Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Cu-Al2O3-H2O hybrid nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5928 KB  
Article
Enhanced Efficiency of MHD-Driven Double-Diffusive Natural Convection in Ternary Hybrid Nanofluid-Filled Quadrantal Enclosure: A Numerical Study
by Saleh Mousa Alzahrani and Talal Ali Alzahrani
Mathematics 2024, 12(10), 1423; https://doi.org/10.3390/math12101423 - 7 May 2024
Cited by 12 | Viewed by 1611
Abstract
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary [...] Read more.
The study investigates the performance of fluid flow, thermal, and mass transport within a cavity, highlighting its application in various engineering sectors like nuclear reactors and solar collectors. Currently, the focus is on enhancing heat and mass transfer through the use of ternary hybrid nanofluid. Motivated by this, our research delves into the efficiency of double-diffusive natural convective (DDNC) flow, heat, and mass transfer of a ternary hybrid nanosuspension (a mixture of Cu-CuO-Al2O3 in water) in a quadrantal enclosure. The enclosure’s lower wall is set to high temperatures and concentrations (Th and Ch), while the vertical wall is kept at lower levels (Tc and Cc). The curved wall is thermally insulated, with no temperature or concentration gradients. We utilize the finite element method, a distinguished numerical approach, to solve the dimensionless partial differential equations governing the system. Our analysis examines the effects of nanoparticle volume fraction, Rayleigh number, Hartmann number, and Lewis number on flow and thermal patterns, assessed through Nusselt and Sherwood numbers using streamlines, isotherms, isoconcentration, and other appropriate representations. The results show that ternary hybrid nanofluid outperforms both nanofluid and hybrid nanofluid, exhibiting a more substantial enhancement in heat transfer efficiency with increasing volume concentration of nanoparticles. Full article
Show Figures

Figure 1

19 pages, 4410 KB  
Article
Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer
by Xiangcheng You and Yanbin Wang
Nanomaterials 2024, 14(3), 316; https://doi.org/10.3390/nano14030316 - 4 Feb 2024
Cited by 14 | Viewed by 2247
Abstract
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by [...] Read more.
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by placing copper into H2O to prepare a Cu-H2O nanofluid. Next, Cu-H2O was combined with Al2O3 to create a Cu-Al2O3-H2O hybrid nanofluid. In this article, we present an analytical study of the estimated flows and heat transfer of incompressible three-dimensional magnetohydrodynamic hybrid nanofluids in the boundary layer. The application of similarity transformations converts the interconnected governing partial differential equations of the problem into a set of ordinary differential equations. Utilizing the homotopy analysis method (HAM), a uniformly effective series solution was obtained for the entire spatial region of 0 < η < ∞. The errors in the HAM calculation are smaller than 1 × 10−9 when compared to the results from the references. The volume fractions of the hybrid nanofluid and magnetic fields have significant impacts on the velocity and temperature profiles. The appearance of magnetic fields can alter the properties of hybrid nanofluids, thereby altering the local reduced friction coefficient and Nusselt numbers. As the volume fractions of nanoparticles increase, the effective viscosity of the hybrid nanofluid typically increases, resulting in an increase in the local skin friction coefficient. The increased interaction between the nanoparticles in the hybrid nanofluid leads to a decrease in the Nusselt number distribution. Full article
Show Figures

Figure 1

13 pages, 4938 KB  
Communication
MHD Hybrid Nanofluid Flow over a Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration
by Angadi Basettappa Vishalakshi, Rudraiah Mahesh, Ulavathi Shettar Mahabaleshwar, Alaka Krishna Rao, Laura M. Pérez and David Laroze
Magnetochemistry 2023, 9(5), 118; https://doi.org/10.3390/magnetochemistry9050118 - 27 Apr 2023
Cited by 31 | Viewed by 4151
Abstract
The study of inclined magnetohydrodynamics (MHD) mixed convective incompressible flow of a fluid with hybrid nanoparticles containing a colloidal combination of nanofluids and base fluid is presented in the current research. Al2O3-Cu/H2O hybrid nanofluid [...] Read more.
The study of inclined magnetohydrodynamics (MHD) mixed convective incompressible flow of a fluid with hybrid nanoparticles containing a colloidal combination of nanofluids and base fluid is presented in the current research. Al2O3-Cu/H2O hybrid nanofluid is utilized in the current analysis to enhance the heat transfer analysis. The impact of radiation is also placed at energy equation. The main research methodology includes that the problem provided equations are first transformed into non-dimensional form, and then they are obtained in ordinary differential equations (ODEs) form. Then using the solutions of momentum and transfers equations to solve the given ODEs to get the root of the equation. The main purpose includes the resulting equations are then analytically resolved with the aid of suitable boundary conditions. The results can be discussed with various physical parameters viz., stretched/shrinked-Rayleigh number, stretching/shrinking parameter, Prandtl number, etc. Besides, skin friction and heat transfer coefficient can be examined with suitable similarity transformations. The main significance of the present work is to explain the mixed convective fluid flow on the basis of analytical method. Main findings at the end we found that the transverse and tangential velocities are more for more values of stretched/shrinked-Rayleigh number and mass transpiration for both suction and injection cases. This is the special method it includes stretched/shrinked-Rayleigh number, it contributes major role in this analysis. The purpose of finding the present work is to understand the analytical solution on the basis of mixed convective method. Full article
Show Figures

Figure 1

15 pages, 2721 KB  
Article
Spherical Hybrid Nanoparticles for Homann Stagnation-Point Flow in Porous Media via Homotopy Analysis Method
by Xiangcheng You and Jifeng Cui
Nanomaterials 2023, 13(6), 1000; https://doi.org/10.3390/nano13061000 - 9 Mar 2023
Cited by 7 | Viewed by 1950
Abstract
Non-axisymmetric stagnant-point flows for flat plates in porous media containing spherical Cu-Al2O3-H2O nanoparticles are studied using the homotopy analysis method (HAM). The governing equations are transformed into three coupled non-linear ordinary differential equations through similarity transformations. A [...] Read more.
Non-axisymmetric stagnant-point flows for flat plates in porous media containing spherical Cu-Al2O3-H2O nanoparticles are studied using the homotopy analysis method (HAM). The governing equations are transformed into three coupled non-linear ordinary differential equations through similarity transformations. A large degree of freedom is provided by HAM when selecting auxiliary linear operators. By transforming nonlinear coupled ordinary differential equations with variable coefficients into linear ordinary differential equations with constant coefficients, nonlinear coupled ordinary differential equations can be solved. Over the entire domain, these equations can be solved approximately analytically. The analysis involves a discussion of the impact of many physical parameters generated in the proposed model. The results have shown that skin friction coefficients of Cfx and Cfy increase with volume fraction of hybrid nanofluid and the coefficient of permeability increasing. For the axisymmetric case of γ = 0, when volume fraction, φ, φ1, φ2 = 0, 5%, 10%, 20%, Cfx = Cfy = 1.33634, 1.51918, 1.73905, 2.33449, it can be found that the wall shear stress values increase by 13.68%, 30.14%, and 74.69%, respectively. In response to an increase in hybrid nanofluid volume fractions, local Nusselt numbers Nux increase. Nux decrease and change clearly with the coefficient of permeability increasing in the range of γ < 0; the values of Nux are less affected in the range of γ > 0. Full article
(This article belongs to the Special Issue Advances of Nanoscale Fluid Mechanics)
Show Figures

Figure 1

13 pages, 5251 KB  
Article
Solar Radiation and Thermal Convection of Hybrid Nanofluids for the Optimization of Solar Collector
by Safyan Mukhtar and Taza Gul
Mathematics 2023, 11(5), 1175; https://doi.org/10.3390/math11051175 - 27 Feb 2023
Cited by 28 | Viewed by 2249
Abstract
This study aims to show the role of the stagnation point flow in solar optimization in the presence of a Riga plate. This requirement is conceivable in the case of solar energy management with a suitable solar collector covering and visual thermal optimization. [...] Read more.
This study aims to show the role of the stagnation point flow in solar optimization in the presence of a Riga plate. This requirement is conceivable in the case of solar energy management with a suitable solar collector covering and visual thermal optimization. Solar energy radiation and thermal convection of glycol (C3H8O2)-based aluminum oxide (Al2O3) and copper (Cu) nanoparticles were used for a solar collector, and were studied in terms of the stagnation point flow theoretically. Stagnation refers to the state of a solar thermal system in which the flux varies in the collection loop to control the extra heating. The CVFEM code was used to analyze the flow in the case of represented stagnation using the FEA-Tools multiple physics software that manages partial derivative equations (PDEs). The streamlined patterns and energy contours for different cases were studied in detail. The transformation equations were treated with the numerical method (RK-4 technique) and showed strong agreement of the physical results corresponding to the initial conditions and boundaries. The results showed that hybrid nanofluids have the advanced capability to enhance the thermal performance of the base solvent and provide uniform distribution to the solar panel. The solar optimization and uniform thermal expansion results are displayed graphically. Full article
(This article belongs to the Special Issue Advances in Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

15 pages, 2793 KB  
Article
Entropy Analysis of EMHD Hybrid Nanofluid Stagnation Point Flow over a Porous Stretching Sheet with Melting Heat Transfer in the Presence of Thermal Radiation
by J. Kayalvizhi and A. G. Vijaya Kumar
Energies 2022, 15(21), 8317; https://doi.org/10.3390/en15218317 - 7 Nov 2022
Cited by 28 | Viewed by 2601
Abstract
In this study, the entropy formation of an electromagnetohydrodynamic hybrid nanofluid at a stagnation point flow towards a stretched surface in the presence of melting heat transfer, second-order slip, porous medium, viscous dissipation and thermal radiation are investigated. Hybrid nanoparticles alumina (Al2 [...] Read more.
In this study, the entropy formation of an electromagnetohydrodynamic hybrid nanofluid at a stagnation point flow towards a stretched surface in the presence of melting heat transfer, second-order slip, porous medium, viscous dissipation and thermal radiation are investigated. Hybrid nanoparticles alumina (Al2O3) and copper (Cu) are considered, with the base fluid water (H2O). Similarity transformations are used to address the governing partial differential equations (PDEs) that lead to the corresponding ordinary differential equations. The resulting ODEs are solved by employing bvp4c solver numerically in the MATLAB package. The effects of temperature, transport, production of entropy and Bejan number Be are graphically exhibited. Higher radiation parameters R and an electric field E lead to an increase in fluid temperature. The velocity boundary layer is lowered by the magnetic field and porous media parameters. The opposite behaviour is observed in the electric field E. As a result, hybrid nanofluid has numerous uses in engineering cosmetics, automotive industry, home industry, for cancer treatment, food packaging, pharmaceuticals, fabrics, paper plastics, paints, ceramics, food colorants, electronics, heat exchangers, water purification, lubricants and soaps as well. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 3553 KB  
Article
Unsteady Electro-Hydrodynamic Stagnating Point Flow of Hybridized Nanofluid via a Convectively Heated Enlarging (Dwindling) Surface with Velocity Slippage and Heat Generation
by Abbas Khan, Wasim Jamshed, Mohamed R. Eid, Amjad Ali Pasha, El Sayed M. Tag El Din, Hamiden Abd El-Wahed Khalifa and Samaher Khalaf Alharbi
Symmetry 2022, 14(10), 2136; https://doi.org/10.3390/sym14102136 - 13 Oct 2022
Cited by 31 | Viewed by 1782
Abstract
In (Al2O3-Cu/H2O) hybridized nanofluid (HYNF) is an unsteady electro-hydrodynamic stagnation point flow. A stretchable (shrinkable) surface that was convectively heated was studied in the past. In addition to the traditional nonslip surface, the heat generating (absorbing) and [...] Read more.
In (Al2O3-Cu/H2O) hybridized nanofluid (HYNF) is an unsteady electro-hydrodynamic stagnation point flow. A stretchable (shrinkable) surface that was convectively heated was studied in the past. In addition to the traditional nonslip surface, the heat generating (absorbing) and the velocity slippage constraints are deliberated in this research. An obtained nonlinear scheme is resolved by the homotopy analysis method. Governing parameters are the electric field parameters, that is, the dimensionless parameters including the magnetic parameter, Prandtl quantity, heat generating factor, Eckert quantity, and unsteady factor. We discuss in detail the effects of these variables on the movement of problems and thermal transmission characteristics. Increasing the values of the magneto and electric force parameters increased the temperature. Increasing the Prandtl number lowered the temperature. For the Eckert parameter, an increase in temperature was recognized. The symmetric form of the geometry model displayed improved the fluid flow by the same amount both above and below the stagnation streamline, while it decreased the flow pressure by the same level. The more heat source uses to increase the temperature of the HYNF over the entire area, the more heat is supplied to the plate, but with a heat sink, the opposite effect is observed. Full article
(This article belongs to the Special Issue Symmetry of Nanofluids and Their Applications in Engineering)
Show Figures

Figure 1

24 pages, 5687 KB  
Article
3-D Flow of Magnetic Rotating Hybridizing Nanoliquid in Parabolic Trough Solar Collector: Implementing Cattaneo-Christov Heat Flux Theory and Centripetal and Coriolis Forces
by Mohamed R. Eid
Mathematics 2022, 10(15), 2605; https://doi.org/10.3390/math10152605 - 26 Jul 2022
Cited by 25 | Viewed by 2488
Abstract
Current research proposes a model for assessing the flow properties and heat transmission from hybridized nanofluids to solar collectors (SCs). A theoretical investigation that was based on the application of alumina-water (Al2O3-H2O) conventional nanofluid and copper/alumina-water (Cu-Al [...] Read more.
Current research proposes a model for assessing the flow properties and heat transmission from hybridized nanofluids to solar collectors (SCs). A theoretical investigation that was based on the application of alumina-water (Al2O3-H2O) conventional nanofluid and copper/alumina-water (Cu-Al2O3/H2O) hybrid nanofluid has been considered between two rotating plates in parabolic trough solar collector (PTSC). The Cattaneo–Christov model (CCM) for heat fluxing is used for the thermal boundary layer analysis. The impact of centripetal and Coriolis forces on the swirling flow has been considered. Adequate transformations are utilised for the conversion of the regulating partial differential equations (PDEs) into a group of dimensionless ordinary differential equations (ODEs). Dimensionless ODEs are then tackled by the Keller box method (KBM) in the MATLAB program. The basic concept of this study is to inspect the influences of change in substantial factors on velocities, temperature, and heat transmission rate for both Al2O3-H2O mono nanofluid (MNF) and Cu-Al2O3/H2O hybridized nanofluid (HBNF). The striking feature of the investigation is that the hybrid nanofluid Cu-Al2O3/H2O has a less frictional force and an elevated heat transmission rate (RHT) as assessed with the traditional nanoliquid Al2O3-H2O. Consequently, the rotating factor slows RHT on the surface. In this case study, HBNF is better than the mono NF as a thermal and electrical conductor. Full article
Show Figures

Figure 1

12 pages, 2266 KB  
Article
Nanoparticle Sphericity Investigation of Cu-Al2O3-H2O Hybrid Nanofluid Flows between Inclined Channels Filled with a Porous Medium
by Xiangcheng You
Nanomaterials 2022, 12(15), 2552; https://doi.org/10.3390/nano12152552 - 25 Jul 2022
Cited by 7 | Viewed by 1909
Abstract
With the porous medium-filling inclined channels, we investigate the nanoparticle sphericity of Cu-Al2O3-H2O hybrid nanofluid flows. We consider the constant flow rate through the channels as well as the uniform heat flux on wall channels. We provide [...] Read more.
With the porous medium-filling inclined channels, we investigate the nanoparticle sphericity of Cu-Al2O3-H2O hybrid nanofluid flows. We consider the constant flow rate through the channels as well as the uniform heat flux on wall channels. We provide analytical solutions for both the velocity and temperature fields. Several parameters are considered in the analytical solutions, including the mixed convection variable, the Peclet number, the channel tilt angle, and nanoparticle sphericity and volume fractions. The significant findings of this study are that the effective thermal conductivity increases when increasing the temperature in the same nanoparticle volume fractions. Nanoparticles with a smaller average sphericity size have a greater specific surface area and contain a greater concentration of small particles, which enhances the internal heat transfer of nanofluids. The other noteworthy observation of this study is that when the nanoparticle volume fraction increases from 0.1 to 0.2, although the heat transfer enhancement rate has slowed down, it has also increased by about 25%. The hybrid nanofluids have suitable stability, and the enhanced heat transfer effect is better with the increase in nanoparticle compositions. Full article
(This article belongs to the Special Issue Nanofluid and Thermal Management)
Show Figures

Figure 1

15 pages, 3227 KB  
Article
Hybrid Nanofluid Flow Induced by an Oscillating Disk Considering Surface Catalyzed Reaction and Nanoparticles Shape Factor
by Muhammad Ramzan, Saima Riasat, Saleh Fahad Aljurbua, Hassan Ali S. Ghazwani and Omar Mahmoud
Nanomaterials 2022, 12(11), 1794; https://doi.org/10.3390/nano12111794 - 24 May 2022
Cited by 25 | Viewed by 3051
Abstract
Lately, a new class of nanofluids, namely hybrid nanofluids, has been introduced that performs much better compared with the nanofluids when a healthier heat transfer rate is the objective of the study. Heading in the same direction, the present investigation accentuates the unsteady [...] Read more.
Lately, a new class of nanofluids, namely hybrid nanofluids, has been introduced that performs much better compared with the nanofluids when a healthier heat transfer rate is the objective of the study. Heading in the same direction, the present investigation accentuates the unsteady hybrid nanofluid flow involving CuO, Al2O3/C2H6O2 achieved by an oscillating disk immersed in the porous media. In a study of the homogeneous and heterogeneous reactions, the surface catalyzed reaction was also considered to minimize the reaction time. The shape factors of the nanoparticles were also taken into account, as these play a vital role in assessing the thermal conductivity and heat transfer rate of the system. The assumed model is presented mathematically in the form of partial differential equations. The system is transformed by invoking special similarity transformations. The Keller Box scheme was used to obtain numerical and graphical results. It is inferred that the blade-shaped nanoparticles have the best thermal conductivity that boosts the heat transfer efficiency. The oscillation and surface-catalyzed chemical reactions have opposite impacts on the concentration profile. This analysis also includes a comparison of the proposed model with a published result in a limiting case to check the authenticity of the presented model. Full article
(This article belongs to the Special Issue Advances in Modeling and Simulation of Nanofluid Flows)
Show Figures

Figure 1

22 pages, 4666 KB  
Article
Impact of Smoluchowski Temperature and Maxwell Velocity Slip Conditions on Axisymmetric Rotated Flow of Hybrid Nanofluid past a Porous Moving Rotating Disk
by Umair Khan, Aurang Zaib, Iskandar Waini, Anuar Ishak, El-Sayed M. Sherif, Wei-Feng Xia and Noor Muhammad
Nanomaterials 2022, 12(2), 276; https://doi.org/10.3390/nano12020276 - 15 Jan 2022
Cited by 39 | Viewed by 3430
Abstract
Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They have a variety of applications in the medical field, including cell separation, drug targeting, destruction of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into [...] Read more.
Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They have a variety of applications in the medical field, including cell separation, drug targeting, destruction of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into a regular fluid is referred to as a hybrid nanofluid. It has a variety of innovative applications such as microfluidics, heat dissipation, dynamic sealing, damping, and so on. Because of these numerous applications of nanofluids in minds, therefore, the objective of the current exploration divulged the axisymmetric radiative flow and heat transfer induced by hybrid nanofluid impinging on a porous stretchable/shrinkable rotating disc. In addition, the impact of Smoluchowski temperature and Maxwell velocity slip boundary conditions are also invoked. The hybrid nanofluid was formed by mixing the copper (Cu) and alumina (Al2O3) nanoparticles scattered in the regular (viscous) base fluid (H2O). Similarity variables are used to procure the similarity equations, and the numerical outcomes are achieved using bvp4c in MATLAB software. According to the findings, double solutions are feasible for stretching (λ>0) and shrinking cases (λ<0). The heat transfer rate is accelerated as the hybrid nanoparticles increases. The suction parameter enhances the friction factors as well as heat transfer rate. Moreover, the friction factor in the radial direction and heat transfer enrich for the first solution and moderate for the second outcome due to the augmentation δ1, while the trend of the friction factor in the radial direction is changed only in the case of stretching for both branches. Full article
(This article belongs to the Special Issue New Research on Heat Transfer with Properties of Nanofluids)
Show Figures

Figure 1

13 pages, 7881 KB  
Article
Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme
by M. M. Rashidi, M. Sadri and M. A. Sheremet
Nanomaterials 2021, 11(9), 2250; https://doi.org/10.3390/nano11092250 - 31 Aug 2021
Cited by 78 | Viewed by 4046
Abstract
In this study, the energy transference of a hybrid Al2O3-Cu-H2O nanosuspension within a lid-driven heated square chamber is simulated. The domain is affected by a horizontal magnetic field. The vertical sidewalls are insulated and the horizontal borders [...] Read more.
In this study, the energy transference of a hybrid Al2O3-Cu-H2O nanosuspension within a lid-driven heated square chamber is simulated. The domain is affected by a horizontal magnetic field. The vertical sidewalls are insulated and the horizontal borders of the chamber are held at different fixed temperatures. A fourth-order accuracy compact method is applied to work out the vorticity-stream function view of incompressible Oberbeck–Boussinesq equations. The method used is validated against previous numerical and experimental works and good agreement is shown. The flow patterns, Nusselt numbers, and velocity profiles are studied for different Richardson numbers, Hartmann numbers, and the solid volume fraction of hybrid nanoparticles. Flow field and heat convection are highly affected by the magnetic field and volume fraction of each type of nanoparticles in a hybrid nanofluid. The results show an improvement of heat transfer using nanoparticles. To achieve a higher heat transmission rate by using the hybrid nanofluid, flow parameters like Richardson number and Hartmann number should be considered. Full article
(This article belongs to the Special Issue Nanotechnology for Heat Transfer and Storage)
Show Figures

Figure 1

20 pages, 59988 KB  
Article
Entropy Generation Analysis and Radiated Heat Transfer in MHD (Al2O3-Cu/Water) Hybrid Nanofluid Flow
by Nabeela Parveen, Muhammad Awais, Saeed Ehsan Awan, Wasim Ullah Khan, Yigang He and Muhammad Yousaf Malik
Micromachines 2021, 12(8), 887; https://doi.org/10.3390/mi12080887 - 27 Jul 2021
Cited by 29 | Viewed by 2925
Abstract
This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation [...] Read more.
This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves up to 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for β while it enhances for Bi, R and λ. Moreover, heat transfer rate elevates for large Bi with convective conditions at surface. Full article
(This article belongs to the Special Issue Non-Newtonian Microfluidics)
Show Figures

Figure 1

20 pages, 5535 KB  
Article
Unsteady MHD Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point
by Nurul Amira Zainal, Roslinda Nazar, Kohilavani Naganthran and Ioan Pop
Mathematics 2021, 9(5), 549; https://doi.org/10.3390/math9050549 - 5 Mar 2021
Cited by 25 | Viewed by 3141
Abstract
There has been significant interest in exploring a stagnation point flow due to its numerous potential uses in engineering applications such as cooling of nuclear reactors. Hence, this study proposed a numerical analysis on the unsteady magnetohydrodynamic (MHD) mixed convection at three-dimensional stagnation [...] Read more.
There has been significant interest in exploring a stagnation point flow due to its numerous potential uses in engineering applications such as cooling of nuclear reactors. Hence, this study proposed a numerical analysis on the unsteady magnetohydrodynamic (MHD) mixed convection at three-dimensional stagnation point flow in Al2O3–Cu/H2O hybrid nanofluid over a permeable sheet. The ordinary differential equations are accomplished by simplifying the governing partial differential equations through suitable similarity transformation. The numerical computation is established by the MATLAB system software using the bvp4c technique. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The influence of certain functioning parameters is inspected, and notable results exposed that the rate of heat transfer is exaggerated along with the skin friction coefficient while the suction/injection and magnetic parameters are intensified. The results also signified that the rise in the volume fraction of the nanoparticle and the decline of the unsteadiness parameter demonstrates a downward attribution towards the heat transfer performance and skin friction coefficient. Conclusively, the observations are confirmed to have multiple solutions, which eventually contribute to an investigation of the analysis of the solution stability, thereby justifying the viability of the first solution. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing)
Show Figures

Figure 1

22 pages, 4576 KB  
Article
Unsteady Stagnation Point Flow of Hybrid Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet with Velocity Slip
by Nurul Amira Zainal, Roslinda Nazar, Kohilavani Naganthran and Ioan Pop
Mathematics 2020, 8(10), 1649; https://doi.org/10.3390/math8101649 - 24 Sep 2020
Cited by 60 | Viewed by 3986
Abstract
Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified [...] Read more.
Unsteady stagnation point flow in hybrid nanofluid (Al2O3-Cu/H2O) past a convectively heated stretching/shrinking sheet is examined. Apart from the conventional surface of the no-slip condition, the velocity slip condition is considered in this study. By incorporating verified similarity transformations, the differential equations together with their partial derivatives are changed into ordinary differential equations. Throughout the MATLAB operating system, the simplified mathematical model is clarified by employing the bvp4c procedure. The above-proposed approach is capable of producing non-uniqueness solutions when adequate initial assumptions are provided. The findings revealed that the skin friction coefficient intensifies in conjunction with the local Nusselt number by adding up the nanoparticles volume fraction. The occurrence of velocity slip at the boundary reduces the coefficient of skin friction; however, an upward trend is exemplified in the rate of heat transfer. The results also signified that, unlike the parameter of velocity slip, the increment in the unsteady parameter conclusively increases the coefficient of skin friction, and an upsurge attribution in the heat transfer rate is observed resulting from the increment of Biot number. The findings are evidenced to have dual solutions, which inevitably contribute to stability analysis, hence validating the feasibility of the first solution. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics 2020)
Show Figures

Figure 1

Back to TopTop