Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = CpG oligonucleotides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1540 KB  
Article
Preliminary Evidence of Enhanced Immunogenicity of Hepatitis B Virus Vaccines When Co-Administered with Calcium Phosphate, Aluminum Hydroxide, and Cytosine Phospho-Guanine Oligodeoxynucleotides Combined Adjuvant in BALB/c Mice
by Oumou Ouattara, Josephine W. Kimani and James H. Kimotho
Immuno 2025, 5(1), 12; https://doi.org/10.3390/immuno5010012 - 14 Mar 2025
Viewed by 1361
Abstract
Hepatitis B virus (HBV) infection is a major public health risk. Despite the introduction of successful vaccines, which are normally single adjuvanted, there are still some drawbacks, including non-responsiveness in certain groups, short durability of immunity, inadequate protection, and the need for additional [...] Read more.
Hepatitis B virus (HBV) infection is a major public health risk. Despite the introduction of successful vaccines, which are normally single adjuvanted, there are still some drawbacks, including non-responsiveness in certain groups, short durability of immunity, inadequate protection, and the need for additional doses to be addressed. This study aimed to develop an optimized combination of Cytosine-phosphate-Guanine Oligonucleotides (CPG-ODN2395, CPG-ODN-18281-2 23 mer) and calcium phosphate, and to assess its immunogenicity and toxicity when co-administrated with the commercial HBV vaccine (BEVAC, containing aluminum hydroxide) and an in-house aluminum hydroxide-adjuvanted HBs purified antigen in Balb/c mice. Tail blood was collected from vaccinated Balb/c mice on days 14 and 28 post-immunization to determine the antibody secretion level using an enzyme-linked immunosorbent assay (ELISA). The Tumor Necrosis Factor (TNF-a) and interleukin-6 (IL-6) cytokine expression levels were assessed through real-time PCR, and the safety profile was checked through biochemical and hematological analysis. Our results showed that the combination of CPG-ODN2395, CPG-ODN 18281-2 23 mer, and CAP significantly enhanced the IgG antibody secretion level (p < 0.0001), which also showed a significant increase in IL-6 expression (p < 0.0001). The safety evaluations revealed no adverse impact on liver and kidney function, with normal ALT, AST, urea, and creatinine levels (p < 0.55). Hematological assessments revealed stable parameters across all groups. This study concludes that combining CpG ODNs and calcium phosphate adjuvants with hepatitis B vaccinations has the potential to enhance a stronger immunological response to hepatitis B infection than single adjuvants. These results highlight the promise of this innovative adjuvant system, necessitating more research in clinical environments to increase vaccine effectiveness and sustained protection against HBV. Full article
Show Figures

Figure 1

19 pages, 2372 KB  
Article
Single-Molecule Nanopore Sequencing of the CpG Island from the Promoter of O6-Methylguanine-DNA Methyltransferase Provides Insights into the Mechanism of De Novo Methylation of G/C-Rich Regions
by Alexander V. Sergeev, Daniil P. Malyshev, Adelya I. Genatullina, Galina V. Pavlova, Elizaveta S. Gromova and Maria I. Zvereva
Epigenomes 2025, 9(1), 4; https://doi.org/10.3390/epigenomes9010004 - 26 Jan 2025
Cited by 1 | Viewed by 2229
Abstract
Background: The methylation of cytosine residues at CpG sites within the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a key biomarker in glioblastoma therapy. The MGMT promoter (MGMTp) contains multiple guanine-rich sequences capable of folding into G-quadruplexes (G4s), but their relevance for MGMTp [...] Read more.
Background: The methylation of cytosine residues at CpG sites within the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a key biomarker in glioblastoma therapy. The MGMT promoter (MGMTp) contains multiple guanine-rich sequences capable of folding into G-quadruplexes (G4s), but their relevance for MGMTp methylation is poorly understood. Objectives: Our study explores the impact of potential G-quadruplex-forming sequences (PQS) in the MGMT promoter CpG island on the activity of de novo DNA methyltransferase Dnmt3a. Additionally, we investigate their influence on the accuracy of methylation pattern detection using nanopore sequencing. Methods: Nanopore sequencing was employed to analyze the methylation of 94 clinically significant CpG sites in the human MGMTp using an in vitro de novo methylation system. Circular dichroism spectroscopy was used to identify G4 structures within the MGMTp CpG island. Interactions between the catalytic domain of Dnmt3a and the PQS from the MGMTp were examined by biolayer interferometry. Results: Guanine-rich DNA strands of the PQSs in the MGMTp were hypomethylated, while the complementary cytosine-rich strands were methylated by DNA methyltransferase Dnmt3a with higher efficiency. The accuracy of detecting modified bases in the PQS was significantly lower compared to surrounding sequences. Single-stranded guanine-rich DNA sequences from the MGMTp exhibited strong binding to Dnmt3a-CD, with an affinity approximately 10 times higher than their cytosine-rich complements (Kd = 3 × 10−8 M and 3 × 10−7 M, respectively). By binding to Dnmt3a, G4-forming oligonucleotides from MGMTp effectively inhibited the methylation reaction (IC50 6 × 10−7 M). Conclusions: The obtained data indicate the role of PQSs in establishing de novo methylation of the MGMT promoter. They also highlight the challenges of sequencing guanine-rich regions and the impact of specific de novo methylation patterns on clinical data interpretation. Full article
Show Figures

Figure 1

13 pages, 1901 KB  
Article
A Novel Pot-Economy Approach to the Synthesis of Triantennary GalNAc-Oligonucleotide
by Artem Evgenievich Gusev, Vladimir Nikolaevich Ivanov, Nikolai Andreevich Dmitriev, Aleksandr Viktorovich Kholstov, Vladislav Aleksandrovich Vasilichin, Ilya Andreevich Kofiadi and Musa Rakhimovich Khaitov
Molecules 2024, 29(24), 5959; https://doi.org/10.3390/molecules29245959 - 17 Dec 2024
Viewed by 2230
Abstract
N-Acetylgalactosamine (GalNAc) is an efficient and multifunctional delivery tool in the development and synthesis of chemically modified oligonucleotide therapeutics (conjugates). Such therapeutics demonstrate improved potency in vivo due to the selective and efficient delivery to hepatocytes in the liver via receptor-mediated endocytosis, which [...] Read more.
N-Acetylgalactosamine (GalNAc) is an efficient and multifunctional delivery tool in the development and synthesis of chemically modified oligonucleotide therapeutics (conjugates). Such therapeutics demonstrate improved potency in vivo due to the selective and efficient delivery to hepatocytes in the liver via receptor-mediated endocytosis, which is what drives the high interest in this molecule. The ways to synthesize such structures are relatively new and have not been optimized in terms of the yields and stages both in lab and large-scale synthesis. Another significant criterion, especially in large-scale synthesis, is to match ecological norms and perform the synthesis in accordance with the Green Chemistry approach, i.e., to control and minimize the amounts of reagents and resources consumed and the waste generated. Here, we provide a robust and resource effective pot-economy method for the synthesis of triantennary GalNAc and GalNAc phosphoramidite/CPG optimized for laboratory scales. Full article
Show Figures

Figure 1

16 pages, 3486 KB  
Article
Effects of Synthetic Toll-Like Receptor 9 Ligand Molecules on Pulpal Immunomodulatory Response and Repair after Injuries
by Angela Quispe-Salcedo, Tomohiko Yamazaki and Hayato Ohshima
Biomolecules 2024, 14(8), 931; https://doi.org/10.3390/biom14080931 - 1 Aug 2024
Cited by 2 | Viewed by 1717
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. [...] Read more.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin–eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage–TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration. Full article
Show Figures

Figure 1

15 pages, 3357 KB  
Article
Surgical Primary Tumor Resection Reduces Accumulation of CD11b+ Myeloid Cells in the Lungs Augmenting the Efficacy of an Intranasal Cancer Vaccination against Secondary Lung Metastasis
by Michael Donkor, Jamie Y. Choe, Danielle Marie Reid, Hope K. Fiadjoe, Byron Quinn, Amalendu Ranjan, Mark Pulse, Pankaj Chaudhary, Riyaz Basha and Harlan P. Jones
Pharmaceuticals 2024, 17(1), 51; https://doi.org/10.3390/ph17010051 - 28 Dec 2023
Viewed by 2297
Abstract
A hallmark of effective cancer treatment is the prevention of tumor reoccurrence and metastasis to distal organs, which are responsible for most cancer deaths. However, primary tumor resection is expected to be curative as most solid tumors have been shown both experimentally and [...] Read more.
A hallmark of effective cancer treatment is the prevention of tumor reoccurrence and metastasis to distal organs, which are responsible for most cancer deaths. However, primary tumor resection is expected to be curative as most solid tumors have been shown both experimentally and clinically to accelerate metastasis to distal organs including the lungs. In this study, we evaluated the efficacy of our engineered nasal nano-vaccine (CpG-NP-Tag) in reducing accelerated lung metastasis resulting from primary tumor resection. Cytosine–phosphate–guanine oligonucleotide [CpG ODN]-conjugated nanoparticle [NP] encapsulating tumor antigen [Tag] (CpG-NP-Tag) was manufactured and tested in vivo using a syngeneic mouse mammary tumor model following intranasal delivery. We found that our nasal nano-vaccine (CpG-NP-Tag), compared to control NPs administered after primary mammary tumor resection, significantly reduced lung metastasis in female BALB/c mice subjected to surgery (surgery mice). An evaluation of vaccine efficacy in both surgery and non-surgery mice revealed that primary tumor resection reduces CD11b+ monocyte-derived suppressor-like cell accumulation in the lungs, allowing increased infiltration of vaccine-elicited T cells (IFN-γ CD8+ T cells) in the lungs of surgery mice compared to non-surgery mice. These findings suggest that the combination of the target delivery of a nasal vaccine in conjunction with the standard surgery of primary tumors is a plausible adjunctive treatment against the establishment of lung metastasis. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

13 pages, 1447 KB  
Article
Antibody Response Following the Intranasal Administration of SARS-CoV-2 Spike Protein-CpG Oligonucleotide Vaccine
by Kentaro Muranishi, Mao Kinoshita, Keita Inoue, Junya Ohara, Toshihito Mihara, Kazuki Sudo, Ken J. Ishii, Teiji Sawa and Hiroyasu Ishikura
Vaccines 2024, 12(1), 5; https://doi.org/10.3390/vaccines12010005 - 20 Dec 2023
Cited by 4 | Viewed by 2442
Abstract
The new coronavirus infection causes severe respiratory failure following respiratory tract infection with severe acute respiratory syndrome-related coronavirus (SARS-CoV-2). All currently approved vaccines are administered intramuscularly; however, intranasal administration enhances mucosal immunity, facilitating the production of a less invasive vaccine with fewer adverse [...] Read more.
The new coronavirus infection causes severe respiratory failure following respiratory tract infection with severe acute respiratory syndrome-related coronavirus (SARS-CoV-2). All currently approved vaccines are administered intramuscularly; however, intranasal administration enhances mucosal immunity, facilitating the production of a less invasive vaccine with fewer adverse events. Herein, a recombinant vaccine combining the SARS-CoV-2 spike protein receptor-binding domain (RBD), or S1 protein, with CpG-deoxyoligonucleotide (ODN) or aluminum hydroxide (alum) adjuvants was administered intranasally or subcutaneously to mice. Serum-specific IgG titers, IgA titers in the alveolar lavage fluid, and neutralizing antibody titers were analyzed. The nasal administration of RBD protein did not increase serum IgG or IgA titers in the alveolar lavage fluid. However, a significant increase in serum IgG was observed in the intranasal group administered with S1 protein with CpG-ODN and the subcutaneous group administered with S1 protein with alum. The IgA and IgG levels increased significantly in the alveolar lavage fluid only after the intranasal administration of the S1 protein with CpG-ODN. The neutralizing antibody titers in serum and bronchoalveolar lavage were significantly higher in the intranasal S1-CpG group than in every other group. Hence, the nasal administration of the S1 protein vaccine with CpG adjuvant might represent an effective vaccine candidate. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

17 pages, 3067 KB  
Article
Crosstalk between G-Quadruplexes and Dnmt3a-Mediated Methylation of the c-MYC Oncogene Promoter
by Alexander V. Sergeev, Andrei G. Loiko, Adelya I. Genatullina, Alexander S. Petrov, Elena A. Kubareva, Nina G. Dolinnaya and Elizaveta S. Gromova
Int. J. Mol. Sci. 2024, 25(1), 45; https://doi.org/10.3390/ijms25010045 - 19 Dec 2023
Cited by 5 | Viewed by 1942
Abstract
The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites [...] Read more.
The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s). Our in vitro study aimed to investigate how parallel G4s formed by a sequence derived from the c-MYC oncogene promoter region affect the activity of the Dnmt3a catalytic domain (Dnmt3a-CD). For this purpose, we designed synthetic oligonucleotide constructs: a c-MYC G4-forming oligonucleotide and linear double-stranded DNA containing an embedded stable extrahelical c-MYC G4. The topology and thermal stability of G4 structures in these DNA models were analyzed using physicochemical techniques. We showed that Dnmt3a-CD specifically binds to an oligonucleotide containing c-MYC G4, resulting in inhibition of its methylation activity. c-MYC G4 formation in a double-stranded context significantly reduces Dnmt3a-CD-induced methylation of a CpG site located in close proximity to the quadruplex structure; this effect depends on the distance between the non-canonical structure and the specific CpG site. One would expect DNA hypomethylation near the G4 structure, while regions distant from this non-canonical form would maintain a regular pattern of high methylation levels. We hypothesize that the G4 structure sequesters the Dnmt3a-CD and impedes its proper binding to B-DNA, resulting in hypomethylation and activation of c-MYC transcription. Full article
(This article belongs to the Special Issue Molecular Mechanism of DNA Replication and Repair, 2nd Edition )
Show Figures

Figure 1

13 pages, 1488 KB  
Article
Unwinding the SARS-CoV-2 Ribosomal Frameshifting Pseudoknot with LNA and G-Clamp-Modified Phosphorothioate Oligonucleotides Inhibits Viral Replication
by Ekaterina Knizhnik, Stepan Chumakov, Julia Svetlova, Iulia Pavlova, Yuri Khodarovich, Vladimir Brylev, Vjacheslav Severov, Rugiya Alieva, Liubov Kozlovskaya, Dmitry Andreev, Andrey Aralov and Anna Varizhuk
Biomolecules 2023, 13(11), 1660; https://doi.org/10.3390/biom13111660 - 17 Nov 2023
Cited by 4 | Viewed by 2985
Abstract
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained [...] Read more.
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA–DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals. Full article
(This article belongs to the Special Issue Viral Drug Targets and Discovery of Antiviral Agents)
Show Figures

Figure 1

16 pages, 4364 KB  
Article
In Ovo Vaccination with Recombinant Herpes Virus of the Turkey-Laryngotracheitis Vaccine Adjuvanted with CpG-Oligonucleotide Provides Protection against a Viral Challenge in Broiler Chickens
by Carissa Gaghan, Matthew Browning, Abdelhamid M. Fares, Mohamed Faizal Abdul-Careem, Isabel M. Gimeno and Raveendra R. Kulkarni
Viruses 2023, 15(10), 2103; https://doi.org/10.3390/v15102103 - 17 Oct 2023
Cited by 1 | Viewed by 2990
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy [...] Read more.
Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

11 pages, 2389 KB  
Article
A Recombinant Protein XBB.1.5 RBD/Alum/CpG Vaccine Elicits High Neutralizing Antibody Titers against Omicron Subvariants of SARS-CoV-2
by Syamala Rani Thimmiraju, Rakesh Adhikari, Maria Jose Villar, Jungsoon Lee, Zhuyun Liu, Rakhi Kundu, Yi-Lin Chen, Suman Sharma, Karm Ghei, Brian Keegan, Leroy Versteeg, Portia M. Gillespie, Allan Ciciriello, Nelufa Y. Islam, Cristina Poveda, Nestor Uzcategui, Wen-Hsiang Chen, Jason T. Kimata, Bin Zhan, Ulrich Strych, Maria Elena Bottazzi, Peter J. Hotez and Jeroen Polletadd Show full author list remove Hide full author list
Vaccines 2023, 11(10), 1557; https://doi.org/10.3390/vaccines11101557 - 1 Oct 2023
Cited by 11 | Viewed by 6329
Abstract
(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced [...] Read more.
(1) Background: We previously reported the development of a recombinant protein SARS-CoV-2 vaccine, consisting of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, adjuvanted with aluminum hydroxide (alum) and CpG oligonucleotides. In mice and non-human primates, our wild-type (WT) RBD vaccine induced high neutralizing antibody titers against the WT isolate of the virus, and, with partners in India and Indonesia, it was later developed into two closely resembling human vaccines, Corbevax and Indovac. Here, we describe the development and characterization of a next-generation vaccine adapted to the recently emerging XBB variants of SARS-CoV-2. (2) Methods: We conducted preclinical studies in mice using a novel yeast-produced SARS-CoV-2 XBB.1.5 RBD subunit vaccine candidate formulated with alum and CpG. We examined the neutralization profile of sera obtained from mice vaccinated twice intramuscularly at a 21-day interval with the XBB.1.5-based RBD vaccine, against WT, Beta, Delta, BA.4, BQ.1.1, BA.2.75.2, XBB.1.16, XBB.1.5, and EG.5.1 SARS-CoV-2 pseudoviruses. (3) Results: The XBB.1.5 RBD/CpG/alum vaccine elicited a robust antibody response in mice. Furthermore, the serum from vaccinated mice demonstrated potent neutralization against the XBB.1.5 pseudovirus as well as several other Omicron pseudoviruses. However, regardless of the high antibody cross-reactivity with ELISA, the anti-XBB.1.5 RBD antigen serum showed low neutralizing titers against the WT and Delta virus variants. (4) Conclusions: Whereas we observed modest cross-neutralization against Omicron subvariants with the sera from mice vaccinated with the WT RBD/CpG/Alum vaccine or with the BA.4/5-based vaccine, the sera raised against the XBB.1.5 RBD showed robust cross-neutralization. These findings underscore the imminent opportunity for an updated vaccine formulation utilizing the XBB.1.5 RBD antigen. Full article
(This article belongs to the Special Issue Vaccines against SARS-CoV-2 Variants)
Show Figures

Graphical abstract

21 pages, 7373 KB  
Article
Novel Adjuvant S-540956 Targets Lymph Nodes and Reduces Genital Recurrences and Vaginal Shedding of HSV-2 DNA When Administered with HSV-2 Glycoprotein D as a Therapeutic Vaccine in Guinea Pigs
by Sita Awasthi, Motoyasu Onishi, John M. Lubinski, Bernard T. Fowler, Alexis M. Naughton, Lauren M. Hook, Kevin P. Egan, Masaki Hagiwara, Seiki Shirai, Akiho Sakai, Takayuki Nakagawa, Kumiko Goto, Osamu Yoshida, Alisa J. Stephens, Grace Choi, Gary H. Cohen, Kazufumi Katayama and Harvey M. Friedman
Viruses 2023, 15(5), 1148; https://doi.org/10.3390/v15051148 - 10 May 2023
Cited by 4 | Viewed by 5034
Abstract
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of [...] Read more.
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens. Full article
(This article belongs to the Special Issue Advances and Novel Concepts in Herpesvirus Vaccines)
Show Figures

Figure 1

18 pages, 3574 KB  
Article
Imbalanced Inflammatory Responses in Preterm and Term Cord Blood Monocytes and Expansion of the CD14+CD16+ Subset upon Toll-like Receptor Stimulation
by Kirsten Glaser, David Kern, Christian P. Speer, Nicolas Schlegel, Michael Schwab, Ulrich H. Thome, Christoph Härtel and Clyde J. Wright
Int. J. Mol. Sci. 2023, 24(5), 4919; https://doi.org/10.3390/ijms24054919 - 3 Mar 2023
Cited by 4 | Viewed by 2485
Abstract
Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point [...] Read more.
Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point to generally impaired TLR signaling, others to differences in individual pathways. In the present study, we assessed mRNA and protein expression of pro- and anti-inflammatory cytokines in preterm and term cord blood (CB) monocytes compared with adult controls stimulated ex vivo with Pam3CSK4, zymosan, polyinosinic:polycytidylic acid, lipopolysaccharide, flagellin, and CpG oligonucleotide, which activate the TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 pathways, respectively. In parallel, frequencies of monocyte subsets, stimulus-driven TLR expression, and phosphorylation of TLR-associated signaling molecules were analyzed. Independent of stimulus, pro-inflammatory responses of term CB monocytes equaled adult controls. The same held true for preterm CB monocytes—except for lower IL-1β levels. In contrast, CB monocytes released lower amounts of anti-inflammatory IL-10 and IL-1ra, resulting in higher ratios of pro-inflammatory to anti-inflammatory cytokines. Phosphorylation of p65, p38, and ERK1/2 correlated with adult controls. However, stimulated CB samples stood out with higher frequencies of intermediate monocytes (CD14+CD16+). Both pro-inflammatory net effect and expansion of the intermediate subset were most pronounced upon stimulation with Pam3CSK4 (TLR1/2), zymosan (TR2/6), and lipopolysaccharide (TLR4). Our data demonstrate robust pro-inflammatory and yet attenuated anti-inflammatory responses in preterm and term CB monocytes, along with imbalanced cytokine ratios. Intermediate monocytes, a subset ascribed pro-inflammatory features, might participate in this inflammatory state. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

13 pages, 1283 KB  
Article
Effect of CpG-Oligonucleotide in Enhancing Recombinant Herpes Virus of Turkey-Laryngotracheitis Vaccine-Induced Immune Responses in One-Day-Old Broiler Chickens
by Carissa Gaghan, Matthew Browning, Aneg L. Cortes, Isabel M. Gimeno and Raveendra R. Kulkarni
Vaccines 2023, 11(2), 294; https://doi.org/10.3390/vaccines11020294 - 29 Jan 2023
Cited by 7 | Viewed by 3022
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant [...] Read more.
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 μg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1β, and lung IFNγ genes, the IL-1β gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10μg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life. Full article
(This article belongs to the Special Issue Vaccines for Chicken)
Show Figures

Figure 1

12 pages, 5892 KB  
Article
The Pro-Oxidant Effect of Class A CpG ODNs on Human Neutrophils Includes Both Non-Specific Stimulation of ROS Production and Structurally Determined Induction of NO Synthesis
by Ekaterina A. Golenkina, Svetlana I. Galkina, Galina M. Viryasova and Galina F. Sud’ina
Oxygen 2023, 3(1), 20-31; https://doi.org/10.3390/oxygen3010002 - 2 Jan 2023
Cited by 4 | Viewed by 2455
Abstract
Synthetic CpG oligonucleotides are promising components of immunomodulatory drugs for the treatment and prophylaxis of infectious diseases, cancers, and allergies. Phosphorothioate modification stabilizes these compounds, contributing to the achievement of a clinical effect, but at the same time changes their immunomodulatory properties. We [...] Read more.
Synthetic CpG oligonucleotides are promising components of immunomodulatory drugs for the treatment and prophylaxis of infectious diseases, cancers, and allergies. Phosphorothioate modification stabilizes these compounds, contributing to the achievement of a clinical effect, but at the same time changes their immunomodulatory properties. We used the diffusible fluorescent dye dihydroethidium and the non-diffusible 6-carboxy-2′,7′dihydrochlorofluorescein diacetate and cytochrome c probes to demonstrate that it is the phosphorothioate backbones that determine the pronounced nonspecific pro-oxidant effect of CpG ODN on neutrophils. At the same time, as was shown using diaminofluorescein diacetate, the potentiation of nitric oxide synthesis in these leucocytes by CpG ODN class A strictly depends on the presence of CpG motifs and a palindromic “hairpin”. The results obtained will contribute to a more complete understanding of the physiological action of therapeutic agents based on synthetic CpG oligonucleotides. Full article
Show Figures

Figure 1

18 pages, 3740 KB  
Article
The Role of Nucleases Cleaving TLR3, TLR7/8 and TLR9 Ligands, Dicer RNase and miRNA/piRNA Proteins in Functional Adaptation to the Immune Escape and Xenophagy of Prostate Cancer Tissue
by Gordana Kocic, Jovan Hadzi-Djokic, Miodrag Colic, Andrej Veljkovic, Katarina Tomovic, Stefanos Roumeliotis, Andrija Smelcerovic and Vassilios Liakopoulos
Int. J. Mol. Sci. 2023, 24(1), 509; https://doi.org/10.3390/ijms24010509 - 28 Dec 2022
Cited by 7 | Viewed by 3051
Abstract
The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about [...] Read more.
The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about the role of TLRs strictly in immune defense system. Our data reveal an entirely novel role of nucleic acids-sensing Toll-like receptors (NA-TLRs) in functional adaptation of malignant cells for supply and digestion of surrounding metabolic substrates from dead cells as specific mechanism of cancer cells survival, by corresponding ligands accelerated degradation and purine/pyrimidine salvage pathway. The spectrophotometric measurement protocols used for the determination of the activity of RNases and DNase II have been optimized in our laboratory as well as the enzyme-linked immunosorbent method for the determination of NF-κB p65 in prostate tissue samples. The protocols used to determine Dicer RNase, AGO2, TARBP2 and PIWIL4 were based on enzyme-linked immunosorbent assay. The amount of pre-existing acid-soluble oligonucleotides was measured and expressed as coefficient of absorbance. The activities of acid DNase II and RNase T2, and the activities of nucleases cleaving TLR3, TLR7/8 and TLR9 ligands (Poly I:C, poly U and unmethylated CpG), increased several times in PC, compared to the corresponding tumor adjacent and control tissue, exerting very high sensitivity and specificity of above 90%. Consequently higher levels of hypoxanthine and NF-κB p65 were reported in PC, whereas the opposite results were observed for miRNA biogenesis enzyme (Dicer RNase), miRNA processing protein (TARB2), miRNA-induced silencing complex protein (Argonaute-AGO) and PIWI-interacting RNAs silence transposon. Considering the crucial role of purine and pyrimidine nucleotides as energy carriers, subunits of nucleic acids and nucleotide cofactors, future explorations will be aimed to design novel anti-cancer immune strategies based on a specific acid endolysosomal nuclease inhibition. Full article
Show Figures

Figure 1

Back to TopTop