Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = DC micro grid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2975 KB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 360
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4995 KB  
Article
Energy Management and Hosting Capacity Evaluation of a Hybrid AC-DC Micro Grid Including Photovoltaic Units and Battery Energy Storage Systems
by Mohammed Ajel Awdaa, Elaheh Mashhour, Hossein Farzin and Mahmood Joorabian
Algorithms 2025, 18(2), 114; https://doi.org/10.3390/a18020114 - 18 Feb 2025
Viewed by 791
Abstract
Renewable energy sources must be scheduled to manage power flow and load demand. Photovoltaic power generation is usually connected to power distribution networks and is not designed to add significant amounts of production in the event of increased electricity demand. Therefore, it is [...] Read more.
Renewable energy sources must be scheduled to manage power flow and load demand. Photovoltaic power generation is usually connected to power distribution networks and is not designed to add significant amounts of production in the event of increased electricity demand. Therefore, it is necessary to increase the generated capacity (i.e., hosting capacity) to meet the expansion in demand. This paper discussed two topics; the first is how to create an energy management strategy (EMS) for a hybrid micro-grid containing photovoltaic (PV) and battery energy storage system (BESS). A model was created within the MATLAB program through which the charging and discharging process of the BESS was managed, and the energy source was through PV. The model is connected to the leading network, where the m.file is linked to the model to control variable settings. This was carried out by using a logical–numerical modeling method. The second topic discussed how to evaluate hosting capacity (HC) without causing the network to collapse. This was achieved by choosing the best location and size for the PV. This study relied on the use of two algorithms, particle swarm optimization (PSO) and Harris hawks optimization (HHO). The fast decoupled load Flow (FDPF) method was adopted in the network analysis and finally the results of the two algorithms were compared. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

20 pages, 2185 KB  
Article
Experimental Validation of Offset-Free Model-Based Predictive Control in Voltage Source Inverters for Grid Connected and Microgrids Applications
by Reinier López Ahuar, Dave Figueroa, Juan C. Agüero and César A. Silva
Appl. Sci. 2025, 15(3), 1567; https://doi.org/10.3390/app15031567 - 4 Feb 2025
Viewed by 1144
Abstract
This article presents the experimental validation of a model-based predictive control (MPC) strategy for the safe interconnection of voltage source inverters (VSI) with output LC filters for the grid connection of DC energy resources. The MPC is formulated as a quadratic programming (QP) [...] Read more.
This article presents the experimental validation of a model-based predictive control (MPC) strategy for the safe interconnection of voltage source inverters (VSI) with output LC filters for the grid connection of DC energy resources. The MPC is formulated as a quadratic programming (QP) problem and solved using the operator splitting quadratic programs (OSQP). The proposed approach incorporates integral action to achieve precise voltage magnitude reference tracking while accounting for modulated voltage limits and nominal current constraints within the control design. The effectiveness of the proposed strategy is validated through simulations conducted in MATLAB, demonstrating superior dynamic performance compared to the traditional hierarchical PI control. The implementation of the proposed MPC is experimentally verified on a VSI setup using the dSPACE MicroLabBox. The results confirm that the computational requirements are satisfied, establishing this approach as a practical alternative for modern power electronic systems. The proposed MPC for VSIs offers an effective approach to enforcing operational constraints, improving dynamic performance, and facilitating the robust integration of renewable energy sources in microgrids. Full article
Show Figures

Figure 1

26 pages, 8196 KB  
Article
Control Strategy for DC Micro-Grids in Heat Pump Applications with Renewable Integration
by Claude Bertin Nzoundja Fapi, Mohamed Lamine Touré, Mamadou-Baïlo Camara and Brayima Dakyo
Electronics 2025, 14(1), 150; https://doi.org/10.3390/electronics14010150 - 2 Jan 2025
Cited by 3 | Viewed by 1637
Abstract
DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy [...] Read more.
DC micro-grids are emerging as a promising solution for efficiently integrating renewable energy into power systems. These systems offer increased flexibility and enhanced energy management, making them ideal for applications such as heat pump (HP) systems. However, the integration of intermittent renewable energy sources with optimal energy management in these micro-grids poses significant challenges. This paper proposes a novel control strategy designed specifically to improve the performance of DC micro-grids. The strategy enhances energy management by leveraging an environmental mission profile that includes real-time measurements for energy generation and heat pump performance evaluation. This micro-grid application for heat pumps integrates photovoltaic (PV) systems, wind generators (WGs), DC-DC converters, and battery energy storage (BS) systems. The proposed control strategy employs an intelligent maximum power point tracking (MPPT) approach that uses optimization algorithms to finely adjust interactions among the subsystems, including renewable energy sources, storage batteries, and the load (heat pump). The main objective of this strategy is to maximize energy production, improve system stability, and reduce operating costs. To achieve this, it considers factors such as heating and cooling demand, power fluctuations from renewable sources, and the MPPT requirements of the PV system. Simulations over one year, based on real meteorological data (average irradiance of 500 W/m2, average annual wind speed of 5 m/s, temperatures between 2 and 27 °C), and carried out with Matlab/Simulink R2022a, have shown that the proposed model predictive control (MPC) strategy significantly improves the performance of DC micro-grids, particularly for heat pump applications. This strategy ensures a stable DC bus voltage (±1% around 500 V) and maintains the state of charge (SoC) of batteries between 40% and 78%, extending their service life by 20%. Compared with conventional methods, it improves energy efficiency by 15%, reduces operating costs by 30%, and cuts CO2; emissions by 25%. By incorporating this control strategy, DC micro-grids offer a sustainable and reliable solution for heat pump applications, contributing to the transition towards a cleaner and more resilient energy system. This approach also opens new possibilities for renewable energy integration into power grids, providing intelligent and efficient energy management at the local level. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

19 pages, 3260 KB  
Article
Basic Circuit Model of Voltage Source Converters: Methodology and Modeling
by Christian Bipongo Ndeke, Marco Adonis and Ali Almaktoof
AppliedMath 2024, 4(3), 889-907; https://doi.org/10.3390/appliedmath4030048 - 29 Jul 2024
Cited by 1 | Viewed by 2371
Abstract
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A [...] Read more.
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A basic voltage source converter circuit model connected to an LC filter is essential because it lowers the harmonic distortions and enhances the overall power quality of the micro-grid. This guarantees a clean and steady power supply, which is necessary for the integration of multiple renewable energy sources and sensitive loads. A comprehensive methodology for developing a basic circuit model of VSCs, focusing on the key components and principals involved, is presented in this paper. The methodology includes the modeling of space vector pulse-width modulation (SVPWM) as well as the direct quadrature zero synchronous reference frame. Different design controls, including the design of current control loop in the S-domain, the design of the direct current (DC) bus voltage control loop in the S-domain, and the design of the alternating current (AC) voltage control loop in the S-domain, are explored to capture the dynamic behavior and control strategies of VSCs accurately. The proposed methodology provides a systematic framework for modeling VSCs, enabling engineers and researchers to analyze their performance and assess their impact on power system stability and operation. Future studies can be conducted by using case studies and simulation scenarios to show the efficiency and applicability of the developed models in analyzing VSC-based power electronics applications, including high-voltage direct current (HVDC) transmission systems and flexible alternating current transmission systems (FACTS). The significance of this work lies in its potential to advance the understanding and application of VSCs, contributing to more resilient and efficient power systems. By providing a solid foundation for future research and development, this study supports the ongoing integration of renewable energy sources and the advancement of modern electrical infrastructure. Full article
Show Figures

Figure 1

23 pages, 2999 KB  
Article
Neural Network Energy Management-Based Nonlinear Control of a DC Micro-Grid with Integrating Renewable Energies
by Khalil Jouili, Mabrouk Jouili, Alsharef Mohammad, Abdulrahman J. Babqi and Walid Belhadj
Energies 2024, 17(13), 3345; https://doi.org/10.3390/en17133345 - 8 Jul 2024
Cited by 3 | Viewed by 1640
Abstract
The broad acceptance of sustainable and renewable energy sources as a means of integrating them into electrical power networks is essential to promote sustainable development. Microgrids using direct currents (DCs) are becoming more and more popular because of their great energy efficiency and [...] Read more.
The broad acceptance of sustainable and renewable energy sources as a means of integrating them into electrical power networks is essential to promote sustainable development. Microgrids using direct currents (DCs) are becoming more and more popular because of their great energy efficiency and straightforward design. In this work, we discuss the control of a PV-based renewable energy system and a battery- and supercapacitor-based energy storage system in a DC microgrid. We describe a hierarchical control approach based on sliding-mode controllers and the Lyapunov stability theory. To balance the load and generation, a fuzzy logic-based energy management system has been created. Using a neural network, maximum power defects for the PV system were determined. The global asymptotic stability of the framework has been verified using Lyapunov stability analysis. In order to simulate the proposed DC microgrid and controllers, MATLAB/SimulinkR (2019a) was utilized. The outcomes show that the system operates effectively with changing production and consumption. Full article
(This article belongs to the Special Issue Research on Solar Cell Materials)
Show Figures

Figure 1

17 pages, 14190 KB  
Article
The Impact of Grid Distortion on the Power Conversion Harmonics of AC/DC Converters in the Supraharmonic Range
by Marwa S. Osheba, Abdellatif M. Aboutaleb, Jan Desmet and Jos Knockaert
Electronics 2024, 13(12), 2244; https://doi.org/10.3390/electronics13122244 - 7 Jun 2024
Cited by 5 | Viewed by 1252
Abstract
AC/DC converters, controlled by pulse width modulation (PWM) and used as power factor correction (PFC), is considered one of the main contributors to emissions in the range 2 kHz–150 kHz, recently known as the supraharmonic (SH) range. This study looks at the impact [...] Read more.
AC/DC converters, controlled by pulse width modulation (PWM) and used as power factor correction (PFC), is considered one of the main contributors to emissions in the range 2 kHz–150 kHz, recently known as the supraharmonic (SH) range. This study looks at the impact of SH grid distortion on the LF (<2 kHz) and HF (>2 kHz) emission of an AC/DC converter. The PFC boost converter is used as a particular case for validation of the results. It is observed that the AC/DC converters emit additional LF interharmonics and subharmonics when the grid voltage contains interharmonic components in the SH range. A mathematical analysis is provided to study and assess the interference between the SH in the background distortion and the AC/DC converters. Experimental studies are then performed for a PFC boost setup based on dSPACE MicroLabBox for the purposes of validating the mathematical analysis. Full article
Show Figures

Figure 1

24 pages, 7286 KB  
Article
Energy Management Strategy for DC Micro-Grid System with the Important Penetration of Renewable Energy
by Christian Bipongo Ndeke, Marco Adonis and Ali Almaktoof
Appl. Sci. 2024, 14(6), 2659; https://doi.org/10.3390/app14062659 - 21 Mar 2024
Cited by 4 | Viewed by 2914
Abstract
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse [...] Read more.
This paper presents an energy management strategy using a Stateflow controller related to DC microgrids with the important penetration of renewable energy. The increase in world electricity demand is one of the principal drivers of the exhaustion of fossil fuels and increased greenhouse gas emissions. To solve these problems, several countries have adopted actions for widespread renewable energy deployment, which includes wind energy, solar power, biomass power, tidal, and hydropower. These sources are considered as significant in delivering clean energy and reducing greenhouse gas emissions for sustainable improvement. As these sources play an increasingly vital role in the global energy landscape, the efficient management of these intermittent sources is essential for grid stability and sustainability. This paper aimed to develop an energy management strategy for DC microgrids to supply power to a DC microgrid system. The main objective of this paper was to implement an energy management system to ensure the proper operation of DC microgrid systems utilizing Simulink blocks available in MATLAB/Simulink 2020b software. The simulation results demonstrated that the developed energy management algorithm was unconditionally reliable, ensuring the proper operation of the microgrid systems. Additionally, the results demonstrated that the energy management strategy exhibited robust performance across different scenarios, effectively balancing energy generation and consumption while ensuring the reliable operation of the microgrid system. Moreover, the developed algorithm model presents another advantage, as it enables users to access and to change any control parameters within the DC microgrid. By comparing these results with the literature, the developed energy management algorithm provides safety and the automatic control of the microgrid. Full article
Show Figures

Figure 1

25 pages, 15946 KB  
Article
Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids
by João M. R. Catelas, João F. P. Fernandes, Modesto Pérez-Sánchez, P. Amparo López-Jiménez, Helena M. Ramos and P. J. Costa Branco
Energies 2024, 17(6), 1382; https://doi.org/10.3390/en17061382 - 13 Mar 2024
Viewed by 1791
Abstract
Using pumps operating as turbines (PATs) offers the possibility of increasing the sustainability of water and energy systems by recovering the excess energy that would be otherwise lost in pressure-reducing valves or head loss chambers. Regarding on-grid applications, there have been many research [...] Read more.
Using pumps operating as turbines (PATs) offers the possibility of increasing the sustainability of water and energy systems by recovering the excess energy that would be otherwise lost in pressure-reducing valves or head loss chambers. Regarding on-grid applications, there have been many research works, and PATs have been implemented in several ways. However, more research still needs to be done on optimizing the efficiency and stability of PATs operating in off-grid systems. This work contributes to the development of stable direct current (DC) off-grid electric systems based on PATs using a self-excited induction generator (SEIG). In this context, a methodology is proposed, based on the hydraulic, mechanical, and electric subsystems, to define the PAT-SEIG operational area to maximize energy conversion and system efficiency. These limits depend highly on the capacitor value, rotational speed, and electric load. In addition, an analytical model is proposed to estimate the PAT-SEIG operation under specific conditions. With this, water managers can design and optimize an off-grid PAT-SEIG system and define the best hydraulic machines, electronic equipment, and control elements to maximize energy conversion within the target of operational limits. Two micro PAT-SEIG setups were implemented in the hydraulic laboratory of IST/CERIS under typical operating conditions to validate the proposed methodology. The system’s maximum efficiency and operational limits can be adapted using different capacitor values for the excitation of the SEIG. Considering the nominal efficiencies of the system’s components, the maximum p.u. efficiency obtained for each PAT-SEIG system was between 0.7 and 0.8 p.u. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

36 pages, 6313 KB  
Article
Multiagent-Based Control for Plug-and-Play Batteries in DC Microgrids with Infrastructure Compensation
by Mudhafar Al-Saadi and Michael Short
Batteries 2023, 9(12), 597; https://doi.org/10.3390/batteries9120597 - 15 Dec 2023
Cited by 5 | Viewed by 3113
Abstract
The influence of the DC infrastructure on the control of power-storage flow in micro- and smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applications. Principal effects include the potential loss of the charge–discharge synchronization and the subsequent impact on the [...] Read more.
The influence of the DC infrastructure on the control of power-storage flow in micro- and smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applications. Principal effects include the potential loss of the charge–discharge synchronization and the subsequent impact on the control stabilization, the increased degradation in batteries’ health/life, and resultant power- and energy-efficiency losses. This paper proposes and tests a candidate solution to compensate for the infrastructure effects in a DC microgrid with a varying number of heterogeneous battery storage systems in the context of a multiagent neighbor-to-neighbor control scheme. Specifically, the scheme regulates the balance of the batteries’ load-demand participation, with adaptive compensation for unknown and/or time-varying DC infrastructure influences. Simulation and hardware-in-the-loop studies in realistic conditions demonstrate the improved precision of the charge–discharge synchronization and the enhanced balance of the output voltage under 24 h excessively continuous variations in the load demand. In addition, immediate real-time compensation for the DC infrastructure influence can be attained with no need for initial estimates of key unknown parameters. The results provide both the validation and verification of the proposals under real operational conditions and expectations, including the dynamic switching of the heterogeneous batteries’ connection (plug-and-play) and the variable infrastructure influences of different dynamically switched branches. Key observed metrics include an average reduced convergence time (0.66–13.366%), enhanced output-voltage balance (2.637–3.24%), power-consumption reduction (3.569–4.93%), and power-flow-balance enhancement (2.755–6.468%), which can be achieved for the proposed scheme over a baseline for the experiments in question. Full article
Show Figures

Graphical abstract

15 pages, 4556 KB  
Article
Seamless Start-Up of a Grid-Connected Photovoltaic System Using Module-Integrated Micro-Converters
by Leonardo Callegaro, Trung-Hieu Uong and Sara Deilami
Energies 2023, 16(17), 6181; https://doi.org/10.3390/en16176181 - 25 Aug 2023
Cited by 4 | Viewed by 1515
Abstract
In traditional grid-tied photovoltaic (PV) installations, when partial shadowing occurs between different PV modules in a string, bypass diodes short-circuit the output terminals of shadowed modules, and the whole system forgoes their potential energy production. This loss can be recovered if a dc-dc [...] Read more.
In traditional grid-tied photovoltaic (PV) installations, when partial shadowing occurs between different PV modules in a string, bypass diodes short-circuit the output terminals of shadowed modules, and the whole system forgoes their potential energy production. This loss can be recovered if a dc-dc converter (micro-converter) is coupled to every PV module, and operated at the maximum power point (MPP). In this scenario, without communication links between the distributed micro-converter and the grid-tied inverter, a start-up procedure must be carefully designed to seamlessly allow the system to transfer PV power to the grid. During this phase, potentially damaging over-voltages and abrupt transients occurring at the micro-converters/inverter interface must be avoided. In this paper, the control algorithm of each micro-converter is enhanced to provide a smooth start-up operation so that PV units can safely start transferring power to the inverter and the grid. Improving from previous works, the proposed control technique is simple and removes the need for current sensors at the output of each micro-converter and at the inverter dc-link, with an economical advantage. Simulation results demonstrate the successful system start-up behavior, whilst confirming the benefits of the proposed control technique. First, the dc-link is energized from the rectified grid voltage. Then, the micro-converters raise the dc-link voltage so that the available PV power is transferred to the grid, with this sequence of operations not causing any abrupt electrical transient. The results also demonstrate the robust behavior of the PV system under non-uniform solar irradiation conditions. Full article
Show Figures

Figure 1

19 pages, 19013 KB  
Article
Simple Chargers for a Small DC Micro-Grid for a Home Emergency Power System
by Felix A. Himmelstoss and Helmut L. Votzi
Electricity 2023, 4(3), 216-234; https://doi.org/10.3390/electricity4030013 - 26 Jun 2023
Cited by 1 | Viewed by 2466
Abstract
Recently, the danger of a long blackout is discussed in Europe. Blackouts can be caused by failures in the energy distribution, errors in large power plants or even cyber-attacks. This can lead to a chain reaction and a disintegration of the mains. Longer [...] Read more.
Recently, the danger of a long blackout is discussed in Europe. Blackouts can be caused by failures in the energy distribution, errors in large power plants or even cyber-attacks. This can lead to a chain reaction and a disintegration of the mains. Longer blackouts have an extreme impact on the economy as a whole and on local households. Therefore, a small local grid at home which can supply the most important loads over some time has garnered increasing interest. With a small direct current (DC) grid, critical loads such as for deep freezers and refrigerators can be supplied, and some LED lights can be used in the evening or at night. Solar generators (panels) can be used to charge energy storage devices, e.g., batteries. A DC grid can not only be used in the case of an emergency, but can also be used to reduce energy consumption out of the public mains and reduce energy bills. The architecture of the household emergency DC grid is discussed; suggestions for batteries are given; two simple chargers, based on DC-DC-converters like the Buck (step-down) and on the Boost (step-up) converters, are shown; dimensioning suggestions are given; and simple, robust controllers, a P-controller with disturbance feedforward and a hysteresis controller, are treated and tested via simulations. The goal of the paper is to show a simple autonomous home energy system without an external fieldbus, LAN or internet connection with special focus on simple charger topologies. Full article
(This article belongs to the Special Issue Operation, Modeling, Control and Applications of Microgrids)
Show Figures

Figure 1

12 pages, 4451 KB  
Article
Electrical Performance of Current Commercial Supercapacitors and Their Future Applications
by Don Charles Uvindra Sirimanne, Nihal Kularatna and Nadee Arawwawala
Electronics 2023, 12(11), 2465; https://doi.org/10.3390/electronics12112465 - 30 May 2023
Cited by 24 | Viewed by 5408
Abstract
From the first patent of supercapacitors, the industry has experienced the commercialization of supercapacitors happening rapidly after the year 2000. Within the last 5 years, the electronics industry has gained access to at least four different types of commercially available supercapacitor families, namely, [...] Read more.
From the first patent of supercapacitors, the industry has experienced the commercialization of supercapacitors happening rapidly after the year 2000. Within the last 5 years, the electronics industry has gained access to at least four different types of commercially available supercapacitor families, namely, electrochemical double layer capacitors (EDLCs), hybrid supercapacitors, battery capacitors and pseudo capacitors. Over the same period after year 2000, there has been huge developments in the electrochemistry of supercapacitors based on new materials such as graphene and mechanisms such as tailoring pore sizes for electrolyte ion exchange to increase volumetric energy density. This paper compares the characteristics of three different types of supercapacitors for large energy applications and how supercapacitors can be useful in future DC-DC converters in renewable and micro-grid applications. Full article
(This article belongs to the Special Issue Supercapacitor Applications)
Show Figures

Figure 1

27 pages, 8994 KB  
Article
Design and Implementation of an Integrated Control Scheme for GaN-Based Multiple Power Converters
by Chao-Tsung Ma and Bing-Hong Yao
Micromachines 2023, 14(4), 833; https://doi.org/10.3390/mi14040833 - 11 Apr 2023
Cited by 7 | Viewed by 2318
Abstract
In response to the rapid changes in the international energy environment, developing renewable energy (RE)-based distributed generation (DG) and various smart micro-grid systems is crucial for creating a robust electric power grid and new energy industries. In this aspect, there is an urgent [...] Read more.
In response to the rapid changes in the international energy environment, developing renewable energy (RE)-based distributed generation (DG) and various smart micro-grid systems is crucial for creating a robust electric power grid and new energy industries. In this aspect, there is an urgent need to develop hybrid power systems suitable for coexistent AC and DC power grids, integrated by high-performance wide ban gap (WBG) semiconductor-based power conversion interfaces and advanced operating and control strategies. Due to the intrinsic feature of variation in RE-based power generation, the design and integration of energy storage devices, real-time regulation of power flow, and intelligent energy control schemes are key technologies for further promoting DG systems and micro-grids. This paper investigates an integrated control scheme for multiple GaN-based power converters in a small- to medium-capacity, grid-connected, and RE-based power system. This is the first time that a complete design case demonstrating three GaN-based power converters with different control functions integrated with a single digital signal processor (DSP) chip to achieve a reliable, flexible, cost effective, and multifunctional power interface for renewable power generation systems is presented. The system studied includes a photovoltaic (PV) generation unit, a battery energy storage unit, a grid-connected single-phase inverter, and a power grid. Based on system operation condition and the state of charge (SOC) of the energy storage unit, two typical operating modes and advanced power control functions are developed with a fully digital and coordinated control scheme. Hardware of the GaN-based power converters and digital controllers are designed and implemented. The feasibility and effectiveness of the designed controllers and overall performance of the proposed control scheme are verified with results from simulation and experimental tests on a 1-kVA small-scale hardware system. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems, 2nd Edition)
Show Figures

Figure 1

21 pages, 7715 KB  
Review
Review on High-Throughput Micro-Combinatorial Characterization of Binary and Ternary Layers towards Databases
by György Sáfrán, Péter Petrik, Noémi Szász, Dániel Olasz, Nguyen Quang Chinh and Miklós Serényi
Materials 2023, 16(8), 3005; https://doi.org/10.3390/ma16083005 - 10 Apr 2023
Cited by 3 | Viewed by 1940
Abstract
The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. This review focuses on recent results regarding the characteristics of different binary [...] Read more.
The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. This review focuses on recent results regarding the characteristics of different binary and ternary films prepared by direct current (DC) and radiofrequency (RF) sputtering using the micro-combinatorial technique. In addition to the 3 mm diameter TEM grid used for microstructural analysis, by scaling up the substrate size to 10 × 25 mm, this novel approach has allowed for a comprehensive study of the properties of the materials as a function of their composition, which has been determined via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry, and nanoindentation studies. Thanks to the micro-combinatory technique, the characterization of multicomponent layers can be studied in greater detail and efficiency than before, which is beneficial for both research and practical applications. In addition to new scientific advances, we will briefly explore the potential for innovation with respect to this new high-throughput concept, including the creation of two- and three-component thin film databases. Full article
(This article belongs to the Special Issue Nanostructural Thin Films: Microstructure and Optical Properties)
Show Figures

Graphical abstract

Back to TopTop