Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = DAF-16/FOXO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3594 KiB  
Article
Berberine Extends Lifespan in C. elegans Through Multi-Target Synergistic Antioxidant Effects
by Yingshuo Bei, Ting Wang and Shuwen Guan
Antioxidants 2025, 14(4), 450; https://doi.org/10.3390/antiox14040450 - 9 Apr 2025
Viewed by 480
Abstract
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively [...] Read more.
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively investigated the lifespan-extending effects and molecular mechanisms of berberine in C. elegans through integrated approaches including lifespan assays, locomotor activity analysis, oxidative stress challenges, and transcriptomic profiling. Furthermore, genetic models of mutant and transgenic worms were employed to delineate their interactions with the insulin/IGF-1 signaling (IIS) pathway. Our results demonstrate that berberine extended the mean lifespan of wild-type worms by 27%. By activating transcription factors such as DAF-16/FOXO, HSF-1, and SKN-1/NRF2, berberine upregulated antioxidant enzyme expression, reduced lipofuscin accumulation, and improved stress resistance. Transcriptomic analysis revealed significant changes in lipid metabolism-related genes, particularly in pathways involving fatty acid synthesis, degradation, and sphingolipid metabolism. These findings establish that berberine exerts multi-target anti-aging effects through coordinated activation of stress-responsive pathways and metabolic optimization, providing mechanistic insights for developing natural product-based geroprotective strategies. Full article
Show Figures

Figure 1

22 pages, 12224 KiB  
Article
Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans
by Linyao Jing, Yanlin Zhao, Lijun Jiang, Fei Song, Lu An, Edmund Qi, Xueqi Fu, Jing Chen and Junfeng Ma
Molecules 2025, 30(8), 1668; https://doi.org/10.3390/molecules30081668 - 8 Apr 2025
Viewed by 235
Abstract
The enhancement of stress resistance is crucial for delaying aging and extending a healthy lifespan. Traditional Chinese medicine (TCM), a cherished treasure of Chinese heritage, has shown potential in mitigating stress and promoting longevity. This study integrates network pharmacology and in vivo analysis [...] Read more.
The enhancement of stress resistance is crucial for delaying aging and extending a healthy lifespan. Traditional Chinese medicine (TCM), a cherished treasure of Chinese heritage, has shown potential in mitigating stress and promoting longevity. This study integrates network pharmacology and in vivo analysis to investigate the mechanisms and effects of Curcumae Rhizoma (C. Rhizoma), known as “E Zhu” in Chinese. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) identified 10 active compounds in its aqueous extract, interacting with 128 stress-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed pathways such as stress response, FoxO signaling, and insulin resistance. In Caenorhabditis elegans, 10 mg/mL of C. Rhizoma aqueous extract improved resistance to UV, thermal, oxidative, and pathogen-induced stress, extending lifespan in a dose-dependent manner. Mechanistically, it reduced reactive oxygen species (ROS), increased superoxide dismutase (SOD) activity, and enhanced UV resistance via the insulin/IGF-1 pathway and DAF-16 translocation. Molecular docking highlighted hexahydrocurcumin (HHC) and related compounds as key bioactives. Furthermore, we also observed that C. Rhizoma aqueous extract significantly extended both the lifespan and healthspan of nematodes. These findings highlight the potential of C. Rhizoma in stress mitigation and longevity promotion, offering valuable insights into the therapeutic applications of TCM. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Figure 1

20 pages, 3298 KiB  
Article
Transcriptomic Approaches to Investigate the Anti-Aging Effects of Blueberry Anthocyanins in a Caenorhabditis Elegans Aging Model
by Jie Ding, Jiahui Liu, Qingqi Guo and Na Zhang
Antioxidants 2025, 14(1), 35; https://doi.org/10.3390/antiox14010035 - 30 Dec 2024
Cited by 1 | Viewed by 3880
Abstract
This study investigates the anti-aging effects of various concentrations of blueberry anthocyanins (BA) on the lifespan and health-related phenotypes of Caenorhabditis elegans. Blueberry anthocyanins were administered at concentrations of 50.0 μg/mL, 200.0 μg/mL, and 500.0 μg/mL, and their effects on nematode lifespan, locomotion, [...] Read more.
This study investigates the anti-aging effects of various concentrations of blueberry anthocyanins (BA) on the lifespan and health-related phenotypes of Caenorhabditis elegans. Blueberry anthocyanins were administered at concentrations of 50.0 μg/mL, 200.0 μg/mL, and 500.0 μg/mL, and their effects on nematode lifespan, locomotion, pharyngeal pumping rate, and the accumulation of lipofuscin and reactive oxygen species (ROS) were examined. Transcriptomic analysis was conducted to explore the regulatory effects of BA on anti-aging molecular pathways and key genes in C. elegans. Results showed a significant, dose-dependent extension of lifespan, improvement in locomotion and pharyngeal pumping rate, and reduction in lipofuscin and ROS accumulation. Transcriptomic analysis revealed that BA activated anti-aging pathways such as FOXO, IIS, and PI3K/Akt, upregulating critical genes like daf-16. These findings highlight the potential of blueberry anthocyanins as promising anti-aging agents through multiple physiological and molecular mechanisms. Full article
Show Figures

Figure 1

13 pages, 1915 KiB  
Article
Erucin, a Natural Isothiocyanate, Prevents Polyglutamine-Induced Toxicity in Caenorhabditis elegans via aak-2/AMPK and daf-16/FOXO Signaling
by Martina Balducci, Julia Tortajada Pérez, Cristina Trujillo del Río, Mar Collado Pérez, Andrea del Valle Carranza, Ana Pilar Gomez Escribano, Rafael P. Vázquez-Manrique and Andrea Tarozzi
Int. J. Mol. Sci. 2024, 25(22), 12220; https://doi.org/10.3390/ijms252212220 - 14 Nov 2024
Cited by 1 | Viewed by 1340
Abstract
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we [...] Read more.
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we investigated the modulatory effect against polyQ neurotoxic aggregates exerted by erucin (ERN), an isothiocyanate naturally present in its precursor glucoerucin in rocket salad leaves and in its oxidized form, sulforaphane (SFN), in broccoli. Using C. elegans models expressing polyQ in different tissues, we demonstrated that ERN protects against polyQ-induced toxicity and that its action depends on the catalytic subunit of AMP-activated protein kinase (aak-2/AMPKα2) and, downstream in this pathway, on the daf-16/FOXO transcription factor, since nematodes deficient in aak-2/AMPKα2 and daf-16 did not respond to the treatment, respectively. Although triggered by a different source of neurotoxicity than polyQ diseases, i.e., by α-synuclein (α-syn) aggregates, Parkinson’s disease (PD) was also considered in our study. Our results showed that ERN reduces α-syn aggregates and slightly improves the motility of worms. Therefore, further preclinical studies in mouse models of protein aggregation are justified and could provide insights into testing whether ERN could be a potential neuroprotective compound in humans. Full article
Show Figures

Graphical abstract

17 pages, 4757 KiB  
Article
Clerodendranthus spicatus (Thunb.) Water Extracts Reduce Lipid Accumulation and Oxidative Stress in the Caenorhabditis elegans
by Xian Xiao, Fanhua Wu, Bing Wang, Zeping Cai, Lanying Wang, Yunfei Zhang, Xudong Yu and Yanping Luo
Int. J. Mol. Sci. 2024, 25(17), 9655; https://doi.org/10.3390/ijms25179655 - 6 Sep 2024
Cited by 3 | Viewed by 1259
Abstract
Clerodendranthus spicatus (Thunb.) (Kidney tea) is a very distinctive ethnic herbal medicine in China. Its leaves are widely used as a healthy tea. Many previous studies have demonstrated its various longevity-promoting effects; however, the safety and specific health-promoting effects of Clerodendranthus spicatus ( [...] Read more.
Clerodendranthus spicatus (Thunb.) (Kidney tea) is a very distinctive ethnic herbal medicine in China. Its leaves are widely used as a healthy tea. Many previous studies have demonstrated its various longevity-promoting effects; however, the safety and specific health-promoting effects of Clerodendranthus spicatus (C. spicatus) as a dietary supplement remain unclear. In order to understand the effect of C. spicatus on the longevity of Caenorhabditis elegans (C. elegans), we evaluated its role in C. elegans; C. spicatus water extracts (CSw) were analyzed for the major components and the effects on C. elegans were investigated from physiological and biochemical to molecular levels; CSw contain significant phenolic components (primarily rosmarinic acid and eugenolinic acid) and flavonoids (primarily quercetin and isorhamnetin) and can increase the lifespan of C. elegans. Further investigations showed that CSw modulate stress resistance and lipid metabolism through influencing DAF-16/FoxO (DAF-16), Heat shock factor 1 (HSF-1), and Nuclear Hormone Receptor-49 (NHR-49) signalling pathways; CSw can improve the antioxidant and hypolipidemic activity of C. elegans and prolong the lifespan of C. elegans (with the best effect at low concentrations). Therefore, the recommended daily use of C. spicatus should be considered when consuming it as a healthy tea on a daily basis. Full article
(This article belongs to the Special Issue Antibacterial and Antioxidant Effects of Plant-Sourced Compounds)
Show Figures

Figure 1

18 pages, 5398 KiB  
Article
TSG Extends the Longevity of Caenorhabditis elegans by Targeting the DAF-16/SKN-1/SIR-2.1-Mediated Mitochondrial Quality Control Process
by Menglu Sun, Congmin Wei, Yehui Gao, Xinyan Chen, Kaixin Zhong, Yingzi Li, Zhou Yang, Yihuai Gao and Hongbing Wang
Antioxidants 2024, 13(9), 1086; https://doi.org/10.3390/antiox13091086 - 4 Sep 2024
Cited by 1 | Viewed by 1829
Abstract
The improvement of mitochondrial function is described as a strategy for alleviating oxidative stress and intervening in the aging process. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the major bioactive components isolated from Polygonum multiflorum Thunb, and it exhibits multiple activities, [...] Read more.
The improvement of mitochondrial function is described as a strategy for alleviating oxidative stress and intervening in the aging process. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the major bioactive components isolated from Polygonum multiflorum Thunb, and it exhibits multiple activities, including antioxidant and anti-inflammatory effects. In this study, we found that 200 μM TSG significantly extended the mean lifespan of Caenorhabditis elegans by 16.48% and improved health status by delaying age-associated physiological decline in worms. The longevity prolongation effect of TSG depended on the regulation of the mitochondrial quality control process mediated by DAF-16/FOXO, SKN-1/Nrf2 and SIR-2.1/SIRT1 to improve mitochondrial function. Moreover, TSG treatment obviously alleviated the proteotoxicity of β-amyloid and tau proteins in worms. Our findings indicated that TSG is a promising natural product for preventing aging and treating aging-associated neurodegenerative diseases by regulating the mitochondrial quality control process to improve mitochondrial function. Full article
Show Figures

Figure 1

18 pages, 11065 KiB  
Article
Anoectochilus roxburghii Extract Extends the Lifespan of Caenorhabditis elegans through Activating the daf-16/FoxO Pathway
by Peng Xu, Jianfeng Wang, Junyi Wang, Xiaoxiao Hu, Wei Wang, Shengmin Lu and Yingkun Sheng
Antioxidants 2024, 13(8), 945; https://doi.org/10.3390/antiox13080945 - 2 Aug 2024
Cited by 1 | Viewed by 1672
Abstract
As a significant global issue, aging is prompting people’s interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific [...] Read more.
As a significant global issue, aging is prompting people’s interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific anti-aging components and mechanisms of A. roxburghii remain unclear. This study aims to investigate the anti-aging effects and mechanisms of A. roxburghii extract E (ARE). Caenorhabditis elegans (C. elegans) were exposed to media containing different concentrations of ARE whose superior in vitro radical scavenging capacity was thus identified. Lifespan assays, stress resistance tests, and RT-qPCR analyses were conducted to evaluate anti-aging efficacy, reactive oxygen species (ROS) levels, antioxidant enzyme activity, and daf-16, sod-3, and gst-4 levels. Additionally, transcriptomic and metabolomic analyses were performed to elucidate the potential anti-aging mechanisms of ARE. Fluorescence protein assays and gene knockout experiments were employed to validate the impacts of ARE on anti-aging mechanisms. Our results revealed that ARE not only prolonged the lifespan of C. elegans but also mitigated ROS and lipofuscin accumulation, and boosted resistance to UV and heat stress. Furthermore, ARE modulated the expression of pivotal anti-aging genes including daf-16, sod-3, and gst-4, facilitating the nuclear translocation of DAF-16. Significantly, ARE failed to extend the lifespan of daf-16-deficient C. elegans (CF1038), indicating its dependency on the daf-16/FoxO signaling pathway. These results underscored the effectiveness of ARE as a natural agent for enhancing longevity and stress resilience to C. elegans, potentially to human. Full article
Show Figures

Graphical abstract

14 pages, 2366 KiB  
Article
Uncovering the Molecular Pathways Implicated in the Anti-Cancer Activity of the Imidazoquinoxaline Derivative EAPB02303 Using a Caenorhabditis elegans Model
by Perla Makhoul, Simon Galas, Stéphanie Paniagua-Gayraud, Carine Deleuze-Masquefa, Hiba El Hajj, Pierre-Antoine Bonnet and Myriam Richaud
Int. J. Mol. Sci. 2024, 25(14), 7785; https://doi.org/10.3390/ijms25147785 - 16 Jul 2024
Viewed by 1778
Abstract
Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) [...] Read more.
Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations. Full article
Show Figures

Figure 1

16 pages, 5622 KiB  
Article
Anti-Aging in Caenorhabditis elegans of Polysaccharides from Polygonatum cyrtonema Hua
by Xue Zhang, Qi Chen, Linzhen Chen, Xiaolu Chen and Zhiqiang Ma
Molecules 2024, 29(6), 1276; https://doi.org/10.3390/molecules29061276 - 13 Mar 2024
Cited by 11 | Viewed by 2675
Abstract
Polygonatum cyrtonema Hua, the dried rhizome of Polygonum multiflorum from the Liliaceae family, is a widely used medicinal herb with a long history of application. Its main active ingredients are polysaccharides, which have been demonstrated in contemporary studies to effectively delay the aging [...] Read more.
Polygonatum cyrtonema Hua, the dried rhizome of Polygonum multiflorum from the Liliaceae family, is a widely used medicinal herb with a long history of application. Its main active ingredients are polysaccharides, which have been demonstrated in contemporary studies to effectively delay the aging process. In the present study, homogeneous polysaccharide (PCP-1) was obtained after the purification and isolation of polysaccharides from Polygonatum cyrtonema Hua (PCP). The anti-aging activities of both were compared, and the possible mechanism of action for exerting anti-aging activity was explored using Caenorhabditis elegans (C. elegans). Research has indicated that PCP and PCP-1 exhibit potent anti-oxidant and anti-aging properties. Of particular note is that PCP-1 acts better than PCP. The two were able to prolong the lifespan of nematodes, improve the stress resistance of nematodes, reduce the accumulation of lipofuscin in the intestine, decrease the content of ROS and MDA in the body, increase the activity of the antioxidant enzymes SOD and CAT, promote the nuclear translocation of DAF-16, down-regulate the mRNA levels of the age-1 and daf-2 genes of the IIS pathway in nematodes, and up-regulate the expression of the daf-16, skn-1, sod-3, and hsp-16.2 genes. Based on the aforementioned findings, it is possible that the mechanism by which PCP and PCP-1 exert anti-aging effects may be through negative regulation of the IIS pathway, activation of the transcription factor DAF-16/FOXO, and enhancement of oxidative defenses and stress resistance in nematodes. Overall, the present study illustrated the great potential of polysaccharides from Polygonatum cyrtonema Hua in anti-aging and antioxidant activities. Specifically, PCP-1 demonstrated superior characteristics, which provides a reference for the future development of Polygonatum cyrtonema Hua polysaccharides. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

13 pages, 4299 KiB  
Article
Indian Almond (Terminalia catappa Linn.) Leaf Extract Extends Lifespan by Improving Lipid Metabolism and Antioxidant Activity Dependent on AMPK Signaling Pathway in Caenorhabditis elegans under High-Glucose-Diet Conditions
by Yebin Kim, Seul-bi Lee, Myogyeong Cho, Soojin Choe and Miran Jang
Antioxidants 2024, 13(1), 14; https://doi.org/10.3390/antiox13010014 - 20 Dec 2023
Cited by 4 | Viewed by 3007
Abstract
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in [...] Read more.
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in vitro. The stress-resistance effect of TCE was confirmed under thermal and oxidative stress conditions at nontoxic tested concentrations (6.25, 12.5, and 25 μg/mL). GLU at 2% caused lipid and reactive oxygen species (ROS) accumulation in C. elegans, and TCE inhibited lipid and ROS accumulation under both normal and 2% GLU conditions in a concentration-dependent manner. In addition, TCE proved to be effective in prolonging the lifespan of C. elegans under normal and 2% GLU conditions. The ROS reduction effect of TCE was abolished in mutants deficient in daf-16/FOXO and skn-1/Nrf-2. In addition, the lifespan-extending effect of TCE in these two mutants disappeared. The lifespan-extending effect was abolished even in atgl-1/ATGL-deficiency mutants. The TCE effect was reduced in aak-1/AMPK-deficient mutants and completely abolished under 2% GLU conditions. Therefore, the effect of prolonging lifespan by inhibiting lipid and ROS accumulation under the high GLU conditions of TCE is considered to be the result of atgl-1, daf-16, and skn-1 being downregulated by aak-1. These results suggest that the physiological potential of TCE contributes to antiaging under metabolic disorders. Full article
Show Figures

Figure 1

17 pages, 1921 KiB  
Article
Structured Docosahexaenoic Acid (DHA) Enhances Motility and Promotes the Antioxidant Capacity of Aged C. elegans
by Ignasi Mora, Alejandra Pérez-Santamaria, Julia Tortajada-Pérez, Rafael P. Vázquez-Manrique, Lluís Arola and Francesc Puiggròs
Cells 2023, 12(15), 1932; https://doi.org/10.3390/cells12151932 - 26 Jul 2023
Cited by 5 | Viewed by 2622
Abstract
The human lifespan has increased over the past century; however, healthspans have not kept up with this trend, especially cognitive health. Among nutrients for brain function maintenance, long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA): DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) must be [...] Read more.
The human lifespan has increased over the past century; however, healthspans have not kept up with this trend, especially cognitive health. Among nutrients for brain function maintenance, long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA): DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) must be highlighted, particularly structured forms of EPA and DHA which were developed to improve bioavailability and bioactivity in comparison with conventional ω-3 supplements. This study aims to elucidate the effect of a structured triglyceride form of DHA (DHA-TG) on the healthspan of aged C. elegans. Using a thrashing assay, the nematodes were monitored at 4, 8, and 12 days of adulthood, and DHA-TG improved its motility at every age without affecting lifespan. In addition, the treatment promoted antioxidant capacity by enhancing the activity and expression of SOD (superoxide dismutase) in the nematodes. Lastly, as the effect of DHA-TG was lost in the DAF-16 mutant strain, it might be hypothesized that the effects of DHA need DAF-16/FOXO as an intermediary. In brief, DHA-TG exerted a healthspan-promoting effect resulting in both enhanced physical fitness and increased antioxidant defense in aged C. elegans. For the first time, an improvement in locomotive function in aged wild-type nematodes is described following DHA-TG treatment. Full article
Show Figures

Figure 1

26 pages, 3280 KiB  
Article
Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans
by Jennifer L. Thies, Karolina Willicott, Maici L. Craig, Madeline R. Greene, Cassandra N. DuGay, Guy A. Caldwell and Kim A. Caldwell
Cells 2023, 12(8), 1170; https://doi.org/10.3390/cells12081170 - 15 Apr 2023
Cited by 6 | Viewed by 2933
Abstract
Oxidative stress is a contributing factor to Parkinson’s disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae [...] Read more.
Oxidative stress is a contributing factor to Parkinson’s disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, Streptomyces venezuelae (S. ven), enhanced oxidative stress and mitochondrial dysfunction in Caenorhabditis elegans, leading to dopaminergic (DA) neurodegeneration. Here, S. ven metabolite exposure in C. elegans was followed by RNA-Seq analysis. Half of the differentially identified genes (DEGs) were associated with the transcription factor DAF-16 (FOXO), which is a key node in regulating stress response. Our DEGs were enriched for Phase I (CYP) and Phase II (UGT) detoxification genes and non-CYP Phase I enzymes associated with oxidative metabolism, including the downregulated xanthine dehydrogenase gene, xdh-1. The XDH-1 enzyme exhibits reversible interconversion to xanthine oxidase (XO) in response to calcium. S. ven metabolite exposure enhanced XO activity in C. elegans. The chelation of calcium diminishes the conversion of XDH-1 to XO and results in neuroprotection from S. ven exposure, whereas CaCl2 supplementation enhanced neurodegeneration. These results suggest a defense mechanism that delimits the pool of XDH-1 available for interconversion to XO, and associated ROS production, in response to metabolite exposure. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: A Model Organism, Endless Possibilities)
Show Figures

Graphical abstract

14 pages, 1942 KiB  
Article
Chlorogenic Acid of Cirsium japonicum Resists Oxidative Stress Caused by Aging and Prolongs Healthspan via SKN-1/Nrf2 and DAF-16/FOXO in Caenorhabditis elegans
by Myogyeong Cho, Yebin Kim, Sohyeon You, Dae Youn Hwang and Miran Jang
Metabolites 2023, 13(2), 224; https://doi.org/10.3390/metabo13020224 - 3 Feb 2023
Cited by 10 | Viewed by 2205
Abstract
To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were [...] Read more.
To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties. Full article
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16
by Jing-Shan Wu, Chun-Guo Lin, Chang-Long Jin, Yan-Xia Zhou and Ying-Xiu Li
Mar. Drugs 2023, 21(1), 1; https://doi.org/10.3390/md21010001 - 20 Dec 2022
Cited by 6 | Viewed by 2221
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, [...] Read more.
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

15 pages, 3734 KiB  
Article
Physiological Consequences of Targeting 14-3-3 and Its Interacting Partners in Neurodegenerative Diseases
by Akshatha Ganne, Meenakshisundaram Balasubramaniam, Nirjal Mainali, Paavan Atluri, Robert J. Shmookler Reis and Srinivas Ayyadevara
Int. J. Mol. Sci. 2022, 23(24), 15457; https://doi.org/10.3390/ijms232415457 - 7 Dec 2022
Cited by 6 | Viewed by 2242
Abstract
The mammalian 14-3-3 family comprises seven intrinsically unstructured, evolutionarily conserved proteins that bind >200 protein targets, thereby modulating cell-signaling pathways. The presence of 14-3-3 proteins in cerebrospinal fluid provides a sensitive and specific biomarker of neuronal damage associated with Alzheimer’s disease (AD), Creutzfeldt–Jakob [...] Read more.
The mammalian 14-3-3 family comprises seven intrinsically unstructured, evolutionarily conserved proteins that bind >200 protein targets, thereby modulating cell-signaling pathways. The presence of 14-3-3 proteins in cerebrospinal fluid provides a sensitive and specific biomarker of neuronal damage associated with Alzheimer’s disease (AD), Creutzfeldt–Jakob disease (CJD), spongiform encephalitis, brain cancers, and stroke. We observed significant enrichment of 14-3-3 paralogs G, S, and Z in human brain aggregates diagnostic of AD. We used intra-aggregate crosslinking to identify 14-3-3 interaction partners, all of which were significantly enriched in AD brain aggregates relative to controls. We screened FDA-approved drugs in silico for structures that could target the 14-3-3G/hexokinase interface, an interaction specific to aggregates and AD. C. elegans possesses only two 14-3-3 orthologs, which bind diverse proteins including DAF-16 (a FOXO transcription factor) and SIR-2.1 (a sensor of nutrients and stress), influencing lifespan. Top drug candidates were tested in C. elegans models of neurodegeneration-associated aggregation and in a human neuroblastoma cell-culture model of AD-like amyloidosis. Several drugs opposed aggregation in all models assessed and rescued behavioral deficits in C. elegans AD-like neuropathy models, suggesting that 14-3-3 proteins are instrumental in aggregate accrual and supporting the advancement of drugs targeting 14-3-3 protein complexes with their partners. Full article
(This article belongs to the Special Issue Protein Folding, Misfolding, and Age-Related Disease)
Show Figures

Figure 1

Back to TopTop