Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = Cr(VI) reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4556 KB  
Article
Degradation of Polymers and Heavy Metals in Waste Drilling Fluid by Sulfur-Doped BiOBr0.5Cl0.5 Photocatalysts
by Tengfei Dong, Guancheng Jiang, Sihe Jiang, Yinbo He and Lili Yang
Gels 2025, 11(9), 684; https://doi.org/10.3390/gels11090684 - 27 Aug 2025
Viewed by 142
Abstract
Waste drilling fluids represent a complex gel–colloidal system containing structurally stable polymeric networks and heavy-metal ions that can cause tremendous damage to the ecosystem. The current disposal methods, like solidification/landfills, formation reinjection, and chemical treatment, commonly suffer from high secondary pollution risks, poor [...] Read more.
Waste drilling fluids represent a complex gel–colloidal system containing structurally stable polymeric networks and heavy-metal ions that can cause tremendous damage to the ecosystem. The current disposal methods, like solidification/landfills, formation reinjection, and chemical treatment, commonly suffer from high secondary pollution risks, poor resource recovery, and incomplete detoxification. This paper developed a photocatalytic approach to complex gel system treatment by hydrothermally synthesizing a novel sulfur-doped, oxygen-vacancy-modified 3D flower-like xS-BiOBr0.5Cl0.5 structure which effectively narrowed the bandgap of BiOX and thus significantly enhanced its catalytic activity. The chemical composition, morphology, specific surface areas, and bandgaps of the materials were characterized. The photocatalytic performance and cyclic stability of the materials were measured, and 0.5S-BiOBr0.5Cl0.5 showed the best photocatalytic performance. The rhodamine B(RhB) degradation and polymer degradation efficiencies of 0.5S-BiOBr0.5Cl0.5 were up to 91% and 79%, respectively, while the Hg(II), Cr(VI), and Cr(III) reduction efficiencies of the material were up to 48.10%, 96.58%, and 96.41%, respectively. The photocatalytic mechanism of the xS-BiOBr0.5Cl0.5 materials was evaluated through an oxygen vacancy analysis, active species capture experiments, and density functional theory (DFT) computations. Overall, the xS-BiOBr0.5Cl0.5 materials can provide a low-cost and harmless treatment method for waste drilling fluids and promote the “green” development of oil and gas. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
18 pages, 2438 KB  
Article
Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture
by Enrique Rodríguez-Castellón, Daniel Ballesteros-Plata and Nicolas Fellenz
Appl. Sci. 2025, 15(17), 9370; https://doi.org/10.3390/app15179370 - 26 Aug 2025
Viewed by 350
Abstract
Two nitrogen-modified mesoporous MCM-41-type silicas were synthesized by the sol–gel route and post-grafting surface modification procedure, obtaining an aminopropyl-modified MCM-41 (denoted MCM-41-N) and an aminoethyl-aminopropyl-modified MCM-41 (denoted MCM-41-NN). Hexavalent chromium removal from acidified water by adsorption and reduction to Cr(III) on the solid [...] Read more.
Two nitrogen-modified mesoporous MCM-41-type silicas were synthesized by the sol–gel route and post-grafting surface modification procedure, obtaining an aminopropyl-modified MCM-41 (denoted MCM-41-N) and an aminoethyl-aminopropyl-modified MCM-41 (denoted MCM-41-NN). Hexavalent chromium removal from acidified water by adsorption and reduction to Cr(III) on the solid mesophases was analyzed. The modified silicas were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectra (FT-IR), nitrogen adsorption–desorption measurements at −196 °C, X-ray photoelectron spectroscopy (XPS), 29Si solid state Nuclear Magnetic Resonance (29Si-RMN), and thermogravimetric analysis (TGA). Both samples exhibited very high capacities for decreasing Cr(VI) concentrations in water, according to the Langmuir isotherm model: 129.9 mg·g−1 for MCM-41-N and 133.3 mg·g−1 for MCM-41-NN. The chromium speciation in the supernatant after 24 h indicates that MCM-41-N had a higher capacity to reduce Cr(VI) to the less toxic Cr(III) species than MCM-41-NN: 92.9% vs. 72.5% when the initial Cr(VI) concentration was 10 mg·g−1. These differences were related to the different capacity of nitrogen atoms in MCM-41-N and MCM-41-NN to interact with the surrounding surface silanols which are required for the chemical reduction in the hexavalent species to take place, as evidenced by FT-IR and XPS analysis. Also, the Cr(III)/Cr(VI) atomic ratios on the solid’s surfaces were higher for MCM-41-N. These results highlight the characteristics that nitrogen atoms incorporated into silica matrices must possess in order to maximize the transformation of Cr(VI) into the trivalent species, thereby reducing the generation of toxic waste harmful to living organisms. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

13 pages, 1740 KB  
Article
Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing
by Xusheng Zheng, Xiaoyue Li, Yanping Liu, Guangqing Liu, Ziyi Yang and Dexun Zou
Toxics 2025, 13(9), 708; https://doi.org/10.3390/toxics13090708 - 22 Aug 2025
Viewed by 331
Abstract
Extracellular electron transfer is crucial in the microbial reduction of hexavalent chromium [Cr(VI)], and N-acylated-L-homoserine lactones (AHLs) could accelerate this process. In this study, fulvic acid (FA) was used as an electron shuttle to enhance the microbial reduction process via stimulating [...] Read more.
Extracellular electron transfer is crucial in the microbial reduction of hexavalent chromium [Cr(VI)], and N-acylated-L-homoserine lactones (AHLs) could accelerate this process. In this study, fulvic acid (FA) was used as an electron shuttle to enhance the microbial reduction process via stimulating extracellular electron transfer efficiency. Compared with 9,10-anthraquinone-2-sulfonic acid (AQS), FA had a stronger positive effect on Cr(VI) reduction by S. putrefaciens, showing the ability of stimulating S. putrefaciens to release AHLs. The concentrations of C6-HSL, C8-HSL and 3OC10-HSL increased by 11.79 ng/L, 19.82 ng/L and 3.01 ng/L after the addition of 2% FA. The bioinformation analysis indicated that AHLs could regulate the synthesis of electron shuttles by S. putrefaciens, such as riboflavin. And the addition of exogenous C6-HSL, C8-HSL, C10-HSL, C12-HSL and 3OC10-HSL increased the Cr(VI) reduction rates by 1.73%, 2.39%, 4.18%, 1.45% and 2.70%, because they could promote the release of riboflavin. It revealed a new pathway by which FA promoted microbial Cr(VI) reduction. This study also provides a novel approach for enhancing the microbial Cr(VI) reduction and a deeper understanding of the communication mechanism among microorganisms. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

16 pages, 1800 KB  
Article
Extracellular Cr(VI) Reduction by the Salt-Tolerant Strain Bacillus safensis BSF-4
by Yilan Liu, Weiping Yu, Tianying Nie, Lu Wang and Yusheng Niu
Microorganisms 2025, 13(8), 1961; https://doi.org/10.3390/microorganisms13081961 - 21 Aug 2025
Viewed by 420
Abstract
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali [...] Read more.
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali soil, which demonstrates efficient Cr(VI) reduction capacity. Physiological assays showed that BSF-4 achieved 89.15% reduction of 20 mg/L Cr(VI) within 72 h, with Cr(III) identified as the primary extracellular end product. Resting cell assays and subcellular fractionation analyses confirmed that Cr(VI) reduction predominantly occurs in the extracellular milieu. X-ray photoelectron spectroscopy (XPS) further revealed soluble Cr(III) complexed with extracellular polymeric substances (EPS). Transcriptomic profiling indicated upregulation of membrane-associated transport systems (facilitating Cr(VI) exclusion) and quorum sensing (QS) pathways (mediating adaptive stress responses). These findings highlight a dual mechanism: (1) extracellular enzymatic reduction mediated by EPS-bound redox proteins, and (2) intracellular detoxification via QS-regulated defense pathways. Collectively, Bacillus safensis BSF-4 exhibits robust Cr(VI) reduction capacity under saline conditions, positioning it as a promising candidate for bioremediation of Cr(VI)-contaminated saline soils and aquatic ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

36 pages, 2136 KB  
Review
Valorization of Agro-Industrial Lignin as a Functional Polymer for Sustainable Wastewater Treatment
by Elena Ungureanu, Bogdan-Marian Tofanica, Eugen Ulea, Ovidiu C. Ungureanu, Maria E. Fortună, Răzvan Rotaru, Irina Volf and Valentin I. Popa
Polymers 2025, 17(16), 2263; https://doi.org/10.3390/polym17162263 - 21 Aug 2025
Viewed by 923
Abstract
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the [...] Read more.
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the remediation of aqueous media contaminated with heavy metals. The study evaluates lignin’s behavior toward nine metal(loid) ions: arsenic, cadmium, chromium, cobalt, copper, iron, nickel, lead, and zinc. Adsorption performance was systematically investigated under static batch conditions, optimizing key parameters, with equilibrium and kinetic data modeled using established isotherms and rate equations. Surface characterization and seed germination bioassays provided supporting evidence. Unmodified Sarkanda grass lignin demonstrated effective adsorption, exhibiting a clear preference for Cu(II) followed by other divalent cations, with lower capacities for As(III) and Cr(VI). Adsorption kinetics consistently followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Thermodynamic studies revealed spontaneous and endothermic processes. Bioassays confirmed significant reduction in aqueous toxicity and strong metal sequestration. This work positions unmodified Sarkanda grass lignin as a bio-based, low-cost polymer platform for emerging water treatment technologies, contributing to circular bioeconomy goals and highlighting the potential of natural polymers in sustainable materials design. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

25 pages, 3789 KB  
Article
Rhizobium’s Reductase for Chromium Detoxification, Heavy Metal Resistance, and Artificial Neural Network-Based Predictive Modeling
by Mohammad Oves, Majed Ahmed Al-Shaeri, Huda A. Qari and Mohd Shahnawaz Khan
Catalysts 2025, 15(8), 726; https://doi.org/10.3390/catal15080726 - 30 Jul 2025
Viewed by 482
Abstract
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed [...] Read more.
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed a significant tolerance to heavy metals, particularly chromium (900 µg/mL), zinc (700 µg/mL), and copper. In the initial investigation, the bacteria strains were morphologically short-rod, Gram-negative, appeared as light pink colonies on media plates, and were biochemically positive for catalase reaction and the ability to ferment glucose, sucrose, and mannitol. Further, bacterial genomic DNA was isolated and amplified with the 16SrRNA gene and sequencing; the obtained 16S rRNA sequence achieved accession no. HE663761.1 from the NCBI GenBank, and it was confirmed that the strain belongs to the Rhizobium genus by phylogenetic analysis. The strain’s performance was best for high hexavalent chromium [Cr(VI)] reduction at 7–8 pH and a temperature of 30 °C, resulting in a total decrease in 96 h. Additionally, the adsorption isotherm Freundlich and Langmuir models fit best for this study, revealing a large biosorption capacity, with Cr(VI) having the highest affinity. Further bacterial chromium reduction was confirmed by an enzymatic test of nitro reductase and chromate reductase activity in bacterial extract. Further, from the metal biosorption study, an Artificial Neural Network (ANN) model was built to assess the metal reduction capability, considering the variables of pH, temperature, incubation duration, and initial metal concentration. The model attained an excellent expected accuracy (R2 > 0.90). With these features, this bacterial strain is excellent for bioremediation and use for industrial purposes and agricultural sustainability in metal-contaminated agricultural fields. Full article
Show Figures

Figure 1

8 pages, 2473 KB  
Proceeding Paper
Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 
by Miyu Sato, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 3; https://doi.org/10.3390/chemproc2025017003 - 29 Jul 2025
Viewed by 334
Abstract
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. [...] Read more.
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. In this study, we present a cost-effective photocatalytic approach using graphitic carbon nitride (g-C3N4) modified with 1,3,5-trihydroxybenzene via one-step thermal condensation. The modified photo-catalyst exhibited improved surface area, porosity, visible-light absorption, and a narrowed band gap, all of which contributed to enhanced charge separation. As a result, nearly complete reduction in Cr(VI) was achieved within 90 min under visible-light irradiation. Further optimization of catalyst dosage and EDTA concentration gave even higher reduction efficiency. This work offers a promising strategy for the design of high-performance photocatalysts for environmental remediation. Full article
Show Figures

Figure 1

20 pages, 2411 KB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 444
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

17 pages, 4765 KB  
Article
Polyethyleneimine-Modified Magnetic Multivalent Iron Derived from Iron-Based Waterwork Sludge for Cr(VI) Adsorption and Reduction
by Jingxi Tie, Huawen Wang, Junkai Zheng, Mengjia Yan, Sihao Shao, Xiaohan Duan and Zhaoyong Ye
Water 2025, 17(13), 1945; https://doi.org/10.3390/w17131945 - 29 Jun 2025
Viewed by 368
Abstract
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption [...] Read more.
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption tests. The results demonstrated that increasing the pH from 2 to 9 significantly decreased the Cr(VI) adsorption capacity from 41.09 mg/g to 15.75 mg/g. The adsorption process was well described by both the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic in nature. The presence of anions (Cl, SO42−, and PO43−) negatively impacted Cr(VI) adsorption, with their inhibitory effects following the order Cl < SO42− < PO43−. Moreover, higher concentrations of these anions led to reduced Cr(VI) adsorption efficiency. After six cycles of use, PEI@MMI(800) retained 79.80% of its initial Cr(VI) adsorption capacity, indicating a loss of 20.20%. Based on the comprehensive characterization of the adsorbent and the results of the Cr(VI) adsorption tests, it was concluded that the removal of Cr(VI) by PEI@MMI(800) involved a combination of electrostatic adsorption, chelation of Cr(VI) by PEI, and reduction of Cr(VI) to Cr(III). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 9334 KB  
Article
Polyethyleneimine Modified Expanded Vermiculite-Supported Nano Zero-Valent Iron for Cr(VI) Removal from Aqueous Solution
by Xinyu Yang, Yan Mu, Lina Zhang, Dan Sun, Tiantian Jian and Weiliang Tian
Materials 2025, 18(13), 2930; https://doi.org/10.3390/ma18132930 - 20 Jun 2025
Viewed by 879
Abstract
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm [...] Read more.
In order to develop an efficient, environmentally friendly heavy metal ions adsorbent, the amino-modified expanded vermiculite-supported nano zero-valent iron (nZVI@PEI/EVMT) was prepared by using polyethyleneimine (PEI) as the functional reagent and expanded vermiculite (EVMT) as the carrier. The characterization results of nZVI@PEI/EVMT confirm that the PEI modification did not destroy the crystal configuration of EVMT, and when nano zero-valent iron (nZVI) was successfully loaded onto the PEI/EVMT surface, the value of saturation magnetic field was 41.5 emu/g, which could be separated from solution with magnet. The performance of Cr(VI) adsorption onto nZVI@PEI/EVMT was studied, showing that the ideal mass ratio for nZVI@PEI/EVMT was 1:1, and the removal capacity was largest when solution pH was 2. After four adsorption–desorption cycles, the adsorption amounts remained 40.1 mg/g. The Cr(VI) adsorption onto nZVI@PEI/EVMT was more consistent with a pseudo-second-order kinetics equation. Isotherm adsorption data accord with the Langmuir model, which suggests that the adsorption was the monolayer, the maximum adsorption amount was 116.2 mg/g at 30 °C and pH 2, and the adsorption was spontaneous and endothermic. It was inferred that the adsorption mechanisms included electrostatic attraction, reduction, chemical complexation, and co-precipitation. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 3440 KB  
Article
Catechol-Modified Alkali Lignin for Cr (VI) Removal from Synthetic Wastewater
by Chenkun Yu, Ze Liang, Ruoyao Zhou, Tingting Gao, Zhaojiang Wang, Xiaoxia Cai, Qian Lu, Cong Li, Jinshui Yao and Qinze Liu
Polymers 2025, 17(12), 1658; https://doi.org/10.3390/polym17121658 - 15 Jun 2025
Viewed by 645
Abstract
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater [...] Read more.
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater or convert it to Cr (III), catechol-modified alkali lignin (CAL) was prepared using catechol, acetone, and alkali lignin, which is a byproduct in the paper-pulping process. The sample was characterized using a combination of techniques, including scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Various factors influencing the adsorption behavior of CAL were investigated. The adsorption behavior aligns with the pseudo-second-order kinetic model and adheres to the Langmuir isotherm model. CAL simultaneously achieves Cr (VI) adsorption (498.4 mg/g) and reduction (54.6% to Cr (III)), surpassing single-function lignin adsorbents by integrating catechol’s redox capacity with lignin’s structural stability, which is another way to efficiently utilize Cr (VI) solutions. The mechanism of adsorption and reduction is discussed, which is influenced by its functional groups. In brief, this method paves a new path for the utilization of alkali lignin and provides novel opportunities for the removal of Cr (VI) contamination. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 3002 KB  
Article
Microwave-Assisted Dried Cells of the Fungus Arthrinium malaysianum as a Potential Biomaterial with Sustainable Bioremediation of Toxic Heavy Metals
by Swagata Roy Chowdhury, Arpita Das, Sanmitra Ghosh, Saptarshi Chatterjee and Rajib Majumder
Appl. Microbiol. 2025, 5(2), 55; https://doi.org/10.3390/applmicrobiol5020055 - 11 Jun 2025
Viewed by 636
Abstract
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass [...] Read more.
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass (microwave heat dried) from Arthrinium malaysianum for the biosorption of toxic chromium. We have meticulously explored and investigated the interactions of hexavalent chromium with dried biomass using several cutting-edge techniques like FTIR for studying the involvement of functional groups on the biomass surface, XRD for the surface architecture changes after metal binding, XPS to unravel the reduction of hexavalent chromium into its non-toxic form, and FESEM-EDX for the visualization of the ultra-structure of fungal cell surface. The Langmuir isotherm demonstrates that the maximum removal capacity Qmax of Cr(VI) is 102.310 mgg−1, at a pH of 3.5 with 100% removal of Cr(VI). There were substantial changes in the surface architecture during adsorption, confirmed by FESEM and AFM studies. FTIR and XPS data analysis indicated that carbonyl, hydroxyl, phosphate, and amine groups were responsible for the conversion of Cr(VI) (toxic) to Cr(III) (non-toxic). The IR spectra of biomass treated with Cr showed a decreased C-O stretching intensity and slight shriveling of the -OH band, and the bands in the FTIR spectra at 1642 cm−1 to 1635 cm−1 and at 1549 cm−1 to 1547 cm−1 shifted and appeared quite distinct. XRD revealed that the chromium-treated biomass had greater crystalline features and also the appearance of a wide peak where 2θ = 20°, approximately, indicating an amorphous nature at 576.0 eV and in highly loaded chromium (500 mg/L) biomass, with the Cr2p level displaying a slight shift, eventually terminating in a (576.0 eV) Cr2O3 to Cr(III) peak. Since the FTIR and XPS data obtained revealed that Cr(VI) reduces to Cr(III), this fungal biomass can also be used for generating metallic nanoparticles during biosorption. Thus, we suggest that the above-mentioned fungal biomass could be a very useful biomaterial for future translational research. We are in the process of fabricating beads with powdered biomass for further studies. Full article
Show Figures

Figure 1

15 pages, 3289 KB  
Article
Enhancing the Catalytic Performance of PdNPs for Cr(VI) Reduction by Increasing Pd(0) Content
by Hongfei Lai, Ling Tan, Zhenkun Shi, Shiyi Huang, Wenjia Yu, Guotong Wei, Jianping Xie, Shuang Zhou and Chaoyu Tian
Microorganisms 2025, 13(6), 1346; https://doi.org/10.3390/microorganisms13061346 - 10 Jun 2025
Viewed by 497
Abstract
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of [...] Read more.
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of PdNPs in fungal-based catalysts. Five Pd-loaded catalysts were synthesized by treating fungal biomass with different chemical reagents, resulting in varying Pd(0) contents. The nanoparticle morphology, chemical states, and functional group interactions during Pd adsorption and reduction were investigated using multiple analytical techniques. The results showed that fungal hyphae remained structurally intact throughout the treatment process. PdNPs smaller than 2 nm were observed, with both Pd(0) and PdO present. The proportion of Pd(0) ranged from 6.4% to 37.2%, depending on the chemical reagent used. In addition, functional groups such as phosphate, amine, hydroxyl, and carboxyl were found to play key roles in palladium binding, underscoring the importance of surface chemistry in the adsorption and reduction process. A strong positive correlation was observed between the Pd(0) content and catalytic activity. Notably, the NCPdSF sample (palladium-loaded biomass treated with sodium formate) exhibited the highest Pd(0) content of 59.2% and achieved the most effective Cr(VI) reduction. These results suggest that Pd(0) content is a key determinant of catalytic efficiency in Cr(VI) reduction and that optimizing chemical treatments to enhance Pd(0) levels can substantially improve catalyst performance. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

12 pages, 2036 KB  
Article
Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction
by Min Zhang, Wenhao Wang, Zherui Fan, Ziwei Bao and Jinxiang Li
Water 2025, 17(12), 1737; https://doi.org/10.3390/w17121737 - 9 Jun 2025
Viewed by 413
Abstract
Sulfidation has gained increasing attention due to its merits to improve the structural-activity of nanoscale zerovalent iron (nZVI) and thus enhance its reactivity toward contaminants. Few studies have been conducted to elucidate the correlation between the structural-activity and reactivity of nZVI, which is [...] Read more.
Sulfidation has gained increasing attention due to its merits to improve the structural-activity of nanoscale zerovalent iron (nZVI) and thus enhance its reactivity toward contaminants. Few studies have been conducted to elucidate the correlation between the structural-activity and reactivity of nZVI, which is important for up-scaling such a decontamination strategy. Taking chromate (Cr(VI)) as the targeted contaminant, this study found that sulfidation enhanced the reactivity of nZVI toward Cr(VI) to varying extents, which was closely related to the degree and order of sulfidation. Particularly, the optimal rate constants of S-nZVI for Cr(VI) removal were 9.79 and 1.48 times higher than that of nZVI in the batch and column systems, respectively. In addition, this study suggested that sulfidation enhanced the electrical conductivity of nZVI by forming conductive iron sulfides (FeSx), while simultaneously reducing the particle aggregation and thus attenuating the settling rate of nZVI in water. More importantly, the reactivity of S-nZVI toward Cr(VI) exhibited negative correlations with its sedimentation activity and electrical conductivity. These relationships can be potentially used to predict the decontamination reactivity of S-nZVI if its sedimentation or conductivity activity was known in advance. Finally, this study clarified the sulfidation-induced improvement in reactivity of nZVI toward Cr(VI), which should be primarily associated with the improved reactive site of S-nZVI due to excellent dispersion and excellent conductivity due to FeSx introduction, ultimately facilitating the reduction of Cr(VI) by nZVI. Full article
Show Figures

Figure 1

19 pages, 10274 KB  
Article
Mechanisms in Hexavalent Chromium Removal from Aquatic Environment by the Modified Hydrochar-Loaded Bacterium Priestia megaterium Strain BM.1
by Mingyu Wu, Xiaofang Ouyang, Yingchao Li, Junxin Zhang, Jiale Liu and Hua Yin
Sustainability 2025, 17(11), 5172; https://doi.org/10.3390/su17115172 - 4 Jun 2025
Cited by 1 | Viewed by 584
Abstract
Microbial remediation of Cr(VI)-polluted wastewater offers an effective and sustainable green method. In this study, a novel strain Priestia megaterium strain BM.1 that was capable of reducing Cr(VI) was domesticated. In order to improve its Cr(VI) reduction and adsorption performance, calcium-modified hydrochar (HC-Ca) [...] Read more.
Microbial remediation of Cr(VI)-polluted wastewater offers an effective and sustainable green method. In this study, a novel strain Priestia megaterium strain BM.1 that was capable of reducing Cr(VI) was domesticated. In order to improve its Cr(VI) reduction and adsorption performance, calcium-modified hydrochar (HC-Ca) was utilized to immobilize the strain to obtain the composite material BM.1-Ca. The BM.1-Ca composite achieved a Cr(VI) removal efficiency of 97% at an initial concentration of 60 mg/L within 60 h, representing a 1.96-fold enhancement compared to BM.1 alone and demonstrating significantly improved microbial Cr(VI) removal capacity. The addition of HC-Ca was instrumental in maintaining the stable Cr(VI) removal efficiency of BM.1 in the presence of altered incubation environments and interference from co-existing ions. The reduction in Cr(VI) by BM.1 and the immobilization of Cr(III) on the surface of BM.1-Ca are the main removal mechanisms of Cr(VI). Analysis of microbial oxidative stress and extracellular polymers showed that HC-Ca was able to attenuate the oxidative stress of BM.1 as well as promote the secretion of extracellular polymers. This study reveals the intrinsic mechanism of the novel material BM.1-Ca for remediation of Cr(VI) pollution in water bodies and provides an effective method for bioremediation of Cr(VI). Full article
Show Figures

Figure 1

Back to TopTop