Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,158)

Search Parameters:
Keywords = Cu3N

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 - 1 Sep 2025
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

13 pages, 1079 KB  
Article
Isotopic N,N-Dimethyl Leucine-Based Mass Spectrometric Quantification of Metabolites Following Copper Exposure
by Olga Riusech and Lingjun Li
Biomolecules 2025, 15(9), 1264; https://doi.org/10.3390/biom15091264 - 1 Sep 2025
Viewed by 38
Abstract
Crustaceans are particularly sensitive to copper toxicity, and although the downstream effects of increased copper exposure on the metabolome are often postulated and observed, they are rarely measured. To perform absolute quantification of hydrophilic small-molecule metabolites in the hemolymph of the crustacean Cancer [...] Read more.
Crustaceans are particularly sensitive to copper toxicity, and although the downstream effects of increased copper exposure on the metabolome are often postulated and observed, they are rarely measured. To perform absolute quantification of hydrophilic small-molecule metabolites in the hemolymph of the crustacean Cancer borealis, we derivatized targeted metabolites related to copper toxicity using in-house-developed isotopic N,N-dimethyl leucine (iDiLeu) tags. Selected analytes were pooled at previously determined concentrations to serve as internal standards, and a calibration curve was generated. The sample loss was minimized by optimizing the derivatization-assisted sample cleanup using dispersive liquid–liquid microextraction (DLLME) and hydrophilic–lipophilic balancing (HLB). Calibration curves were then used for the absolute quantification of metabolites of interest following 30 min, 1 h, and 2 h exposures to 10 µM CuCl2. We found that glutamic acid was downregulated after 2 h of copper exposure, which may disrupt cellular metabolism and increase oxidative stress in crustaceans. These changes could have significant impacts on crustacean populations and the ecosystems they support. Full article
Show Figures

Figure 1

13 pages, 2106 KB  
Article
Oxygen Vacancy-Engineered Cu2O@CuS p–p Heterojunction Gas Sensor for Highly Sensitive n-Butanol Detection
by Di Zhang, Zhengfang Qu, Chenchen Li, Huan Wang, Yong Zhang, Xiang Ren and Rui Xu
Chemosensors 2025, 13(9), 324; https://doi.org/10.3390/chemosensors13090324 - 1 Sep 2025
Viewed by 101
Abstract
The sensitive detection of n-butanol is of high scientific and practical importance for ensuring safety in industrial production. In this study, hollow Cu2O@CuS core–shell nanocubic heterostructures were fabricated via a multistep templating method. The Cu2O@CuS heterostructures demonstrated exceptional performance, [...] Read more.
The sensitive detection of n-butanol is of high scientific and practical importance for ensuring safety in industrial production. In this study, hollow Cu2O@CuS core–shell nanocubic heterostructures were fabricated via a multistep templating method. The Cu2O@CuS heterostructures demonstrated exceptional performance, with an ultrahigh Brunauer–Emmett–Teller specific surface area that provided abundant active sites and a unique hollow architecture that enhanced mass transport and improved gas adsorption/desorption kinetics. High-density surface oxygen vacancies on the Cu2O@CuS nanocubic heterostructures provide a key structural basis for the preferential adsorption of n-butanol molecules on its surface. The p–p heterojunction configuration further enhanced selective sensor response by optimizing the charge carrier separation and band structure modulation. The developed sensor achieved a detection limit of 3.18 ppm while exhibiting outstanding sensitivity, stability, and response time, meeting the stringent requirements for n-butanol detection in both industrial and agricultural settings. This work provides new insights on how to design materials for gas sensors. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

8 pages, 2204 KB  
Article
Process and Mechanism of Surface Brazing of Graphene on Aluminum Nitride
by Wenbo Li, Zijia Wang, Xinyun Wu, Deren Kong, Chundong Xu, Yugang Yin and Jing Lv
Coatings 2025, 15(9), 1011; https://doi.org/10.3390/coatings15091011 - 1 Sep 2025
Viewed by 67
Abstract
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect [...] Read more.
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect the graphene film/AlN. The mechanism of the influence of brazing temperatures on the microstructure and thermal conductivity of joints is discussed. The thermal conductivity of the graphene/AlN double layer composite brazed at 890 °C for 10 min holding time was the highest at 482.3 W m−1 K−1. This study provides a new solution for the application of AlN ceramics in high-heat-flow scenarios. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

10 pages, 1663 KB  
Article
A Hydrophilic Copper–Viologen Hybrid Exhibiting High Degradation Efficiency on Commercial Dye in Maritime Accidents
by Yali Gao, Chaojian Hu, Xihe Huang, Haohong Li, Tong Lou and Xueqiang Zhuang
Molecules 2025, 30(17), 3525; https://doi.org/10.3390/molecules30173525 - 28 Aug 2025
Viewed by 266
Abstract
Photocatalysis is a promising strategy for the treatment of dangerous chemical pollutants in the ocean. In this work, a stable copper-based photocatalyst, i.e., {[Cu(BPA)2]·2I3}n (1, BPA = 4,4′-bipyridinium-N-pentanoic acid), exhibited excellent degradation performance [...] Read more.
Photocatalysis is a promising strategy for the treatment of dangerous chemical pollutants in the ocean. In this work, a stable copper-based photocatalyst, i.e., {[Cu(BPA)2]·2I3}n (1, BPA = 4,4′-bipyridinium-N-pentanoic acid), exhibited excellent degradation performance in dye pollutant in seawater. According to the structural analysis, this photocatalyst consists of 1-D cationic [Cu(BPA)2]n2n+ infinite chain and two I3− polyiodide anions. In the [Cu(BPA)2]n2n+ chain, the distorted CuO4N2 octahedra are bridged by asymmetric viologen ligand (BPA), which result in a 1-D ladder-shaped chain. Strong C–H···O/I hydrogen bonds contribute to the formation of a 2-D layer along bc-plane, in which I3− anions are stacked among the cationic chains. The strong adsorption from ultraviolet to visible regions together with its high charge separation efficiency implies its usage as excellent visible-light-driven catalysis. Interestingly, good photocatalytic performance for the degradation of Rhodamine B (RhB) in seawater can be observed by using this hybrid as photocatalyst. In detail, 90.6% degradation ratio of RhB can be achieved in 150 min under visible light, which was monitored on a UV–Vis spectrum. This work could pave the way for new ocean pollutant treatments for shipping accidents. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

19 pages, 1933 KB  
Article
Mixed-Ligand Copper(II) Complexes Derived from Pyridinecarbonitrile Precursors: Structural Features and Thermal Behavior
by Amalija Golobič, Matjaž Kristl, Tinkara Marija Podnar, Zvonko Jagličić and Brina Dojer
Inorganics 2025, 13(9), 287; https://doi.org/10.3390/inorganics13090287 - 27 Aug 2025
Viewed by 285
Abstract
Pyridinecarbonitriles (pyCN), also referred to as cyanopyridines, are promising ligands for the formation of pyridine-based coordination compounds due to their two different N-donor atoms, which enable versatile coordination modes. Copper(II) complexes containing pyCN derivatives are of particular interest for their potential applications in [...] Read more.
Pyridinecarbonitriles (pyCN), also referred to as cyanopyridines, are promising ligands for the formation of pyridine-based coordination compounds due to their two different N-donor atoms, which enable versatile coordination modes. Copper(II) complexes containing pyCN derivatives are of particular interest for their potential applications in medicinal chemistry and materials science. In this study, the synthesis, structural characterization, and thermal and magnetic properties of three new copper(II) complexes with 3-pyCN, 4-pyCN, and ethyl picolinimidate, obtained in situ by means of alcoholysis of 2-pyCN, are reported: [Cu2(μ-Ac)4(3-pyCN)2] (1), [Cu(H2O)2(Etpic)2]NO3 (2), and [Cu(NO3)2(CH3CN)(4-pyCN)2]·CH3CN (3). Single-crystal X-ray diffraction confirmed that complex 1 features a dinuclear paddle-wheel structure with bridging acetato ligands and monodentate 3-pyCN molecules, coordinated through the ring nitrogen, while complexes 2 and 3 are mononuclear. Thermal analysis showed an intense and highly exothermic decomposition of complex 3, containing nitrate ligands. Magnetic measurements revealed strong antiferromagnetic coupling in the dinuclear complex 1, whereas complexes 2 and 3 displayed paramagnetic behavior with effective magnetic moments ranging from 1.8 μB to 2.0 μB, consistent with isolated Cu(II) centers. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

17 pages, 8243 KB  
Article
Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature
by Yuhang Zhai, Lianxu Lv and Jiajie Fan
Processes 2025, 13(9), 2727; https://doi.org/10.3390/pr13092727 - 26 Aug 2025
Viewed by 373
Abstract
H2S detection is critical for personal and industrial safety. Generally, metal oxide-based H2S sensors exhibit no response at room temperature (RT). In this study, CuO/ZnWO4 (C-ZWO) nanocomposites were prepared via a two-step hydrothermal process and applied to RT [...] Read more.
H2S detection is critical for personal and industrial safety. Generally, metal oxide-based H2S sensors exhibit no response at room temperature (RT). In this study, CuO/ZnWO4 (C-ZWO) nanocomposites were prepared via a two-step hydrothermal process and applied to RT H2S sensing. The results show that the C-ZWO sensors exhibit an elevated response value at RT and balanced gas-sensing properties at 100 °C. Significantly, the response value of a 10% C-ZWO sensor to 25 ppm of H2S at RT is 651.6 with a response time of 78 s, which is 310.3 times that of the ZnWO4 sensor (2.1). The systemic characterization results suggest that the enhanced RT H2S-sensing properties are ascribed to the synergistic effects of the growth-specific surface area and oxygen vacancy occupancy, the enhanced oxygen reduction ability, and the formation of the p–n heterojunction structure between CuO and ZnWO4. The C-ZWO nanocomposites possess added active sites for H2S adsorption and dissociation, with the p–n heterojunction giving rise to higher electrical resistance, and thus, the follow-up produces a high response value even at RT. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

16 pages, 4347 KB  
Article
Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun
by Yan-Fen Huang, Shao-Fen Jian, Yang Lin and Chu Zhong
Agronomy 2025, 15(9), 2029; https://doi.org/10.3390/agronomy15092029 - 25 Aug 2025
Viewed by 358
Abstract
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, [...] Read more.
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, and primary dihydrochalcones in L. litseifolius leaves at various developmental stages, and analyzed their interrelationships. Mineral nutrients such as phosphate (P), potassium (K), magnesium (Mg), zinc (Zn), boron (B), and copper (Cu), along with trilobatin, were most abundant in the youngest leaves. Conversely, calcium (Ca), iron (Fe), sulfur (S), manganese (Mn), selenium (Se), sugars, soluble protein, amino acids, chlorophyll, and carotenoids predominantly accumulated in old leaves, paralleling the distribution of phlorizin. Nitrogen (N) and molybdenum (Mo) concentrations were higher in mature leaves. In young leaves, P, K, Mg, S, Mn, Zn, and B positively correlated with phlorizin and trilobatin, while N, chlorophyll, carotenoids, and fructose correlated negatively. Trilobatin was the primary contributor to hydroxyl radical (·OH) scavenging capacity. Redundancy analysis highlighted N, P, Mg, B, Zn, Cu, Fe, Mo, and Se as key mineral nutrients influencing phlorizin and trilobatin accumulation. These findings offer insights for mineral nutrient management and effective utilization of L. litseifolius. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 4904 KB  
Article
Investigation of Combustion Performance of Hypergolic Ionic Liquid Fuels Through Injector Design
by Vikas Khandu Bhosale, Keonwoong Lee, Vincent Mario Pierre Ugolini and Hosung Yoon
Aerospace 2025, 12(9), 759; https://doi.org/10.3390/aerospace12090759 - 25 Aug 2025
Viewed by 370
Abstract
Hypergolic ionic liquid fuels are promising alternatives to the toxic hydrazine-based propellants. The present study investigates the combustion performance of a fuel composed of 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) and copper(I) thiocyanate (CuSCN) with 95 wt% hydrogen peroxide (H2O2) in a [...] Read more.
Hypergolic ionic liquid fuels are promising alternatives to the toxic hydrazine-based propellants. The present study investigates the combustion performance of a fuel composed of 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) and copper(I) thiocyanate (CuSCN) with 95 wt% hydrogen peroxide (H2O2) in a 50 N thruster. Two injectors, DM1 (low pressure drop) and DM2 (high pressure drop), were tested at chamber pressures of 10 and 15 bar. The DM1 injector at 15 bar chamber pressure showed high combustion efficiency but suffered from strong pressure oscillations (>10% instability). Switching to the DM2 injector reduced instability (<5%) by increasing the pressure drop. Combustion stability was also improved as the fuel injector orifice diameter/fuel jet velocity (D/V) decreased. FFT analysis showed an instability frequency of 253 Hz with DM1/15 bar, which was higher than the DM1/10 bar test results. In conclusion, the test results revealed the injector or chamber design and pressure drop are the key factors in improving combustion stability for hypergolic propulsion systems. Full article
(This article belongs to the Special Issue Green Propellants for In-Space Propulsion)
Show Figures

Figure 1

13 pages, 1218 KB  
Article
Identification of Patterns of Trace Mineral Deficiencies in Dairy and Beef Cattle Herds in Spain
by Candela Fernández-Villa, Lucas Rigueira, Marta López-Alonso, Belén Larrán, Inmaculada Orjales, Carlos Herrero-Latorre, Víctor Pereira and Marta Miranda
Animals 2025, 15(17), 2480; https://doi.org/10.3390/ani15172480 - 23 Aug 2025
Viewed by 362
Abstract
Microminerals such as cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), and zinc (Zn) play key roles in cattle health. However, trace element imbalances are often underdiagnosed. This study retrospectively analyzed serum samples from 1273 cows across [...] Read more.
Microminerals such as cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), and zinc (Zn) play key roles in cattle health. However, trace element imbalances are often underdiagnosed. This study retrospectively analyzed serum samples from 1273 cows across 117 herds in Spain, encompassing conventional dairy (n = 46), pasture-based dairy (n = 11), organic dairy (n = 25), and semi-extensive beef (n = 35) systems. Trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). All herds were investigated for clinical or productive issues where mineral deficiencies were suspected. Significant differences were found in serum trace mineral concentrations between production systems. Adequacy rates were highest in conventional dairy herds receiving routine mineral supplementation, while deficiencies in Se, I, and Cu were frequently detected in pasture-based, organic, and beef herds. Zinc deficiencies were rare and typically involved complex, combined deficiencies. At the farm level, multielement deficiencies (≥3 elements) were detected in 39–45% of organic, pasture-based, and beef herds, but in only 5% of conventional dairy herds (p < 0.001). Principal component and cluster analyses produced consistent groupings of minerals according to dietary supplementation and soil-driven exposure. These findings highlight the increased vulnerability of low-input systems to complex micromineral imbalances and underline the importance of system-adapted mineral-monitoring and supplementation strategies in herd health management. However, as the study is based on diagnostic submissions rather than a randomized herd survey, the findings should be interpreted with caution due to potential selection bias. Full article
(This article belongs to the Collection Feeding Cattle for Health Improvement)
Show Figures

Figure 1

13 pages, 1260 KB  
Article
Seasonal Uptake and Partitioning of Macro- and Micronutrients in Yellow-Fleshed Kiwifruit (Actinidia chinensis var. chinensis)
by Elena Baldi, Maurizio Quartieri, Giovambattista Sorrenti, Marco Mastroleo, Evangelos Xylogiannis and Moreno Toselli
Horticulturae 2025, 11(9), 1003; https://doi.org/10.3390/horticulturae11091003 - 23 Aug 2025
Viewed by 582
Abstract
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial [...] Read more.
Little information is available on the yellow-fleshed Zespri Zesy002 kiwifruit dynamic of mineral nutrient uptake and partitioning within organs. The aim of the present experiment was to find nutrient requirements and supply data for a specific nutrient management plan for Zesy002. The trial was conducted, for three years, in northern Italy, on a six-year-old kiwifruit orchard of the variety Zespri Zesy002. During the experiment organs were periodically sampled and analyzed for macro- and micronutrient concentration. A yearly nutrient uptake of 175 g N plant−1, 16 g P plant−1, 138 g K plant−1, 235 g Ca plant−1, 48 g Mg plant−1, 17 g S plant−1, 247 mg B plant−1, 673 mg Cu plant−1, 5.20 g Fe plant−1, 473 mg Mn plant−1, and 263 mg Zn plant−1 was calculated, confirming that kiwifruit is a high-nutrient-demanding species. The nutrients found in the tree organs were divided in two factions: removed (not returned into the soil) and recycled (returned into the soil during and at the end of the growing cycle). The two fractions were similar for N, P, K, S, and Mn. The fraction recycled of Ca, Mg, Cu, and Zn was higher than the fraction removed, and the reverse was observed for Fe. These data created the basis for the determination of the correct nutritional plans that take into consideration not only nutrient requirements but also the dynamics of uptake during the season. Full article
(This article belongs to the Special Issue Mineral Nutrition of Plants)
Show Figures

Figure 1

20 pages, 3774 KB  
Article
Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum)
by Danielle Clade, Patrick Veazie, Jennifer Boldt, Kristin Hicks, Christopher Currey, Nicholas Flax, Kellie Walters and Brian Whipker
Appl. Sci. 2025, 15(17), 9266; https://doi.org/10.3390/app15179266 - 22 Aug 2025
Viewed by 382
Abstract
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of [...] Read more.
Cilantro (Coriandrum sativum L.) is a popular annual culinary herb grown for its leaves or seeds. With the increase in hydroponic herb production in controlled environments, a need exists for leaf tissue nutrient standards specific to this production system. The objective of this study was to develop comprehensive foliar mineral nutrient interpretation ranges for greenhouse-grown cilantro. Cilantro plants were grown in a hydroponic sand culture system to induce and document nutritional disorders. Plants were supplied with a modified Hoagland’s solution, which was adjusted to individually add or omit one nutrient per treatment while holding all others constant. Deficiency and toxicity symptoms were photographed, after which the plant tissue was collected to determine plant dry weight and critical tissue nutrient concentrations. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), iron (Fe), and zinc (Zn) deficiencies, as well as B toxicity, were induced. Deficiencies of copper (Cu), manganese (Mn), and molybdenum (Mo) were not observed during the experiment. Additional foliar tissue analysis data (n = 463) were compiled to create nutrient interpretation ranges for 12 essential elements based on a hybrid meta-analysis Sufficiency Range Approach (SRA). This approach defines ranges for deficient, low, sufficient, high, and excessive values. For each element, the optimal distribution was selected according to the lowest Bayesian Information Criterion (BIC) value. A Normal distribution best represented K and S. A Gamma distribution best represented P, Ca, Mn, and Mo, whereas a Weibull distribution best represented N, Mg, B, Cu, Fe, and Zn. These interpretation ranges, along with descriptions of typical symptomology and critical tissue nutrient concentrations, provide useful tools for both diagnosing nutritional disorders and interpreting foliar nutrient analysis results of greenhouse-grown cilantro. Full article
(This article belongs to the Special Issue Crop Yield and Nutrient Use Efficiency)
Show Figures

Figure 1

24 pages, 5801 KB  
Article
Copper-Decorated Catalytic Carbon/Ceramic Hollow Fibers for NO Reduction: Enhanced Performance via Tangential Flow Reactor Design and Process Intensification
by George V. Theodorakopoulos, Sergios K. Papageorgiou, Fotios K. Katsaros, Konstantinos G. Beltsios and George Em. Romanos
Fibers 2025, 13(9), 112; https://doi.org/10.3390/fib13090112 - 22 Aug 2025
Viewed by 212
Abstract
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as [...] Read more.
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as both a metal ion binder and a copper nanoparticle stabilizer. The resulting hollow fibers featured porous walls with a high surface area and were densely decorated with copper nanoparticles. Their structural and morphological characteristics were analyzed, and their NO reduction performance was assessed in a continuous flow configuration, where the gas stream passed through both the shell and lumen sides of a fiber bundle in a tangential flow mode. This study also examined the stability, longevity and regeneration potential of the catalytic fibers, including the mechanisms of deactivation and reactivation. Carbon content was found to be decisive for catalytic performance. High-carbon fibers exhibited a light-off temperature of 250 °C, maintained about 90% N2 selectivity and sustained a consistently high NO reduction efficiency for over 300 h, even without reducing gases like CO. In contrast, low-carbon fibers displayed a higher light-off temperature of 350 °C and a reduced catalytic efficiency. The results indicate that carbon enhances both activity and selectivity, counterbalancing deactivation effects. Owing to their scalability, durability and effectiveness, these catalytic fibers and their corresponding bundle-type reactor configuration represent a promising technology for advanced NO abatement. Full article
Show Figures

Figure 1

14 pages, 1781 KB  
Article
Metal Phosphomolybdate-Catalyzed Condensation of Furfural with Glycerol
by Márcio José da Silva, Pedro Henrique da Silva Andrade and Luiza Diogo Miranda
Processes 2025, 13(8), 2665; https://doi.org/10.3390/pr13082665 - 21 Aug 2025
Viewed by 307
Abstract
In this work, metal salts of phosphomolybdic acid were prepared and evaluated as catalysts in acetalization reactions of glycerol with furfural. These substrates have a renewable origin and play a crucial role in synthesizing bioadditives, which can enhance the physicochemical properties of fossil [...] Read more.
In this work, metal salts of phosphomolybdic acid were prepared and evaluated as catalysts in acetalization reactions of glycerol with furfural. These substrates have a renewable origin and play a crucial role in synthesizing bioadditives, which can enhance the physicochemical properties of fossil fuels and mitigate greenhouse gas emissions. Moreover, the biodiesel industry has generated a surplus of glycerol, and its use as a reactant is welcome from both economic and environmental viewpoints. Keggin heteropolyacid salts are less corrosive than traditional Brønsted acid catalysts and are easier to handle. Herein, metal phosphomolybdates were easily obtained from the acid precursor and metal chloride metathesis. A series of metal phosphomolybdates with the general formulae M3[PMo12O40]x n H2O (Mx+ = Al3+, Fe3+, Co2+, Cu2+, Ni2+) was prepared and tested as catalysts in furfural glycerol acetalization reactions. Full article
Show Figures

Graphical abstract

23 pages, 4659 KB  
Article
The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province
by Chuanyong Zhu, Baodong Jiang, Mengyi Qiu, Na Yang, Lei Sun, Chen Wang, Baolin Wang, Guihuan Yan and Chongqing Xu
Atmosphere 2025, 16(8), 994; https://doi.org/10.3390/atmos16080994 - 21 Aug 2025
Viewed by 330
Abstract
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission [...] Read more.
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission Databank (EEDB) based on meteorological data, the emissions of climate forcers (CFs: BC, CH4, CO2, H2O, and N2O), conventional air pollutants (CAPs: CO, HC, NOX, OC, PM2.5, and SO2), and hazardous heavy metals (HMs: As, Cu, Ni, Se, Cr, Cd, Hg, Pb, and Zn) from flights of civil aviation of eight airports in Shandong in 2018 and 2020 are estimated in this study. Moreover, the study quantifies the impact of COVID-19 on civil aviation emissions (CFs, CAPs, and HMs) in Shandong, revealing reductions of 47.45%, 48.03%, and 47.45% in 2020 compared to 2018 due to flight cuts. By 2020, total emissions reach 9075.44 kt (CFs), 35.57 kt (CAPs), and 0.51 t (HMs), with top contributors being Qingdao Liuting International Airport (ZSQD) (39.60–40.37%), Shandong Airlines (26.56–28.92%), and B738 aircraft (42.98–46.70%). As byproducts of incomplete fuel combustion, the shares of CO (52.40%) and HC (47.76%) emissions during taxi/ground idle mode are significant. In contrast, emissions during cruise phase are the dominant contributor of other species with a share of 74.67–95.61% of the associated total emissions. The findings highlight the disproportionate role of specific airlines, aircraft, and operational phases in regional aviation pollution. By bridging gaps in localized emission inventories and flight-phase analyses, this research supports targeted mitigation strategies, such as fleet modernization and ground operation optimization, to improve air quality in Shandong. The study highlights how sudden shifts in demand, such as those caused by pandemics, can significantly alter emission profiles, providing insights for sustainable aviation planning. Full article
(This article belongs to the Special Issue Aviation Emissions and Their Impact on Air Quality)
Show Figures

Figure 1

Back to TopTop