize the critical role of inherited faults not only as thermal-tectonic boundaries during the Mesozoic but also as a pathway for hydrocarbon migration. Meanwhile, thermal history models based on borehole data further reveal that the study area underwent prolonged burial and heating during the Mesozoic, reaching peak temperatures for hydrocarbon generation in the Late Jurassic. The timing of major cooling events corresponds to the main stages of hydrocarbon expulsion and migration. In particular, the differential uplift since the Mesozoic created structural traps and migration pathways that likely facilitated hydrocarbon accumulation along the western fault zones. The spatial and temporal differences among the samples underscore the structural segmentation and dynamic response of the continental interior to both regional and far-field tectonic forces, while also providing crucial constraints on the petroleum system evolution in this tectonically complex region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 34681 KB  
Article
Provenance and Geological Significance of Cenozoic Sandstones in the Nankang Basin, Southern Cathaysia Block, China
by Bing Zhao, Guojun Huang, Xiangke Wu, Shangyu Guo, Xijun Liu, Huoying Li, Hailin Huang and Hao Wu
Minerals 2025, 15(6), 556; https://doi.org/10.3390/min15060556 - 23 May 2025
Viewed by 395
Abstract
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral [...] Read more.
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral resources of the southern Cathaysia Block. We used core samples from multiple boreholes and regional geological survey data to analyze the rock assemblages, sediment types, and sedimentary facies of the Nankang Basin. In addition, we analyzed the detrital zircon U–Pb geochronology, sandstone detrital compositions, heavy mineral assemblages, and major element geochemistry. The detrital zircon grains from Cenozoic sandstones in the Nankang Basin have age peaks at 2500–2000, 1100–900, 500–400, and 300–200 Ma, with most grains having ages of 500–400 or 300–200 Ma. The provenance analysis indicates that the 300–200 Ma zircon grains originated mainly from the Liuwanshan pluton; the 500–400 Ma zircon grains originated from the Ningtan pluton; and the 2500–2000 and 1100–900 Ma zircon grains originated from the Lower Silurian Liantan Formation and Middle Devonian Xindu Formation. This indicates that the provenance of Cenozoic sandstones in the Nankang Basin primarily originates from Paleozoic–Early Mesozoic igneous in the surrounding area, while the regional old sedimentary rocks possibly serve as intermediate sedimentary reservoirs. The detrital compositions of the sandstones and heavy mineral assemblages indicate a change in the tectonic setting during the deposition of the Nankang and Zhanjiang Formations, with a change in the source of the sediments due to the uplift of the Shizishan. During the deposition of the Nankang Formation, the sediment transport direction was to the NNW, whereas during the deposition of the Zhanjiang Formation, it was to the NNE. The uplift of the Shizishan most probably occurred during the late Neogene and early Quaternary, separating the Hepu and Nankang Basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 7914 KB  
Article
Detrital Zircon U-Pb Geochronology of River Sands from the Yulongkash and Karakash Rivers in the Hotan River Drainage System, Southwestern Tarim Basin: Implications for Sedimentary Provenance and Tectonic Evolution
by Mingkuan Qin, Qiang Guo, Nian Liu, Qiang Xu, Jing Xiao, Shaohua Huang, Long Zhang, Miao Xu, Yayi Jiang and Shaohua Zhang
Minerals 2025, 15(5), 509; https://doi.org/10.3390/min15050509 - 12 May 2025
Viewed by 554
Abstract
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from [...] Read more.
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from sands of the Yulongkash and Karakash Rivers, major tributaries of the Hotan River draining the West Kunlun Orogenic Belt. Our results reveal distinct provenance signatures between the two tributaries: Yulongkash river sands (HT1) exhibit dominant Triassic (~208 Ma) and Early Paleozoic (~418 Ma) zircon populations, sourced primarily from the South Kunlun and Tianshuihai terranes, whereas Karakash river sands (MY1) are characterized by Early Paleozoic (~460 Ma) and Precambrian zircons, reflecting predominant contributions from the North Kunlun Terrane. Integration with published datasets highlights systematic spatial variations in detrital zircon age spectra, controlled by bedrock heterogeneity, fluvial geomorphology, and sediment mixing efficiency. Furthermore, crustal thickness reconstructions based on zircon trace elements constrain the terminal closure of the Proto-Tethys Ocean to ~420–440 Ma (peak crustal thickness: ~80 km) and the Paleo-Tethys Ocean to the Late Triassic (~210 Ma). These findings not only refine the provenance framework of the Hotan River drainage system but also provide critical insights into the timing of Tethyan ocean closures and the tectonic evolution of the West Kunlun Orogenic Belt, emphasizing the utility of detrital zircon records in deciphering orogenic histories within complex intracontinental settings. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 39906 KB  
Article
Geological and 3D Image Analysis Toward Protecting a Geosite: The Case Study of Falakra, Limnos, Greece
by Ioannis K. Koukouvelas, Aggeliki Kyriou, Konstantinos G. Nikolakopoulos, Georgios Dimaris, Ioannis Pantelidis and Harilaos Tsikos
Minerals 2025, 15(2), 148; https://doi.org/10.3390/min15020148 - 31 Jan 2025
Cited by 1 | Viewed by 1131
Abstract
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and [...] Read more.
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and interstitial secondary calcite formation associated with nearby volcanic activity. Associated sandstone cannonballs take center stage in a landscape built by joints, Liesengang rings and iron (hydr)oxide precipitates, constituting an intriguing site of high aesthetic value. The Falakra geosite is situated in an area with dynamic erosion processes occurring under humid weather conditions. These have evidently sculpted and shaped the sandstone landscape through a complex interaction of wave- and wind-induced erosional processes aided by salt spray wetting. This type of geosite captivates scientists and nature enthusiasts due to its unique geological and landscape features, making its sustainable conservation a significant concern and topic of debate. Here, we provide detailed geological and remote sensing mapping of the area to improve the understanding of geological processes and their overall impact. Given the significance of the Falakra geosite as a unique tourist destination, we emphasize the importance of developing it under sustainable management. We propose the segmentation of the geosite into four sectors based on the corresponding geological features observed on site. Sector A, located to the west, is occupied by a lander-like landscape; to the southeast, sector B contains clusters of cannonballs and concretions; sector C is characterized by intense jointing and complex iron (hydr)oxide precipitation patterns, dominated by Liesengang rings, while sector D displays cannonball or concretion casts. Finally, we propose a network of routes and platforms to highlight the geological heritage of the site while reducing the impact of direct human interaction with the outcrops. For constructing the routes and platforms, we propose the use of serrated steel grating. Full article
(This article belongs to the Special Issue Application of UAV and GIS for Geosciences, 2nd Edition)
Show Figures

Figure 1

26 pages, 4220 KB  
Review
Review of the Fossil Heritage Potential of Shenzhen (Guangdong, China): A Promising Area for Palaeontological Research
by David Marius Kroeck, Yanxin Gong, He Chen, Lan Li and Tong Bao
Geosciences 2024, 14(12), 316; https://doi.org/10.3390/geosciences14120316 - 22 Nov 2024
Viewed by 1242
Abstract
The area of the city of Shenzhen at the Pearl River Delta in Guangdong Province, China, comprises rocks that preserve, with few interruptions, around 1.8 billion years of geological history. However, to date, only few scientific studies within a palaeontological context have been [...] Read more.
The area of the city of Shenzhen at the Pearl River Delta in Guangdong Province, China, comprises rocks that preserve, with few interruptions, around 1.8 billion years of geological history. However, to date, only few scientific studies within a palaeontological context have been conducted on the sediment rocks in Shenzhen. Herein, the fossil record and heritage potential of Shenzhen is reviewed. The few existing previous investigations revealed a rich terrestrial and marine fossil record and show the great potential of this area for future palaeontological research, particularly on the upper Palaeozoic and Mesozoic strata: Carboniferous successions show plant remains and a diverse benthic marine fauna; fossils from Upper Triassic–Middle Jurassic sediment rocks provide important data for terrestrial and marine palaeoecosystems of this time; and the discovery of dinosaur nests in the Upper Cretaceous strata complements the previously known distribution of dinosaurs in South China. Additionally, micropalaeontological and palynological data from the upper Palaeozoic as well as Cenozoic successions in Shenzhen reveal diverse assemblages of foraminifera, ostracods, diatoms, and sporomorphs. Moreover, fossil finds in equivalent rocks in adjacent areas indicate great potential for the units in the Shenzhen area, in which, so far, no fossils have been found. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

22 pages, 4832 KB  
Article
Cenozoic Carbon Dioxide: The 66 Ma Solution
by Patrick Frank
Geosciences 2024, 14(9), 238; https://doi.org/10.3390/geosciences14090238 - 3 Sep 2024
Viewed by 5030
Abstract
The trend in partial pressure of atmospheric CO2, P(CO2), across the 66 MYr of the Cenozoic requires elucidation and explanation. The Null Hypothesis sets sea surface temperature (SST) as the baseline driver for Cenozoic P(CO2). The crystallization [...] Read more.
The trend in partial pressure of atmospheric CO2, P(CO2), across the 66 MYr of the Cenozoic requires elucidation and explanation. The Null Hypothesis sets sea surface temperature (SST) as the baseline driver for Cenozoic P(CO2). The crystallization and cooling of flood basalt magmas is proposed to have heated the ocean, producing the Paleocene–Eocene Thermal Maximum (PETM). Heat of fusion and heat capacity were used to calculate flood basalt magmatic Joule heating of the ocean. Each 1 million km3 of oceanic flood basaltic magma liberates ~5.4 × 1024 J, able to heat the global ocean by ~0.97 °C. Henry’s Law for CO2 plus seawater (HS) was calculated using δ18O proxy-estimated Cenozoic SSTs. HS closely parallels Cenozoic SST and predicts the gas solute partition across the sea surface. The fractional change of Henry’s Law constants, HnHiHnH0 is proportional to ΔP(CO2)i, and HnHiHnH0×P(CO2)+P(CO2)min, where ΔP(CO2) = P(CO2)max − P(CO2)min, closely reconstructs the proxy estimate of Cenozoic P(CO2) and is most consistent with a 35 °C PETM ocean. Disparities are assigned to carbonate drawdown and organic carbon sedimentation. The Null Hypothesis recovers the glacial/interglacial P(CO2) over the VOSTOK 420 ka ice core record, including the rise to the Holocene. The success of the Null Hypothesis implies that P(CO2) has been a molecular spectator of the Cenozoic climate. A generalizing conclusion is that the notion of atmospheric CO2 as the predominant driver of Cenozoic global surface temperature should be set aside. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

15 pages, 12548 KB  
Article
The Implications of Seeping Hydrocarbon Gases in the Gunsan Basin, Central Yellow Sea, off the Southwest of Korea
by Jin-Hyung Cho, Seung-Yong Lee, Seok Jang, Nam-Do Jang, Cheol-Ku Lee, Seung-Hun Lee, Byung-Cheol Kum, Bo-Ram Lee and Seom-Kyu Jung
Geosciences 2024, 14(9), 230; https://doi.org/10.3390/geosciences14090230 - 27 Aug 2024
Viewed by 2028
Abstract
A detailed analysis of high-resolution (3.5 kHz) chirp seismic profiles acquired in the Gunsan Basin of the central Yellow Sea revealed that hydrocarbon gases are actively seeping via the formation of many plumes. The uppermost sedimentary layer was acoustically confirmed to be fully [...] Read more.
A detailed analysis of high-resolution (3.5 kHz) chirp seismic profiles acquired in the Gunsan Basin of the central Yellow Sea revealed that hydrocarbon gases are actively seeping via the formation of many plumes. The uppermost sedimentary layer was acoustically confirmed to be fully or partially charged with gases. Somewhat favored by the low-tide period, episodic gas seepage is mainly associated with the underlying fault systems of Cretaceous-Cenozoic sedimentary strata in the southwestern part of the basin. Catastrophic gas expulsion seems to have formed a crater at the sidewall of a sedimentary ridge and two diapirs. Here, methane is poorly concentrated but rich in the heavy carbon isotope (δ13C, −52.6‰ to −44.7‰ The Vienna Peedee Belemnite [VPDB]), indicating that methane formed mainly through biodegradation of heavy oils at depth remains in the shallow sediments following its expulsion. Episodic rapid upward advection of porewater is also manifest by unmixed heavy methane trapped in the upper part of the primary biogenic methane (δ13C, about −90‰ VPDB)-filled sediment core. These findings imply that the Gunsan Basin fulfills the requirements for possible generation and preservation of oil and gas, like the petroliferous basins of eastern China and the Yellow Sea. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

37 pages, 50819 KB  
Article
Barite Replacement as a Key Factor in the Genesis of Sediment-Hosted Zn-Pb±Ba and Barite-Sulfide Deposits: Ore Fluids and Isotope (S and Sr) Signatures from Sediment-Hosted Zn-Pb±Ba Deposits of Iran
by Abdorrahman Rajabi, Pouria Mahmoodi, Pura Alfonso, Carles Canet, Colin Andrew, Saeideh Azhdari, Somaye Rezaei, Zahra Alaminia, Somaye Tamarzadeh, Ali Yarmohammadi, Ghazaleh Khan Mohammadi and Rasoul Saeidi
Minerals 2024, 14(7), 671; https://doi.org/10.3390/min14070671 - 28 Jun 2024
Cited by 6 | Viewed by 2645
Abstract
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is [...] Read more.
Iran hosts more than 350 Precambrian to Cenozoic sediment-hosted Zn-Pb±Ba and barite-sulfide deposits, including shale-hosted massive sulfide (SHMS, also called SEDEX) and Irish-type and Mississippi Valley-type (MVT) mineralization, and barite is a common mineral in these deposits. In the SHMS deposits, barite is typically found as fine-grained disseminations in thin laminae. In these deposits, the sulfide laminae often occur as diagenetic replacements and as bands containing authigenic and diagenetic barite and pyrite framboids. In the Irish-type Zn-Pb-Ba and stratabound barite-sulfide deposits, barite exhibits various textures, including fine-grained disseminated barite, banded zebra textures, veins, and massive barite lenses. In some of the giant Irish-type deposits, as well as in the stratabound barite-sulfide mineralization, the main stratabound sulfide ore is developed within a barite envelope and is characterized by the replacement of barite and pyrite by chalcopyrite, galena, and sphalerite. In the MVT deposits, the formation of barite is often related to dolomitization, and sulfide mineralization involves the replacement of the dolomitized carbonate rocks, as well as associated barite. Fluid inclusion studies on the Irish-type deposits indicate that the temperatures and salinities of the sulfide-forming fluids are higher compared to those of the barite-forming fluids. Fluid inclusion analyses of coarse-grained barites from Irish and MVT deposits reveal their hydrothermal origin. The δ3⁴S values of sulfide minerals (pyrite, sphalerite, and galena) in Irish-type deposits exhibit a broad range of low values (mostly −28 to +5‰), primarily revealing a process of bacterial sulfate reduction (BSR). However, the textures (replacement, colloform, and banded) and more positive sulfur isotope values (+1 to +36‰) in the SHMS Zn-Pb deposits suggest that bacterial sulfate reduction (BSR) plays a less significant role. We suggest that thermochemical sulfate reduction (TSR) connected to the direct replacement of barite plays a more relevant role in providing sulfur for the sulfide mineralization in the SHMS, barite-sulfide, and MVT deposits. Based on the textual evidence, sulfur isotopic data, and fluid inclusion studies, barite has been identified as a key controller for the subsequent Zn-Pb mineralization by providing a suitable host and significant sulfur contribution in the sediment-hosted Zn-Pb and stratabound barite-sulfide deposits. This implies that diagenetic barite might be a precursor to all types of sediment-hosted Zn-Pb mineralization. Full article
Show Figures

Figure 1

24 pages, 13905 KB  
Article
Geochemical and Mineralogical Approaches in Unraveling Paleoweathering, Provenance, and Tectonic Setting of the Clastic Sedimentary Succession (Western Central Paratethys)
by Kristina Ivančič, Rok Brajkovič and Mirijam Vrabec
Appl. Sci. 2024, 14(2), 537; https://doi.org/10.3390/app14020537 - 8 Jan 2024
Cited by 2 | Viewed by 2129
Abstract
Pronounced tectonic and paleogeographic changes were detected in the Alpine–Pannonian region during the Miocene at the interface between the Alps, the Dinarides, and the Pannonian Basin. To understand the major tectonic, paleogeographic, and paleoclimatic changes during this period, geochemical and mineralogical investigations were [...] Read more.
Pronounced tectonic and paleogeographic changes were detected in the Alpine–Pannonian region during the Miocene at the interface between the Alps, the Dinarides, and the Pannonian Basin. To understand the major tectonic, paleogeographic, and paleoclimatic changes during this period, geochemical and mineralogical investigations were carried out on the fine-grained clastic sedimentary rocks in the Tunjice Hills. The paleoweathering indicates a cold and/or arid to a warm and humid period. The paleoclimate and the regional climatic conditions correspond well with the Middle Miocene Climatic Optimum. The mineral composition shows an abundance of quartz and calcite. Quartz is associated with detrital origin from volcanic and metamorphic rocks of the Eastern and Southern Alps and with authigenic processes in sediments. Calcite is related to authigenic origin formed in shallow marine environments and to detrital provenance from the Southern Alps. Not all discriminant functions based on major oxides provided adequate results in determining the tectonic setting. The source rocks were subjected to oceanic island arc and collision. Moreover, sedimentation was influenced by both active and passive margin settings. The former is related to the Alpine collision, which continued from the Cenozoic onward, and the latter is connected to the processes associated with the formation of the Pannonian Basin System, which began in the late Early Miocene. Full article
(This article belongs to the Special Issue Mineralogy, Geochemistry and Physical Properties of Soil)
Show Figures

Figure 1

43 pages, 19705 KB  
Article
Timing of Opalization at Lightning Ridge, Australia: New Evidence from Opalized Fossils
by George E. Mustoe and Elizabeth T. Smith
Minerals 2023, 13(12), 1471; https://doi.org/10.3390/min13121471 - 23 Nov 2023
Cited by 3 | Viewed by 6952
Abstract
Microscopic analysis of fossils from the Lightning Ridge district of northwestern New South Wales, Australia, shows that opal has been typically deposited in variable cavities left by the degradation of the original organic material. Fine-grained, clay-rich sediments have preserved the external morphology, and [...] Read more.
Microscopic analysis of fossils from the Lightning Ridge district of northwestern New South Wales, Australia, shows that opal has been typically deposited in variable cavities left by the degradation of the original organic material. Fine-grained, clay-rich sediments have preserved the external morphology, and opalization has produced detailed casts with different modes of preservation of internal details. Plant remains include cones, cone scales, fruiting bodies, and seeds, but the most common specimens are twigs, stems, and wood fragments. These specimens commonly contain angular inclusions that represent small tissue fragments produced by the degradation of the original wood. Inclusions commonly have a “hollow box” structure where the organic material has decomposed after the initial opal filling of the mold. These spaces commonly contain traces of the cellular architecture, in the form of wood fiber textures imprinted on the cavity wall, degraded cellular material, and silicified tracheids. Opal casts of mollusk shells and crustacean bioliths preserve the shape but no calcium carbonate residue. Likewise, opal casts of vertebrate remains (bones, teeth, osteoderms) lack preservation of the original bioapatite. These compositions are evidence that burial in fine clays and silts, isolated from the effects of water and oxygen, caused protracted delays between the timing of burial, decomposition, and the development of vacuities in the claystones that became sites for opal precipitation. The length of time required for the dissolution of cellulosic/ligninitic plant remains, calcium carbonate items, and calcium phosphates in bones and teeth cannot be quantified, but evidence from opal-bearing formations worldwide reveals that these processes can be very slow. The timing of opalization can be inferred from previous studies that concluded that Cenozoic tectonism produced faults and fissures that allowed horizontal and lateral movement of silica-bearing groundwater. Comparisons of Australian opal-AG with opal from international localities suggest that opalization was a Neogene phenomenon. The transformation of Opal-AG → Opal-CT is well-documented for the diagenesis of siliceous biogenic sediments and siliceous sinter from geothermal areas. Likewise, precious and common opal from the late Miocene Virgin Valley Formation in northern Nevada, USA, shows the rapidity of the Opal-AG → Opal-CT transformation. Taken together, we consider this evidence to indicate a Neogene age for Lightning Ridge opalization and by inference for the opalization of the extensive opal deposits of the Great Artesian Basin in Australia. New paleontology discoveries include a surprising level of cellular detail in plant fossils, the preservation of individual tracheids as opal casts, evidence of opalized plant pith or vascular tissue (non-gymnosperm), and the first report of Early Cretaceous coprolites from New South Wales, Australia. Full article
Show Figures

Graphical abstract

17 pages, 20089 KB  
Article
Petrogenesis of Eocene Lamprophyre Dykes in Northern Qiangtang Terrane, Tibetan Plateau: Implications for the Tethyan Mantle Metasomatism and Tectonic Evolution
by Xiaohui Zeng, Tingting Gong, Han Zhao and Fuhao Xiong
Minerals 2023, 13(10), 1349; https://doi.org/10.3390/min13101349 - 23 Oct 2023
Viewed by 1983
Abstract
Post-collisional (ultra)potassic lamprophyre dykes are the key probes for understanding mantle metasomatism and reconstructing tectonic evolution. In this study, we present new petrological, geochronological, geochemical and zircon Lu-Hf isotopic data for lamprophyre dykes in the northern Qiangtang terrane (central Tibet), aiming to constrain [...] Read more.
Post-collisional (ultra)potassic lamprophyre dykes are the key probes for understanding mantle metasomatism and reconstructing tectonic evolution. In this study, we present new petrological, geochronological, geochemical and zircon Lu-Hf isotopic data for lamprophyre dykes in the northern Qiangtang terrane (central Tibet), aiming to constrain their petrogenesis and geodynamic setting. The studied lamprophyres are minettes with phenocrysts of siderophyllite and phlogopite, which intrude into Triassic granite of 236.9 Ma. These lamprophyres yield zircon U-Pb ages of 39.7–40.9 Ma. They exhibit high contents of K2O (7.61–8.59 wt.%) and ultrapotassic features with high K2O/Na2O (11.43–14.38) ratios. They are characterized by increased values of Mg# (69.1 to 72.1) and high concentrations of compatible elements (e.g., Cr = 277–529 ppm, Ni = 232–322 ppm), which are diagnostic of mantle-derived primitive magma. The studied lamprophyres have a high abundance of rare earth elements (∑REE = 902–1061 ppm) with significantly fractionated REE patterns ((La/Yb)N = 66.3–100.6), and they are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), but depleted in high field strength elements (HFSE) (e.g., Nb, Ta and Ti) and heavy rare earth elements (HREE) with enriched zircon Hf isotopes (εHf(t) from −6.40 to 3.80). This indicates their derivation from an enriched mantle source which was metasomatized by subduction-related fluids and sediment-derived melts. A petrogenetic study suggests that the lamprophyres were generated by the partial melting of a phlogopite-bearing lherzolite within the garnet stability field. We propose that the Cenozoic ultrapotassic mafic rocks in the central Tibetan Plateau originated in the lithospheric mantle metasomatized by the subduction-related components, and are the magmatic response to the detachment of the subducted Tethyan slab. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 4085 KB  
Article
Meso–Cenozoic Exhumation in the South Qinling Shan (Central China) Recorded by Detrital Apatite Fission-Track Dating of Modern River Sediments
by Xu Lin, Jing Liu-Zeng, Lin Wu, Soares Jose Cleber, Dongliang Liu, Jingen Dai, Chengwei Hu, Xiaokang Chen, Lingling Li and Liyu Zhang
Minerals 2023, 13(10), 1314; https://doi.org/10.3390/min13101314 - 11 Oct 2023
Cited by 8 | Viewed by 2222
Abstract
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of [...] Read more.
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of the development of the Yellow and Yangtze Rivers. Previous studies have predominantly focused on bedrock analysis in the Qinling Shan. However, modern fluvial detrital samples offer a more extensive range of thermal history information. Therefore, we gathered modern fluvial debris samples from the Hanjiang River, which is the largest river in the South Qinling Shan. Subsequently, we conducted apatite fission-track analysis using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. A total of 214 valid track ages were obtained, with an age distribution ranging from 9.5 to 334.0 Ma. The Density Plotter software was employed to decompose the data and generate four prominent age peaks: 185, 103, 69, 35, and 12 Ma. The exhumation events of the Early Jurassic (185 Ma) and Cretaceous (103–69 Ma) in the Southern Qinling Shan were strongly influenced by the collision between the South China Block and the North China Craton, as well as the subduction of the West Pacific Plate, respectively. The far-field effect of the collision between the Indian Plate and the southern Asian continent influenced the exhumation of the South Qinling Shan during the Late Eocene (35 Ma) and Middle Miocene (12 Ma), respectively. In conjunction with the reported findings, we comprehensively analyzed the geological implications of the Mesozoic and Cenozoic exhumations of the Qinling Shan. The Qinling Shan emerged as a watershed between the Ordos and Sichuan Basins in the early Mesozoic and Cenozoic, respectively. However, the exhumation and expansion of the Tibetan Plateau has forced the Yangtze River to flow eastward, resulting in its encounter with the South Qinling Shan in the late Cenozoic. The exhumation of the Qinling Shan has resulted in fault depression in the southern Ordos Basin. This geological process has also contributed to the widespread arid climatic conditions in the basin. During the Miocene, the Yellow River experienced limited connectivity due to a combination of structural and climatic factors. As a result, the Qinling Shan served as an obstacle, dividing the connected southern Yangtze River from the northern segment of the Yellow River during the late Cenozoic era. Full article
(This article belongs to the Special Issue Low-Temperature Thermochronology and Its Applications to Tectonics)
Show Figures

Figure 1

19 pages, 4715 KB  
Review
Geochemistry as a Clue for Paleoweathering and Provenance of Southern Apennines Shales (Italy): A Review
by Roberto Buccione, Giovanna Rizzo and Giovanni Mongelli
Minerals 2023, 13(8), 994; https://doi.org/10.3390/min13080994 - 26 Jul 2023
Cited by 1 | Viewed by 1562
Abstract
The southern Apennines (Italy) chain is a fold-and-thrust belt mainly derived from the deformation of the African–Apulian passive margin where shallow-water, basinal, and shelf-margin facies successions, including fine-grained sediments, occur. Here, we provide a review of the geochemistry of Meso–Cenozoic shales from the [...] Read more.
The southern Apennines (Italy) chain is a fold-and-thrust belt mainly derived from the deformation of the African–Apulian passive margin where shallow-water, basinal, and shelf-margin facies successions, including fine-grained sediments, occur. Here, we provide a review of the geochemistry of Meso–Cenozoic shales from the Lagonegro basin to elucidate provenance and paleoweathering. The different suites of these shales are dominated by 2:1 clay minerals and are Fe shales and shales. An R-mode factor analysis suggests Ti, Al, and LREE (F1) and K2O-MgO (F2) covariance, likely related to the illite → smectite → kaolinite evolution during weathering. HREE and Y are distributed by phosphate minerals, suggesting LREE/HREE fractionation. The CIA paleoweathering proxy rules out non-steady-state weathering conditions and indicates that the source area was affected by moderate to intense weathering. The paleoprecipitation values derived from the CIA-K and CALMAG indices show median values in the 1214–1610 mm/y range. The Eu/Eu*, Sm/Nd, and Ti/Al provenance ratios point toward a UCC-like source excluding any mafic supply and suggest that the Lagonegro basin was connected, through a southern area, with the African cratonic area. However, the Eu/Eu* median value of the southern Apennine shales is quite similar to the value of the Archean shales, possibly indicating a less differentiated component. This is consistent, in many samples, with the value of the (Gd/Yb)ch ratio, suggesting that the shales likely incorporated ancient sediments derived from African Archean terranes through a cannibalistic process. Full article
Show Figures

Figure 1

13 pages, 6952 KB  
Article
Spatiotemporal Evolution of Central Qilian Shan (Northwest China) Constrained by Fission-Track Ages of Detrital Grains from the Huangshui River
by Xu Lin, Marc Jolivet and Feng Cheng
Minerals 2023, 13(7), 890; https://doi.org/10.3390/min13070890 - 30 Jun 2023
Cited by 6 | Viewed by 1740
Abstract
The emergence of the Tibetan Plateau is one of the most significant geological events in East Asia. The Central Qilian Shan connects North and South Qilian Shan in the northeastern part of the Tibetan Plateau. However, the exhumation history of the Central Qilian [...] Read more.
The emergence of the Tibetan Plateau is one of the most significant geological events in East Asia. The Central Qilian Shan connects North and South Qilian Shan in the northeastern part of the Tibetan Plateau. However, the exhumation history of the Central Qilian Block from the Mesozoic to Cenozoic remains unclear. Determining the cooling ages of detrital zircon and apatite in modern river sediments is an ideal method for tracing the evolutionary processes of orogenic belts. In this study, we present the first single-grain detrital apatite (153) and zircon fission-track (108) data for the Huangshui River sediments from the Central Qilian Shan. The decomposition of the dataset revealed major Mesozoic and Cenozoic age peaks at ca. 145–93, and 11 Ma. The Central Qilian Shan entered the intracontinental orogeny stage dating back to the Cretaceous (ca. 145–93 Ma) and Late Cenozoic (ca. 11 Ma) caused by the subduction of the Neo-Tethys and Indian–Asian collision. Therefore, we propose that the geomorphic framework of the northeastern margin of the Tibetan Plateau was initially established during the Mesozoic and further consolidated in the Late Miocene. Full article
Show Figures

Figure 1

19 pages, 5927 KB  
Article
Jizerka Gemstone Placer—Possible Links to the Timing of Cenozoic Alkali Basalt Volcanism in Jizera Mountains, Czech Republic
by Josef Klomínský and Jiří Sláma
Minerals 2023, 13(6), 771; https://doi.org/10.3390/min13060771 - 3 Jun 2023
Cited by 1 | Viewed by 3399
Abstract
The Jizerka Quaternary alluvial placer in the Czech Republic has been a well-known source of gemstones since the 16th century, and the only one in Europe that has yielded a significant amount of jewel-quality sapphire. Besides Mg-rich ilmenite (“iserine”), which is the most [...] Read more.
The Jizerka Quaternary alluvial placer in the Czech Republic has been a well-known source of gemstones since the 16th century, and the only one in Europe that has yielded a significant amount of jewel-quality sapphire. Besides Mg-rich ilmenite (“iserine”), which is the most common heavy mineral at the locality, some other minerals have been mined for jewellery purposes. These are corundum (sapphire and ruby varieties), zircon (“hyacinth” gemstone variety) and spinel. Here, we present a detailed petrological and geochronological investigation of the enigmatic relationship between the sapphires and their supposed host rocks, supporting their xenogenetic link. Our hypothesis is based on thermal resetting of the U–Pb isotopic age of the zircon inclusion found inside Jizerka blue sapphire to the estimated time of the anticipated host alkaline basalt intrusion. The host rocks of the gemstones (sapphire and zircon) and Mg-rich ilmenite are not yet known, but could be related to the Cenozoic volcanism located near the Jizerka gem placer (Bukovec diatreme volcano, Pytlácká jáma Pit diatreme and Hruškovy skály basalt pipe). The transport of sapphire, zircon and Mg-rich ilmenite to the surface was connected with serial volcanic events, likely the fast ascent of alkali basalts and formation of multi-explosive diatreme maar structures with later deposition of volcanoclastic material in eluvial and alluvial sediments in nearby areas. All mineral xenocrysts usually show traces of magmatic corrosion textures, indicating disequilibrium with the transporting alkali basalt magma. In order to constrain the provenance and age of the Jizerka placer heavy mineral assemblage, zircon inclusion and associated phases (niobian rutile, baddeleyite and silicate melts) in the blue sapphire have been studied using LA–ICP–MS (laser ablation–inductively coupled plasma–mass spectrometry) geochemistry and U–Pb in situ dating. Modification of the zircon inclusion into baddeleyite by exposure to temperature above 1400 °C in a basaltic melt is accompanied by zircon U–Pb age resetting. A zircon inclusion in a Jizerka sapphire was dated at 31.2 ± 0.4 Ma, and its baddeleyite rim at 31 ± 16 Ma. The composition of the melt inclusions in sapphire and incorporated niobian rutile suggests that the parental rock of the sapphire was alkali syenite. The Eocene to late Miocene (Messinian) ages of Jizerka zircon are new findings within the Eger Graben structure, as well as among the other sapphire–zircon occurrences within the European Variscides. Jizerka blue sapphire mineral inclusions indicate a provenience of this gemstone mineral assemblage from different parental rocks of unknown age and unknown levels of the upper crust or lithospheric mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop