Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Coprinus comatus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2565 KB  
Article
Anti-Thrombotic Effects of Coprinus comatus Fibrinolytic Enzyme in Zebrafish
by Yan Jing, Jinyu Wang, Yating He, Zedan Liu and Xiaolan Liu
Nutrients 2025, 17(14), 2358; https://doi.org/10.3390/nu17142358 - 18 Jul 2025
Viewed by 467
Abstract
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. [...] Read more.
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. Results: CFE significantly attenuated thrombogenesis by inhibiting erythrocyte aggregation in the caudal vessels, reducing staining intensity (3.61-fold decrease) and staining area (3.89-fold decrease). Concurrently, CFE enhanced cardiac hemodynamics, increasing erythrocyte staining intensity (9.29-fold) and staining area (5.55-fold) while achieving an 85.19% thrombosis inhibition rate. Behavioral analysis confirmed improved motility, with CFE-treated zebrafish exhibiting 2.23-fold increases in total movement distance and average speed, alongside a 3.59-fold extension in active movement duration. Mechanistically, ELISA revealed the multi-pathway activity of CFE, promoting fibrinolysis through reductions in plasminogen, fibrinogen, and D-dimer; inhibiting platelet activation via downregulation of prostaglandin-endoperoxide synthase (PTGS), thromboxane A2 (TXA2), P-selectin, and von Willebrand factor (vWF); and modulating coagulation cascades through elevated protein C and tissue factor pathway inhibitor (TFPI) with concurrent suppression of coagulation factor VII (FVII). Conclusions: These results indicate that the fibrinolytic enzyme CFE, derived from Coprinus comatus, exerts potent antithrombotic effects, supporting its potential as a basis for fungal-derived natural antithrombotic functional food ingredients. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

23 pages, 2735 KB  
Article
A Sustainable Alternative for the Food Industry: Production of α-Amylase by Coprinus comatus Using Agro-Industrial By-Products
by Luana Cristina Paludo, Bianca Peron-Schlosser, Rúbia Martins Bernardes Ramos, Pablo Inocêncio Monteiro, Edileusa Cristina Marques Gerhardt, Leda Satie Chubatsu and Michele Rigon Spier
Processes 2025, 13(6), 1815; https://doi.org/10.3390/pr13061815 - 7 Jun 2025
Viewed by 935
Abstract
The demand for sustainable, low-cost bioprocesses has encouraged the development of alternative enzyme production strategies. This study investigated the purification and characterization of a crude enzymatic extract (CEE) rich in α-amylase from Coprinus comatus, using wheat milling by-products as substrate. The CEE [...] Read more.
The demand for sustainable, low-cost bioprocesses has encouraged the development of alternative enzyme production strategies. This study investigated the purification and characterization of a crude enzymatic extract (CEE) rich in α-amylase from Coprinus comatus, using wheat milling by-products as substrate. The CEE was obtained by submerged culture, followed by biomass removal, centrifugation, and ultrafiltration to yield a partially purified enzyme (PE). CEE and PE were evaluated for chemical composition, antioxidant and antibacterial activity, toxicity (Artemia salina assay), and enzymatic performance. Toxicity assays confirmed that CEE was non-toxic. Antioxidant activity reached 213.34 µmol TE·gDE−1 (DPPH assay), with a total phenolic content of 8.01 mg GAE·gDE−1. No antibacterial activity was detected. CEE hydrolyzed 96.31% of starch in 180 min, releasing 10.85 g·L−1 glucose, while PE achieved 98% hydrolysis and released 14.5 g·L−1. Optimal α-amylase activity occurred at 50 °C and pH 5.5 (CEE) or 5.0 (PE). Calcium ions improved the enzymatic activity and thermal stability. CEE retained over 60% activity after 721 days under refrigeration (4 °C) or freezing (0 °C). Although lyophilization enhanced enzyme concentration, it increased production costs. SDS-PAGE revealed bands of ~67 kDa (α-amylase) and ~35 kDa (glucoamylase). These findings support the use of CEE as a sustainable, low-cost biocatalyst for industrial use. Full article
(This article belongs to the Special Issue New Advances in Green Extraction Technology for Natural Products)
Show Figures

Graphical abstract

19 pages, 1298 KB  
Article
In Vivo Regenerative Potential of Coprinus comatus in Pancreatic Tissue After Acute Stress with Chronic Consequences
by Nebojša Stilinović, Ana Tomas, Saša Vukmirović, Nebojša Kladar, Miloš Čanković, Maja Đanić, Michał Seweryn Karbownik, Aleksandar Rašković and Ivan Čapo
Molecules 2025, 30(11), 2261; https://doi.org/10.3390/molecules30112261 - 22 May 2025
Viewed by 675
Abstract
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent [...] Read more.
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent disturbance of primarily carbohydrate metabolism. To test this hypothesis, the alloxan diabetes model was used, where experimental animals’ change in body weight and biochemical and histological indicators of recovery were monitored. Before performing the in vivo part, HPLC analysis of the C. comatus extract was carried out with subsequent in silico and in vitro tests. Comparing the animals treated with the mushroom in three different doses, no significant change in body weight was observed. Still, the change was also noticed in the lipid status and glycemia, with a dose-dependent beneficial effect. Morphometric analysis of pancreatic tissue stained by immuno-histochemical methods showed that long-term treatment with C. comatus leads to increased numerical density, nuclear volume, and absolute number of beta cells of the islets of Langerhans, which suffered severe damage after alloxan administration. Overall, C. comatus may contribute to faster tissue recovery after acute diabetic-relevant damage with chronic consequences. Full article
(This article belongs to the Special Issue Research on Functional Active Ingredients of Edible Fungi)
Show Figures

Figure 1

27 pages, 1184 KB  
Review
Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds
by Ilenia Cicero, Giulia Mirabile and Giuseppe Venturella
J. Fungi 2025, 11(1), 54; https://doi.org/10.3390/jof11010054 - 10 Jan 2025
Cited by 3 | Viewed by 2017
Abstract
Owing to their nutritional, culinary, and nutraceutical, mushrooms are worldwide consumed and appreciated. Moreover, many of these mushrooms are also known as medicinal mushrooms since they possess several pharmacological properties attributable to a huge number of bioactive compounds derived from their sporophores. Several [...] Read more.
Owing to their nutritional, culinary, and nutraceutical, mushrooms are worldwide consumed and appreciated. Moreover, many of these mushrooms are also known as medicinal mushrooms since they possess several pharmacological properties attributable to a huge number of bioactive compounds derived from their sporophores. Several studies are available in the literature about in vitro and in vivo mechanisms of actions of such bioactive compounds. Most of these surveys are focused on macrofungi belonging to the genera Pleurotus, Ganoderma, or specific taxa such as Agaricus bisporus, Agaricus blazei, Boletus eduliInonotus obliquus, Hericium erinaceus, Lentinula edodes, and Grifola frondose. On the other hand, there is a lack of information on the under investigated ecological group of freshwater fungi. These fungi play a very important role in freshwater environments and some of them, belonging to Basidiomycota, are also edible and largely consumed. In this review we collected information about the medicinal properties of freshwater macro- and micromycetes. Among them, macrofungi, such as Amanita vaginata, Armillaria mellea, Armillaria tabescens, Astraeus hygrometricus, Auricularia auricula-judae, Bjerkandera adusta, Bovista nigrescens, Calocybe gambosa, Candolleomyces candolleanus, Collybia dryophila, Coprinus comatus, Cyclocybe cylindracea, Hypsizygus ulmarius, Inonotus hispidus, Lactarius controversus, Lentinus tigrinus, and Schizophyllum commune, observed in riparian habitat, and microfungi, such as Penicillium aculeatum, P. chrysogenum, and Fusarium incarnatum, isolated from aquatic plants, have been reported to have antimicrobial, anticancer, anti-inflammatory, antioxidant, antidiabetic, immunomoludatory, hypoglycaemic, and other pharmaceutical activities. Such fungal species are noteworthy since they represent an important quote of biodiversity to preserve their fundamental ecological role and a possible solution for different health problems for humans and animal farms. Full article
Show Figures

Figure 1

13 pages, 2318 KB  
Article
The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome
by Lucilla Ricottini, Sabrina Basciani, Maria Letizia Spizzichini, Domenico de Mattia, Manuela Coniglio-Iannuzzi delle Noci, Sasha Sorrentino and Maurizio Nordio
Nutrients 2024, 16(23), 3977; https://doi.org/10.3390/nu16233977 - 21 Nov 2024
Viewed by 2014
Abstract
Background: The aim of the present study was to evaluate the effectiveness and safety of a nutraceutical combination given to insulin-resistant overweight patients with altered lipid profiles. To this end, an observational study was designed in which 74 individuals (50 females and 24 [...] Read more.
Background: The aim of the present study was to evaluate the effectiveness and safety of a nutraceutical combination given to insulin-resistant overweight patients with altered lipid profiles. To this end, an observational study was designed in which 74 individuals (50 females and 24 males) underwent an observational period of 3 months. Methods: During this time, a specific nutraceutical combination containing myo-inositol, glycine, Coprinus comatus, α-lipoic acid, phlorizin, zinc, vitamin B6, and chromium picolinate was administered. Patients were asked not to modify their lifestyles so that no variable that might interfere with results was introduced. Results: After the 3-month period, the obtained data revealed that insulin levels significantly decreased with respect to the baseline, while glucose levels exhibited a trend towards lower concentrations, which was not significant. In addition, HOMA-IR index, body weight, BMI, and abdominal circumference values all decreased significantly. Regarding lipid profiles, the data obtained before and after the 3-month period showed statistically significant decreases in concentrations of total cholesterol, LDL cholesterol, and triglyceride, as well as a small but statistically significant concomitant increase in HDL cholesterol. Conclusions: Thus, on the basis of these data, it may be stated that the specific nutraceutical combination used in the present study significantly ameliorated a number of metabolic parameters without measurable side effects. The efficacy and safety of the product were, therefore, confirmed in our group of patients. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

18 pages, 3103 KB  
Article
Study on the Pilot-Scale Technology of Ginkgolide B Synthesis by Coprinus comatus
by Zhicai Zhang, Feng Wang and Ling Xu
Fermentation 2024, 10(11), 579; https://doi.org/10.3390/fermentation10110579 - 12 Nov 2024
Viewed by 1334
Abstract
Ginkgo biloba extract (EGB) has been approved by the Food and Drug Administration in the United States for clinical studies on memory disorders. Ginkgolide B (GB) is the major terpene lactone component of EGB and is a specific and potent antagonist of platelet-activating [...] Read more.
Ginkgo biloba extract (EGB) has been approved by the Food and Drug Administration in the United States for clinical studies on memory disorders. Ginkgolide B (GB) is the major terpene lactone component of EGB and is a specific and potent antagonist of platelet-activating factor (PAF). In a previous study, we reported the medium composition for the conversion of ginkgolides to GB by Coprinus comatus. In the present study, we applied the response surface methodology (RSM) to optimize the conversion conditions in a 20 L fermenter and applied HPLC-MS/MS, circular dichroism (CD) and infrared (IR) spectroscopy analyses, and nuclear magnetic resonance (NMR) to further confirm the sample structure. The optimal conversion conditions consisted of 12.7 L/min of ventilation, a 156 h conversion time, a 132 rpm rotating speed, a 0.04 MPa fermenter pressure, and a 27.8 °C conversion temperature. Under the optimal conditions, the GB conversion rate was 98.62%, and the GB content of the sample was higher than 98%. HPLC-MS/MS, CD, IR, and NMR analyses showed that the molecular formula of the sample was C20H24O10 and the chemical structure of the sample was in good agreement with the standard GB. Our current study lays the groundwork for the industrial production of GB. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 3405 KB  
Article
Growth Simulation of Lyophyllum decastes and Coprinus comatus and Their Influencing Factors in a Forested Catchment
by Guozhu Huang, Fei Zang, Chuanyan Zhao, Hong Wang and Yali Xi
Forests 2024, 15(9), 1552; https://doi.org/10.3390/f15091552 - 3 Sep 2024
Cited by 2 | Viewed by 1372
Abstract
Wild edible mushrooms are an important food source globally and have a crucial role in forest ecosystems. However, there is limited research on the growth characteristics and the contribution of agronomic traits to biomass, and the environmental factors affecting mushroom growth are limited. [...] Read more.
Wild edible mushrooms are an important food source globally and have a crucial role in forest ecosystems. However, there is limited research on the growth characteristics and the contribution of agronomic traits to biomass, and the environmental factors affecting mushroom growth are limited. This study was conducted in the Qilian Mountains, China, and focused on investigating the growth patterns and agronomic traits of Lyophyllum decastes and Coprinus comatus. The results revealed that the growth of these mushrooms followed a logical growth curve. By calculating the model parameters, we obtained the maximum daily growth of height (PH), pileus diameter (PD), and cluster perimeter (CP) of L. decastes on the 5th, 7th, and 7th days, respectively, with values of 0.55 cm d−1, 0.54 cm d−1, and 4.54 cm d−1, respectively. However, the maximum daily growth of PH, pileus length (PL), and PD of the C. comatus appeared on the 3rd day, 2nd day, and 2nd day of the observation, respectively. This study identified near-surface relative humidity, air relative humidity, and rainfall as the primary factors influencing mushroom growth, as indicated by Pearson’s correlation analysis, redundancy analysis (RDA), and multiple linear and stepwise regression. Additionally, land surface temperature and air temperature were also identified as important factors affecting mushroom growth. By utilizing random forest and stepwise regression analysis, this study identified PH and stipe diameter (SD) as the most crucial agronomic traits affecting mushroom biomass. Overall, this study offers insights for industrial mushroom cultivation and basic fungal research. Full article
(This article belongs to the Special Issue Fungal Biodiversity, Systematics, and Evolution)
Show Figures

Figure 1

21 pages, 3427 KB  
Article
Purification and Biochemical Characterization of a Novel Fibrinolytic Enzyme from Culture Supernatant of Coprinus comatus
by Jinyu Wang, Xiaolan Liu, Yan Jing and Xiqun Zheng
Foods 2024, 13(9), 1292; https://doi.org/10.3390/foods13091292 - 23 Apr 2024
Cited by 3 | Viewed by 2244
Abstract
A novel fibrinolytic enzyme was produced by the liquid fermentation of Coprinus comatus. The enzyme was purified from the culture supernatant by hydrophobic interactions, gel filtration, and ion exchange chromatographies. It was purified by 241.02-fold, with a specific activity of 3619 U/mg [...] Read more.
A novel fibrinolytic enzyme was produced by the liquid fermentation of Coprinus comatus. The enzyme was purified from the culture supernatant by hydrophobic interactions, gel filtration, and ion exchange chromatographies. It was purified by 241.02-fold, with a specific activity of 3619 U/mg and a final yield of 10.02%. SDS-PAGE analysis confirmed the purity of the enzyme, showing a single band with a molecular weight of 19.5 kDa. The first nine amino acids of the N-terminal of the purified enzyme were A-T-Y-T-G-G-S-Q-T. The enzyme exhibited optimal activity at a temperature of 42 °C and pH 7.6. Its activity was significantly improved by Zn2+, K+, Ca2+, Mn2+, and Mg2+ while being inhibited by Fe2+, Fe3+, Al2+, and Ba2+. The activity of the enzyme was completely inhibited by ethylenediamine tetraacetic acid (EDTA), and it was also dose-dependently inhibited by phenylmethylsulfonyl fluoride (PMSF) and soy trypsin inhibitor (SBTI). However, inhibitors such as N-α-tosyl-L-phenylalanine chloromethyl ketone (TPCK), aprotinin, and pepstatin did not significantly affect its activity, suggesting that the enzyme was a serine-like metalloproteinase. The enzyme acted as both a plasmin-like fibrinolytic enzyme and a plasminogen activator, and it also exhibited the capability to hydrolyze fibrinogen and fibrin. In vitro, it demonstrated the ability to dissolve blood clots and exhibit anticoagulant properties. Furthermore, it was found that the enzyme prolonged activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), and reduced the levels of fibrinogen (FIB) and prothrombin activity (PA). Based on these studies, the enzyme has great potential to be developed as a natural agent for the prevention and treatment of thrombotic diseases. Full article
Show Figures

Figure 1

20 pages, 1488 KB  
Article
Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder
by Maria Dimopoulou, Patroklos Vareltzis, Stylianos Floros, Odysseas Androutsos, Alexandra Bargiota and Olga Gortzi
Foods 2023, 12(14), 2702; https://doi.org/10.3390/foods12142702 - 14 Jul 2023
Cited by 20 | Viewed by 7199
Abstract
Consumers’ growing concern about health and well-being has led to increased interest in functional foods. This research aims to evaluate the physicochemical and antioxidant properties of a functional plant-based (PB) snack bar enriched with Coprinus comatus powder. The snack bar formulations exhibited a [...] Read more.
Consumers’ growing concern about health and well-being has led to increased interest in functional foods. This research aims to evaluate the physicochemical and antioxidant properties of a functional plant-based (PB) snack bar enriched with Coprinus comatus powder. The snack bar formulations exhibited a wide range of flavor and textural characteristics. Two PB snack bars and four commercial bars were evaluated by a consumer panel of healthy volunteers (n = 20). The PB snack bar scored ‘like extremely’ on the 9-point hedonic scale. External preference mapping determined that sweetness, flavors, cohesiveness, gumminess, and adhesion had the greatest influence on consumer acceptability. Water content, ash, protein, fat, carbohydrate, reducing sugar, resistant starch, and dietary fiber were measured. Nutritional content was enhanced (omega 3, fiber and protein), and samples were shelf life stable (aw < 0.29; moisture content < 10%). In addition, the PB snack bar underwent simulated digestion according to the INFOGEST protocol, and from the comparative evaluation, the PB snack can be seen to control the post-prandial glycemic responses, as observed by the different degree of reducing sugars released via the matrix. The PB snack bar can be further functionally enhanced by the addition of their unique ingredients such as Coprinus comatus. Coprinus comatus powder is claimed to benefit glycemic control in diabetes and has attracted growing interest in terms of its potential use in natural products with possible health benefits. Full article
(This article belongs to the Special Issue Extraction, Characterization and Bioactive Properties of Plants Foods)
Show Figures

Figure 1

23 pages, 2171 KB  
Review
Exploring Edible Mushrooms for Diabetes: Unveiling Their Role in Prevention and Treatment
by Mohammad Zaki Shamim, Awdhesh Kumar Mishra, Tahreem Kausar, Saurov Mahanta, Bhaskar Sarma, Vijay Kumar, Piyush Kumar Mishra, Jibanjyoti Panda, Kwang-Hyun Baek and Yugal Kishore Mohanta
Molecules 2023, 28(6), 2837; https://doi.org/10.3390/molecules28062837 - 21 Mar 2023
Cited by 41 | Viewed by 12127
Abstract
Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are [...] Read more.
Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are known to contain natural bioactive components that may be anti-diabetic; thus, scientists are now targeting them. Mushroom extracts, which improve immune function and fight cancer, are becoming more popular. Mushroom-derived functional foods and dietary supplements can delay the onset of potentially fatal diseases and help treat pre-existing conditions, which leads to the successful prevention and treatment of type 2 diabetes, which is restricted to the breakdown of complex polysaccharides by pancreatic-amylase and the suppression of intestinal-glucosidase. Many mushroom species are particularly helpful in lowering blood glucose levels and alleviating diabetes symptoms. Hypoglycaemic effects have been observed in investigations on Agaricussu brufescens, Agaricus bisporus, Cordyceps sinensis, Inonotus obliqus, Coprinus comatus, Ganoderma lucidum, Phellinus linteus, Pleurotus spp., Poria cocos, and Sparassis crispa. For diabetics, edible mushrooms are high in protein, vitamins, and minerals and low in fat and cholesterol. The study found that bioactive metabolites isolated from mushrooms, such as polysaccharides, proteins, dietary fibers, and many pharmacologically active compounds, as well as solvent extracts of mushrooms with unknown metabolites, have anti-diabetic potential in vivo and in vitro, though few are in clinical trials. Full article
(This article belongs to the Special Issue Structural Analysis and Biological Evaluation of Compounds from Fungi)
Show Figures

Graphical abstract

35 pages, 3770 KB  
Article
Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle
by Thibaut Houette, Christopher Maurer, Remik Niewiarowski and Petra Gruber
Biomimetics 2022, 7(3), 103; https://doi.org/10.3390/biomimetics7030103 - 28 Jul 2022
Cited by 32 | Viewed by 15176
Abstract
Today’s architectural and agricultural practices negatively impact the planet. Mycelium-based composites are widely researched with the aim of producing sustainable building materials by upcycling organic byproducts. To go further, this study analyzed the growth process and tested the mechanical behavior of composite materials [...] Read more.
Today’s architectural and agricultural practices negatively impact the planet. Mycelium-based composites are widely researched with the aim of producing sustainable building materials by upcycling organic byproducts. To go further, this study analyzed the growth process and tested the mechanical behavior of composite materials grown from fungal species used in bioremediation. Agricultural waste containing high levels of fertilizers serves as the substrate for mycelium growth to reduce chemical dispersal in the environment. Compression and three-point bending tests were conducted to evaluate the effects of the following variables on the mechanical behavior of mycelium-based materials: substrate particle size (with or without micro-particles), fungal species (Pleurotus ostreatus and Coprinus comatus), and post-growth treatment (dried, baked, compacted then dried, and compacted then baked). Overall, the density of the material positively correlated with its Young’s and elastic moduli, showing higher moduli for composites made from substrate with micro-particles and for compacted composites. Compacted then baked composites grown on the substrate with micro-particles provided the highest elastic moduli in compression and flexural testing. In conclusion, this study provides valuable insight into the selection of substrate particle size, fungal species, and post-growth treatment for various applications with a focus on material manufacturing, food production, and bioremediation. Full article
(This article belongs to the Special Issue Fungal Architectures)
Show Figures

Figure 1

14 pages, 1678 KB  
Article
Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate as Meat Substitute
by Xinyue Yuan, Wei Jiang, Dianwei Zhang, Huilin Liu and Baoguo Sun
Foods 2022, 11(1), 52; https://doi.org/10.3390/foods11010052 - 27 Dec 2021
Cited by 61 | Viewed by 9879
Abstract
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water [...] Read more.
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water content (35%, 70% and 100%), three types of edible mushroom (Lentinus edodes, Pleurotus ostreatus, Coprinus comatus and a mixture of equal proportions) and their amounts (from 15% to 100%) on the physicochemical and structural profiles were studied. The results showed that the extruded mushroom-based meat analogue prepared from Coprinus comatus (15% addition) and SPI with a water content of 35% exhibited close textural profiles to real beef. Furthermore, a texture profile analysis (TPA) combined with a principal component analysis (PCA) was conducted to compare and assess the textural traits of the sausage analogues with similar commercial products. The characterization and comparison of the flavor profile of post-processing mushroom-based meat sausage analogues (MMSA) were performed using headspace-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). A total of 64 volatile compounds were identified, and the content in dried-processing treatment was significantly higher than for steamed-processing, which indicated that the natural fermentation process contributed to the increase in aroma substances in the non-animal sourced sausage. This study developed a feasible method to fabricate a meat replacement and to create high added-value products, which offer an opportunity for developing non-animal products with satisfactory sensory properties and flavor profiles. Full article
(This article belongs to the Topic Innovative Food Processing Technologies)
Show Figures

Figure 1

15 pages, 1355 KB  
Article
Degradative Ability of Mushrooms Cultivated on Corn Silage Digestate
by Stefano Fornito, Federico Puliga, Pamela Leonardi, Michele Di Foggia, Alessandra Zambonelli and Ornella Francioso
Molecules 2020, 25(13), 3020; https://doi.org/10.3390/molecules25133020 - 1 Jul 2020
Cited by 13 | Viewed by 3393
Abstract
The current management practice of digestate from biogas plants involves its use for land application as a fertilizer. Nevertheless, the inadequate handling of digestate may cause environmental risks due to losses of ammonia, methane and nitrous oxide. Therefore, the key goals of digestate [...] Read more.
The current management practice of digestate from biogas plants involves its use for land application as a fertilizer. Nevertheless, the inadequate handling of digestate may cause environmental risks due to losses of ammonia, methane and nitrous oxide. Therefore, the key goals of digestate management are to maximize its value by developing new digestate products, reducing its dependency on soil application and the consequent air pollution. The high nitrogen and lignin content in solid digestate make it a suitable substrate for edible and medicinal mushroom cultivation. To this aim, the mycelial growth rate and degradation capacity of the lignocellulosic component from corn silage digestate, undigested wheat straw and their mixture were investigated on Cyclocybe aegerita, Coprinus comatus, Morchella importuna, Pleurotus cornucopiae and Pleurotus ostreatus. The structural modification of the substrates was performed by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Preliminary in vitro results demonstrated the ability of P. ostreatus, P. cornucopiae and M. importuna to grow and decay hemicellulose and lignin of digestate. Cultivation trials were carried out on C. aegerita, P. cornucopiae and P. ostreatus. Pleurotus ostreatus showed the highest biological efficiency and fruiting body production in the presence of the digestate; moreover, P. ostreatus and P. cornucopiae were able to degrade the lignin. These results provide attractive perspectives both for more sustainable digestate management and for the improvement of mushroom cultivation efficiency. Full article
(This article belongs to the Special Issue Mushrooms:The Versatile Roles)
Show Figures

Figure 1

22 pages, 3016 KB  
Article
The Effect of Mushroom Extracts on Human Platelet and Blood Coagulation: In vitro Screening of Eight Edible Species
by Barbara Poniedziałek, Marek Siwulski, Adrian Wiater, Iwona Komaniecka, Anna Komosa, Monika Gąsecka, Zuzanna Magdziak, Mirosław Mleczek, Przemysław Niedzielski, Jędrzej Proch, Mariola Ropacka-Lesiak, Maciej Lesiak, Eliana Henao and Piotr Rzymski
Nutrients 2019, 11(12), 3040; https://doi.org/10.3390/nu11123040 - 12 Dec 2019
Cited by 29 | Viewed by 8573
Abstract
Cardiovascular diseases remain the leading global cause of mortality indicating the need to identify all possible factors reducing primary and secondary risk. This study screened the in vitro antiplatelet and anticoagulant activities of hot water extracts of eight edible mushroom species (Agaricus [...] Read more.
Cardiovascular diseases remain the leading global cause of mortality indicating the need to identify all possible factors reducing primary and secondary risk. This study screened the in vitro antiplatelet and anticoagulant activities of hot water extracts of eight edible mushroom species (Agaricus bisporus, Auricularia auricularia-judae, Coprinus comatus, Ganoderma lucidum, Hericium erinaceus, Lentinula edodes, Pleurotus eryngii, and Pleurotus ostreatus) increasingly cultivated for human consumption, and compared them to those evoked by acetylsalicylic acid (ASA). The antioxidant capacity and concentration of polysaccharides, phenolic compounds, organic acids, ergosterol, macro elements, and trace elements were also characterized. The most promising antiplatelet effect was exhibited by A. auricularia-judae and P. eryngii extracts as demonstrated by the highest rate of inhibition of adenosine-5′-diphosphate (ADP)-induced and arachidonic acid (AA)-induced aggregation. The response to both extracts exceeded the one evoked by 140 µmol/L of ASA in the ADP test and was comparable to it in the case of the AA test. Such a dual effect was also observed for G. lucidum extract, even though it was proven to be cytotoxic in platelets and leukocytes. The extract of P. ostreatus revealed an additive effect on AA-induced platelet aggregation. None of the mushroom extracts altered the monitored coagulation parameters (prothrombin time, prothrombin ratio, and International Normalized Ratio). The effect of mushroom extracts on platelet function was positively related to their antioxidative properties and concentration of polysaccharides and ergosterol, and inversely related to zinc concentration. The study suggests that selected mushrooms may exert favorable antiplatelet effects, highlighting the need for further experimental and clinical research in this regard. Full article
(This article belongs to the Special Issue The Application of Mushrooms or Mushroom Extracts to Enhance Health)
Show Figures

Figure 1

12 pages, 709 KB  
Communication
Fatty Acids Predominantly Affect Anti-Hydroxyl Radical Activity and FRAP Value: The Case Study of Two Edible Mushrooms
by Maja Karaman, Kristina Atlagić, Aleksandra Novaković, Filip Šibul, Miroslav Živić, Katarina Stevanović and Boris Pejin
Antioxidants 2019, 8(10), 480; https://doi.org/10.3390/antiox8100480 - 12 Oct 2019
Cited by 16 | Viewed by 3966
Abstract
Compared to plants, nowadays mushrooms attract more attention as functional foods, due to a number of advantages in manipulating them. This study aimed to screen the chemical composition (fatty acids and phenolics) and antioxidant potential (OH•, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and ferric reducing ability of [...] Read more.
Compared to plants, nowadays mushrooms attract more attention as functional foods, due to a number of advantages in manipulating them. This study aimed to screen the chemical composition (fatty acids and phenolics) and antioxidant potential (OH•, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and ferric reducing ability of plasma (FRAP)) of two edible mushrooms, Coprinus comatus and Coprinellus truncorum, collected from nature and submerged cultivation. Partial least square regression analysis has pointed out the importance of some fatty acids—more precisely, unsaturated fatty acids (UFAs) followed by fatty acids possessing both short (C6:0 and C8:0) and long (C23:0 and C24:0) saturated chains—and phenolic compounds (such as protocatechuic acid, daidzein, p-hydroxybenzoic acid, genistein and vanillic acid) for promising anti-OH•, FRAP and anti-DPPH• activities, respectively. However, other fatty acids (C16:0, C18:0 and C18:3n3) along with the flavonol isorhamnetin are actually suspected to negatively affect (by acting pro-oxidative) the aforementioned parameters, respectively. Taken together, design of new food supplements targeting oxidative stress might be predominantly based on the various UFAs combinations (C18:2n6, C20:1, C20:2, C20:4n6, C22:2, C22:1n9, etc.), particularly if OH• is suspected to play an important role. Full article
Show Figures

Figure 1

Back to TopTop