Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Cimicifugae Rhizoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7092 KiB  
Article
Phytochemical Identification and Anti-Oxidative Stress Effects Study of Cimicifugae Rhizoma Extract and Its Major Component Isoferulic Acid
by Jing Liu, Aqian Chang, Hulinyue Peng, Xingbin Yin, Xiaoxv Dong, Changhai Qu and Jian Ni
Separations 2024, 11(6), 175; https://doi.org/10.3390/separations11060175 - 3 Jun 2024
Cited by 1 | Viewed by 1428
Abstract
Background and Objectives: Cimicifugae Rhizoma, also known as ‘Sheng ma’ in Madeiran, is a widely used Chinese herbal medicine that has several pharmacological qualities, one of which is its antioxidant activity. Isoferulic acid, a prominent phenolic compound found in Cimicifugae Rhizoma, [...] Read more.
Background and Objectives: Cimicifugae Rhizoma, also known as ‘Sheng ma’ in Madeiran, is a widely used Chinese herbal medicine that has several pharmacological qualities, one of which is its antioxidant activity. Isoferulic acid, a prominent phenolic compound found in Cimicifugae Rhizoma, has potent antioxidant properties. This study was aimed to comprehensively analyze the components in Cimicifugae Rhizoma and rat plasma to evaluate the in vitro antioxidant and anti-inflammatory properties of Cimicifugae Rhizoma extract and Isoferulic acid as potential candidates for developing herbal formulations targeting podocyte injury in diabetic nephropathy for further clinical utilization. Materials and Methods: UPLC/Q-TOF-MS and HPLC were utilized as analytical tools to identify components of Cimicifugae Rhizoma extract or rat plasma after administrating it. MPC5 cells were cultured with H2O2 and high glucose and subjected to oxidative stress injury. The CXCL12/CXCR4 system plays a crucial role at certain stages of multiple kidney diseases’ injury. Apoptosis-related and target CXCL12/CXCR4/mTOR/Caspase-3 and Cask protein levels were assessed, and the levels of inflammatory-related factors, motility, morphology, ROS level, and apoptosis in podocytes were tested. Results: A total of 82 and 39 components were identified in the Cimicifugae Rhizoma extract and plasma, and Isoferulic acid content was determined as 6.52 mg/g in the Cimicifugae Rhizoma extract. The Cimicifugae Rhizoma extract (1 μg/mL) and Isoferulic acid (10, 25, 50 μM) considerably decreased high glucose and oxidative-stress-mediated toxicity, impaired mobility and adhesion and apoptotic changes in MPC5 cells, and reversed inflammation response. Moreover, the Cimicifugae Rhizoma extract and Isoferulic acid down-regulated Cask, mTOR, and Caspase-3, while significantly blocking the overactivation of CXCL12/CXCR4 in podocytes stimulated by oxidative stress and high glucose. Conclusions: These results indicate that the renal protective mechanism of the Cimicifugae Rhizoma extract and Isoferulic acid on simulating H2O2-induced podocyte injury involves mainly the of CXCL12/CXCR4 pathways and the inactivation of oxidative-stress-mediated apoptotic pathways after comprehensive qualitative and quantitative research by UPLC/Q-TOF-MS and HPLC. These findings provide an important efficacy and ingredient basis for further study on the clinical utilities of Cimicifugae Rhizoma and Isoferulic acid on podocyte and kidney impairment. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

17 pages, 2845 KiB  
Article
Secondary Metabolites with Anti-Inflammatory from the Roots of Cimicifuga taiwanensis
by Jih-Jung Chen, Ming-Jen Cheng, Tzong-Huei Lee, Yueh-Hsiung Kuo and Chao-Tsen Lu
Molecules 2022, 27(5), 1657; https://doi.org/10.3390/molecules27051657 - 2 Mar 2022
Cited by 4 | Viewed by 2722 | Correction
Abstract
The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies [...] Read more.
The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies in Chinese traditional medicine. Inflammation is related to many diseases. Cimicifuga taiwanensis was often used in folk therapy in Taiwan for inflammation. Phytochemical investigation and chromatographic separation of extracts from the roots of Cimicifuga taiwanensis has led to the isolation of six new compounds: cimicitaiwanins A–F (16, respectively). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic data analysis (1D- and 2D-NMR, MS, and UV) and comparison with the literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 36 exhibited potent anti-NO production activity, with IC50 values ranging from 6.54 to 24.58 ?M, respectively, compared with that of quercetin, an iNOS inhibitor with an IC50 value of 34.58 ?M. This is the first report on metabolite from the endemic Taiwanese plant-C. taiwanensis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 3275 KiB  
Article
Cimicifugae Rhizoma Extract Attenuates Oxidative Stress and Airway Inflammation via the Upregulation of Nrf2/HO-1/NQO1 and Downregulation of NF-?B Phosphorylation in Ovalbumin-Induced Asthma
by Je-Oh Lim, Kwang Hoon Song, Ik Soo Lee, Se-Jin Lee, Woong-Il Kim, So-Won Pak, In-Sik Shin and Taesoo Kim
Antioxidants 2021, 10(10), 1626; https://doi.org/10.3390/antiox10101626 - 15 Oct 2021
Cited by 35 | Viewed by 3402
Abstract
Cimicifugae Rhizoma has been used as a medicinal herb for fever, pain, and inflammation in East Asia. We conducted this study because the effect of Cimicifugae Rhizoma extract (CRE) on allergic asthma has not yet been evaluated. To induce allergic airway inflammation, we [...] Read more.
Cimicifugae Rhizoma has been used as a medicinal herb for fever, pain, and inflammation in East Asia. We conducted this study because the effect of Cimicifugae Rhizoma extract (CRE) on allergic asthma has not yet been evaluated. To induce allergic airway inflammation, we intraperitoneally injected ovalbumin (OVA) mixed with aluminum hydroxide into mice twice at intervals of 2 weeks (Days 0 and 14) and then inhaled them thrice with 1% OVA solution using a nebulizer (Days 21 to 23). CRE (30 and 100 mg/kg) was administered orally daily for 6 days (Days 18 to 23). The mice showed remarkable reduction in allergic inflammation at 100 mg/kg of CRE, as evidenced by decreased inflammatory cell counts, pro-inflammatory cytokine levels, OVA-specific immunoglobulin E level, airway hyperresponsiveness, and production of mucus. Additionally, these effects were involved with the enhancement of heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase (NQO1), and nuclear factor erythroid 2-related factor 2 (Nrf2) expression and reduction of nuclear factor-?B (NF-?B) phosphorylation and matrix metalloproteinase-9 expression. Our findings indicated that CRE effectively protected against OVA-induced inflammation and oxidative stress via upregulation of the Nrf2/HO-1/NQO1 signaling and downregulation of NF-?B phosphorylation in asthma caused by OVA. Full article
Show Figures

Graphical abstract

13 pages, 3072 KiB  
Article
Comparative Analysis of Actaea Chloroplast Genomes and Molecular Marker Development for the Identification of Authentic Cimicifugae Rhizoma
by Inkyu Park, Jun-Ho Song, Sungyu Yang and Byeong Cheol Moon
Plants 2020, 9(2), 157; https://doi.org/10.3390/plants9020157 - 27 Jan 2020
Cited by 5 | Viewed by 3224
Abstract
Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In [...] Read more.
Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In this study, we determined the complete chloroplast (cp) genome sequences of three Actaea species, including A. simplex, A. dahurica, and A. biternata. The cp genomes of these species varied in length from 159,523 to 159,789 bp and contained 112 unique functional genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, orientation, and content were well conserved in the three cp genomes. Comparative sequence analysis revealed the presence of hotspots, including ndhC-trnV-UAC, in Actaea cp genomes. High-resolution phylogenetic relationships were established among Actaea species based on cp genome sequences. Actaea species were clustered into each Actaea section, consistent with the Angiosperm Phylogeny Group (APG) IV system of classification. We also developed a novel indel marker, based on copy number variation of tandem repeats, to facilitate the authentication of the herbal medicine Cimicifugae Rhizoma. The availability Actaea cp genomes will provide abundant information for the taxonomic and phylogenetic analyses of Actaea species, and the Actaea (ACT) indel marker will be useful for the authentication of the herbal medicine. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics)
Show Figures

Figure 1

11 pages, 2496 KiB  
Article
Effect of Hochuekkito (Buzhongyiqitang) on Nasal Cavity Colonization of Methicillin-Resistant Staphylococcus aureus in Murine Model
by Masaaki Minami, Toru Konishi and Toshiaki Makino
Medicines 2018, 5(3), 83; https://doi.org/10.3390/medicines5030083 - 1 Aug 2018
Cited by 7 | Viewed by 4471
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) infections are largely preceded by colonization with MRSA. Hochuekkito is the formula composing 10 herbal medicines in traditional Kampo medicine to treat infirmity and to stimulate immune functions. We evaluated the efficacy of hochuekkito extract (HET) against MRSA [...] Read more.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) infections are largely preceded by colonization with MRSA. Hochuekkito is the formula composing 10 herbal medicines in traditional Kampo medicine to treat infirmity and to stimulate immune functions. We evaluated the efficacy of hochuekkito extract (HET) against MRSA colonization using a nasal infection murine model. Methods: We evaluated the effects of HET as follows: (1) the growth inhibition by measuring turbidity of bacterial culture in vitro, (2) the nasal colonization of MRSA by measuring bacterial counts, and (3) the splenocyte proliferation in mice orally treated with HET by the 3H-thymidine uptake assay. Results: HET significant inhibited the growth of MRSA. The colony forming unit (CFU) in the nasal fluid of HET-treated mice was significantly lower than that of HET-untreated mice. When each single crude drug—Astragali radix, Bupleuri radix, Zingiberis rhizoma, and Cimicifugae rhizome—was removed from hochuekkito formula, the effect of the formula significantly weakened. The uptake of 3H-thymidine into murine splenocytes treated with HET was significantly higher than that from untreated mice. The effects of the modified formula described above were also significantly weaker than those of the original formula. Conclusions: Hochuekkito is effective for the treatment of MRSA nasal colonization in the murine model. We suggest HET as the therapeutic candidate for effective therapy on nasal cavity colonization of MRSA in humans. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Aging Action of Plant Polyphenols)
Show Figures

Figure 1

12 pages, 2315 KiB  
Article
Rapid Determination of Saponins in the Honey-Fried Processing of Rhizoma Cimicifugae by Near Infrared Diffuse Reflectance Spectroscopy
by Lun Wu, Yang Su, Haoran Yu, Xiuhui Qian, Xueting Zhang, Qiuhong Wang, Haixue Kuang and Genhong Cheng
Molecules 2018, 23(7), 1617; https://doi.org/10.3390/molecules23071617 - 3 Jul 2018
Cited by 11 | Viewed by 3613
Abstract
Objective: A model of Near Infrared Diffuse Reflectance Spectroscopy (NIR-DRS) was established for the first time to determine the content of Shengmaxinside I in the honey-fried processing of Rhizoma Cimicifugae. Methods: Shengmaxinside I content was determined by high-performance liquid chromatography (HPLC), and the [...] Read more.
Objective: A model of Near Infrared Diffuse Reflectance Spectroscopy (NIR-DRS) was established for the first time to determine the content of Shengmaxinside I in the honey-fried processing of Rhizoma Cimicifugae. Methods: Shengmaxinside I content was determined by high-performance liquid chromatography (HPLC), and the data of the honey-fried processing of Rhizoma Cimicifugae samples from different batches of different origins by NIR-DRS were collected by TQ Analyst 8.0. Partial Least Squares (PLS) analysis was used to establish a near-infrared quantitative model. Results: The determination coefficient R2 was 0.9878. The Cross-Validation Root Mean Square Error (RMSECV) was 0.0193%, validating the model with a validation set. The Root Mean Square Error of Prediction (RMSEP) was 0.1064%. The ratio of the standard deviation for the validation samples to the standard error of prediction (RPD) was 5.5130. Conclusion: This method is convenient and efficient, and the experimentally established model has good prediction ability, and can be used for the rapid determination of Shengmaxinside I content in the honey-fried processing of Rhizoma Cimicifugae. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop