Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experiment 1
2.3. Experiment 1 Data Collection
2.4. Experiment 1 Data Analysis
2.5. Experiment 2
3. Results and Discussion
3.1. Macronutrient Disorders
3.1.1. Nitrogen
3.1.2. Phosphorus
3.1.3. Potassium
3.1.4. Calcium
3.1.5. Magnesium
3.1.6. Sulfur
3.2. Micronutrient Disorders
3.2.1. Boron
3.2.2. Copper
3.2.3. Iron
3.2.4. Manganese
3.2.5. Molybdenum
3.2.6. Zinc
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nau, J.; Calkins, B.; Westbrook, A. (Eds.) Ball RedBook, 19th ed.; Ball Publishing: West Chicago, IL, USA, 2021; Volume 2, ISBN 978-1-7332541-2-0. [Google Scholar]
- Horn, L.N.; Mulima, E.P.; Fwanyanga, F.M. Coriander cultivation and agricultural practices. In Handbook of Coriander (Coriandrum sativum), 1st ed.; Ramadan, M.F., Ed.; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-100-320-462-6. [Google Scholar]
- Kassu, K.; Dawit, H.; Wubengeda, A.; Almaz, A.; Asrat, M. Yield and yield components of coriander under different sowing dates and seed rates in tropical environment. Adv. Hortic. Sci. 2018, 32, 193–203. [Google Scholar] [CrossRef]
- Silva, M.G.; Gheyi, H.R.; Soares, T.M. Greenhouse production of coriander. In Handbook of Coriander (Coriandrum sativum), 1st ed.; Ramadan, M.F., Ed.; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-100-320-462-6. [Google Scholar]
- Dixit, A. Performance of leafy vegetables under protected environment and open field condition. Asian J. Hortic. 2007, 2, 197–200. [Google Scholar]
- Owen, G.W.; Whipker, B.E. Cilantro (Coriandrum sativum). Fert. Dirt Squirt 2020, 3, 1–5. Available online: http://www.fertdirtandsquirt.com/factsheets.php (accessed on 3 August 2023).
- Donega, M.; Mello, S.; Moraes, R.; Cantrell, C. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants. Ind. Crops Prod. 2013, 44, 127–131. [Google Scholar] [CrossRef]
- Zaouali, W.; Mahmoudi, H.; Salah, I.B.; Mejri, F.; Casabianca, H.; Hosni, K.; Ouerghi, Z. Copper-induced changes in growth, photosynthesis, antioxidative system activities and lipid metabolism of cilantro (Coriandrum sativum L.). Biologia 2020, 75, 367–380. [Google Scholar] [CrossRef]
- Currey, C.J.; Walters, K.J.; Flax, N.J. Nutrient solution strength does not interact with the daily light integral to affect hydroponic cilantro, dill, and parsley growth and tissue mineral nutrient concentrations. Agronomy 2019, 9, 389. [Google Scholar] [CrossRef]
- Silva, M.; Soares, T.; Gheyi, H.; Costa, I.; Vasconcelos, R. Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emir. J. Food Agric. 2020, 22, 281–294. [Google Scholar] [CrossRef]
- Da Silva, M.G.; Soares, T.M.; Gheyi, H.R.; de Oliveira, I.S.; da Silva Filho, J.A.; do Carmo, F.F. Frequency of recirculation of nutrient solution in hydroponic cultivation of coriander with brackish water. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 447–454. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A. (Eds.) Plant Analysis Handbook IV, e-Edition; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2015; ISBN 978-1-878148-03-2. [Google Scholar]
- Ulrich, A. Plants analysis–methods and interpretation of results. In Diagnostic Techniques for Soils and Crops; Kitchen, H.B., Ed.; American Potash Institute: Washington, DC, USA, 1948. [Google Scholar]
- Beaufils, E.R. Diagnosis and Recommendation Integrated System (DRIS); Soil Science Bulletin; University of Natal: Pietermaritzburg, South Africa, 1973. [Google Scholar]
- Soltanpour, P.N.; Malakouti, M.J.; Ronaghi, A. Comparison of diagnosis and recommendation integrated system and nutrient sufficiency range for corn. Soil Sci. Soc. Am. J. 1995, 59, 133–139. [Google Scholar] [CrossRef]
- Veazie, P.; Chen, H.; Hicks, K.; Holley, J.; Eylands, N.; Mattson, N.; Boldt, J.; Brewer, D.; Lopez, R.; Whipker, B.E. A data-driven approach for generating leaf tissue nutrient interpretation ranges for greenhouse lettuce. HortScience 2024, 59, 267–277. [Google Scholar] [CrossRef]
- Veazie, P.; Chen, H.; Hicks, K.; Boldt, J.; Whipker, B. Pentas: A data-driven approach for generating leaf tissue nutrient interpretation ranges. J. Plant Nutr. 2024, 48, 418–428. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil, 2nd ed.; Circular: California Agricultural Experiment Station: Berkeley, CA, USA, 1950. [Google Scholar]
- Barnes, J.; Whipker, B.; McCall, I.; Frantz, J. Nutrient disorders of ‘Evolution’ mealy-cup sage. HortTechnology 2012, 22, 502–508. [Google Scholar] [CrossRef]
- Veazie, P.; Pandey, P.; Young, S.; Ballance, M.; Whipker, B. Impact of macronutrient fertility on mineral uptake and growth of Lactuca sativa ‘Salanova Green’ in a hydroponic system. Horticulturae 2022, 8, 1075. [Google Scholar] [CrossRef]
- Boldt, J.K.; Altland, J.E. Petunia (Petunia × hybrida) cultivars vary in silicon accumulation and distribution. HortScience 2021, 56, 305–312. [Google Scholar] [CrossRef]
- Cera, A.; Montserrat-Martí, G.; Drenovsky, R.E.; Ourry, A.; Brunel-Muguet, S.; Palacio, S. Gypsum endemics accumulate excess nutrients in leaves as a potential constitutive strategy to grow in grazed extreme soils. Physiol. Plant 2022, 174, e13738. [Google Scholar] [CrossRef] [PubMed]
- Mhango, J.K.; Hartley, W.; Harris, W.E.; Monaghan, J.M. Comparison of potato (Solanum tuberosum L.) tuber size distribution fitting methods and evaluation of the relationship between soil properties and estimated distribution parameters. J. Agric. Sci. 2021, 159, 643–657. [Google Scholar] [CrossRef]
- Slaton, N.A.; Drescher, G.L.; Parvej, M.R.; Roberts, T.L. Dynamic critical potassium concentrations in soybean leaves and petioles for monitoring potassium nutrition. Agron. J. 2021, 113, 5472–5482. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 2021, 18, 293–297. [Google Scholar] [CrossRef]
- Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Soft 2011, 40, 1–29. [Google Scholar] [CrossRef]
- Freedman, D.; Diaconis, P. On the histogram as a density estimator:L2 theory. Probab. Theory Relat. Fields 1981, 57, 453–476. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995; ISBN 0-12-473543-6. [Google Scholar]
- Li, X.; Hu, X.; Song, S.; Sun, D. Greenhouse management for better vegetable quality, higher nutrient use efficiency, and healthier soil. Horticulturae 2022, 8, 1192. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-90-481-2531-9. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-19203-6. [Google Scholar]
- Choi, J.; Pak, C.; Lee, C.W. Micro nutrient toxicity in French marigold. J. Plant Nutr. 1996, 19, 901–916. [Google Scholar] [CrossRef]
Source | Sample Size | Sample Type | Notes |
---|---|---|---|
North Carolina State University | 157 | Research | Present nutrient deficiency study. |
North Carolina State University | 130 | Research | Unpublished electrical conductivity rate study. |
North Carolina Department of Agriculture | 95 | Diagnostic | Grower submitted samples, unpublished. |
Iowa State University | 81 | Research | Published tissue mineral nutrient concentrations 1. |
Element | BIC Value | ||
---|---|---|---|
Normal | Gamma | Weibull | |
N | 1512.87 | 1701.52 | 1496.91 |
P | 341.52 | 157.44 | 215.33 |
K | 1865.07 | 1975.81 | 1880.16 |
Ca | 215.88 | 147.62 | 262.52 |
Mg | −237.42 | −230.15 | −244.22 |
S | −699.26 | −683.70 | −698.65 |
B | 4148.33 | 4147.32 | 4129.85 |
Cu | 2740.94 | 2700.90 | 2681.44 |
Fe | 4397.09 | 4409.82 | 4394.69 |
Mn | 5026.52 | 4698.78 | 4791.70 |
Mo | 823.31 | 581.27 | 589.58 |
Zn | 4281.32 | 4259.51 | 4247.32 |
Treatment | -N | -P | -K | -Ca | -Mg | -S | -B | +B | -Cu | -Fe | -Mn | -Mo | -Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry weight (g) | ||||||||||||||
Complete control | 0.82 | 0.82 | 4.98 | 2.07 | 4.98 | 2.07 | 4.98 | 20.75 | 4.98 | 20.75 | 20.75 | 20.75 | 20.75 | |
Disorder | 0.05 | 0.22 | 3.23 | 1.01 | 3.13 | 1.01 | 3.08 | 4.00 | 16.27 | 2.67 | 22.64 | 19.35 | 7.31 | |
p-value 1 | *** | *** | * | ** | ** | ** | NS | * | NS | ** | NS | NS | *** | |
Tissue nutrient concentration | ||||||||||||||
(%) | (mg·kg−1) | |||||||||||||
Element | N | P | K | Ca | Mg | S | -B | +B | Cu | Fe | Mn | Mo | Zn | |
Complete control | 5.92 | 1.02 | 6.89 | 0.71 | 0.35 | 0.41 | 50.31 | 50.31 | 4.16 | 74.63 | 38.65 | 2.69 | 18.80 | |
Disorder | 2.50 | 0.18 | 0.82 | 0.27 | 0.11 | 0.14 | 8.06 | 354.98 | 0.65 | 67.56 | 27.10 | 0.02 | 10.37 | |
p-value 1 | *** | *** | *** | *** | *** | *** | ** | *** | *** | NS | NS | *** | *** | |
Survey range 2 | 4.0–6.0 | 0.42–0.85 | 3.8–5.0 | 0.85–1.25 | 0.40–0.75 | 0.22–0.35 | 25–45 | 25–45 | 5–15 | 55–95 | 46–80 | 0.4–1.0 | 40–70 |
Element | Unit | Nutrient Range | ||||
---|---|---|---|---|---|---|
Deficient | Low | Sufficient | High | Excessive | ||
N | % | <2.36 | 2.36–3.94 | 3.94–5.48 | 5.48–6.73 | >6.73 |
P | % | <0.16 | 0.16–0.37 | 0.37–0.77 | 0.77–1.35 | >1.35 |
K | % | <1.70 | 1.70–3.64 | 3.64–6.21 | 6.21–8.40 | >8.40 |
Ca | % | <0.57 | 0.57–0.85 | 0.85–1.23 | 1.23–1.69 | >1.69 |
Mg | % | <0.15 | 0.15–0.35 | 0.35–0.61 | 0.61–0.87 | >0.87 |
S | % | <0.17 | 0.17–0.31 | 0.31–0.47 | 0.47–0.60 | >0.60 |
B | mg·kg−1 | <19.68 | 19.68–39.55 | 39.55–74.76 | 74.76–102.14 | >102.14 |
Cu | mg·kg−1 | <1.79 | 1.79–4.63 | 4.63–11.01 | 11.01–16.84 | >16.84 |
Fe | mg·kg−1 | <39.04 | 39.04–71.96 | 71.96–123.03 | 123.03–189.71 | >189.71 |
Mn | mg·kg−1 | <23.36 | 23.36–46.96 | 46.96–101.89 | 101.89–160.23 | >160.23 |
Mo | mg·kg−1 | - | <0.20 | 0.20–2.03 | 2.03–5.48 | >5.48 |
Zn | mg·kg−1 | <15.97 | 15.97–34.21 | 34.21–68.53 | 68.53–96.32 | >96.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clade, D.; Veazie, P.; Boldt, J.; Hicks, K.; Currey, C.; Flax, N.; Walters, K.; Whipker, B. Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum). Appl. Sci. 2025, 15, 9266. https://doi.org/10.3390/app15179266
Clade D, Veazie P, Boldt J, Hicks K, Currey C, Flax N, Walters K, Whipker B. Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum). Applied Sciences. 2025; 15(17):9266. https://doi.org/10.3390/app15179266
Chicago/Turabian StyleClade, Danielle, Patrick Veazie, Jennifer Boldt, Kristin Hicks, Christopher Currey, Nicholas Flax, Kellie Walters, and Brian Whipker. 2025. "Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum)" Applied Sciences 15, no. 17: 9266. https://doi.org/10.3390/app15179266
APA StyleClade, D., Veazie, P., Boldt, J., Hicks, K., Currey, C., Flax, N., Walters, K., & Whipker, B. (2025). Establishing Leaf Tissue Nutrient Standards and Documenting Nutrient Disorder Symptomology of Greenhouse-Grown Cilantro (Coriandrum sativum). Applied Sciences, 15(17), 9266. https://doi.org/10.3390/app15179266