Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = DGK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 11116 KB  
Article
In Silico Identification and Characterization of Spiro[1,2,4]triazolo[1,5-c]quinazolines as Diacylglycerol Kinase α Modulators
by Lyudmyla Antypenko, Kostiantyn Shabelnyk, Oleksii Antypenko, Mieko Arisawa, Oleksandr Kamyshnyi, Valentyn Oksenych and Serhii Kovalenko
Molecules 2025, 30(11), 2324; https://doi.org/10.3390/molecules30112324 - 26 May 2025
Cited by 2 | Viewed by 1067
Abstract
A new class of spiro[1,2,4]triazolo[1,5-c]quinazoline derivatives is presented as promising modulators of diacylglycerol kinase α (DGK-α), a target implicated in cancer, neurological disorders, and immune dysfunction. Through structure-based computational design using the CB-Dock2 platform with human DGK-α (PDB ID: 6IIE), 40 [...] Read more.
A new class of spiro[1,2,4]triazolo[1,5-c]quinazoline derivatives is presented as promising modulators of diacylglycerol kinase α (DGK-α), a target implicated in cancer, neurological disorders, and immune dysfunction. Through structure-based computational design using the CB-Dock2 platform with human DGK-α (PDB ID: 6IIE), 40 novel compounds were systematically evaluated along with established inhibitors (ritanserin, R59022, R59949, BMS502, and (5Z,2E)-CU-3) across five distinct binding pockets. Several compounds demonstrated binding profiles at the level of or surpassing the reference compounds. The physicochemical analysis revealed balanced drug-like properties with favorable molecular weights (252–412 g/mol) and appropriate three-dimensionality. The toxicological assessment indicated reassuring safety profiles with predicted LD50 values of 1000–2000 mg/kg and minimal hepatotoxicity, carcinogenicity, and mutagenicity potential. Notably, compound 33 (adamantyl-substituted) emerged as exceptionally promising, exhibiting strong binding affinity, moderate solubility, and selective CYP inhibition patterns that minimize drug–drug interaction risks. Detailed molecular interaction mapping identified critical binding determinants, including strategic hydrogen bonding with TRP151, GLU166, and ARG126. The multidimensional evaluation identified compounds 13, 18, 33, and 40 as particularly promising candidates that balance potent target engagement with favorable pharmaceutical profiles, establishing this scaffold as a valuable platform for developing next-generation therapeutics targeting DGK-α -mediated signaling pathways. Full article
Show Figures

Graphical abstract

17 pages, 4210 KB  
Review
Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases
by Yishi Liu, Zehui Yang, Xiaoman Zhou, Zijie Li and Nakanishi Hideki
Int. J. Mol. Sci. 2024, 25(23), 13207; https://doi.org/10.3390/ijms252313207 - 9 Dec 2024
Cited by 5 | Viewed by 4367
Abstract
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol [...] Read more.
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), both of which are key intermediates in lipid metabolism and second messengers involved in numerous cellular processes. Dysregulation of DGK activity is associated with several diseases, including cancer and metabolic disorders. In this review, we provide a comprehensive overview of DGK types, functions, cellular localization, and their potential as therapeutic targets. We also discuss DGKs’ roles in lipid metabolism and their physiological functions and related diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 3460 KB  
Article
Integrated Omics Analysis Uncovers the Culprit behind Exacerbated Atopic Dermatitis in a Diet-Induced Obesity Model
by You Mee Ahn, Jeeyoun Jung and So Min Lee
Int. J. Mol. Sci. 2024, 25(8), 4143; https://doi.org/10.3390/ijms25084143 - 9 Apr 2024
Cited by 2 | Viewed by 2044
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) [...] Read more.
Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms. Full article
(This article belongs to the Special Issue Recent Advances in Skin Disease and Comorbidities 2.0)
Show Figures

Figure 1

19 pages, 15235 KB  
Article
Genome-Wide Identification of the DGK Gene Family in Kiwifruit (Actinidia valvata Dunn) and an Expression Analysis of Their Responses to Waterlogging Stress
by Meijuan Zhang, Cuixia Liu, Faming Wang, Shibiao Liu, Jianyou Gao, Jiewei Li, Quanhui Mo, Kaiyu Ye, Beibei Qi and Hongjuan Gong
Horticulturae 2024, 10(4), 310; https://doi.org/10.3390/horticulturae10040310 - 22 Mar 2024
Cited by 3 | Viewed by 1878
Abstract
Diacylglycerol kinase (DGK) is a lipid kinase that phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Based on converting one important signaling molecule (DAG) to another (PA), DGK plays an important role in plant responses to abiotic stress, including waterlogging stress. However, no [...] Read more.
Diacylglycerol kinase (DGK) is a lipid kinase that phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Based on converting one important signaling molecule (DAG) to another (PA), DGK plays an important role in plant responses to abiotic stress, including waterlogging stress. However, no studies have been reported on the characterization of the DGK gene family in the waterlogging-tolerant kiwifruit germplasm Actinidia valvata Dunn. In this study, we identified 18 AvDGK genes in the A. valvata genome. The phylogenetic analysis showed that AvDGKs can be classified into three clusters, and members within the same cluster have similar domain distributions, exon-intron structures, and conserved motif compositions. The chromosome localization analysis revealed that all AvDGK genes are located across 18 different chromosomes. There were 29 duplicated gene pairs in A. valvata and all had undergone purifying selection during evolution. The promoter cis-element analysis revealed that the cis-elements within AvDGK genes are associated with multiple functions, including phytohormone signal transduction, stress responses, and plant growth and development. The expression pattern analyses indicated that AvDGKs play important roles in fruit development and plant responses to waterlogging stress. The AvDGK gene family in the tetraploid A. valvata genome might promote PA synthesis and subsequent signal transduction both under short- and long-term waterlogging stresses. These results provide information regarding the structural characteristics and potential function of AvDGK genes within A. valvata and lay a fundamental basis for further research into breeding to enhance the kiwifruit’s tolerance to waterlogging stress. Full article
Show Figures

Figure 1

23 pages, 646 KB  
Editorial
Second Edition of the German–Austrian S3 Guideline “Infarction-Related Cardiogenic Shock: Diagnosis, Monitoring and Treatment”
by Kevin Pilarczyk, Udo Boeken, Martin Russ, Josef Briegel, Michael Buerke, Alexander Geppert, Uwe Janssens, Malte Kelm, Guido Michels, Axel Schlitt, Holger Thiele, Stephan Willems, Uwe Zeymer, Bernhard Zwissler, Georg Delle-Karth, Markus Wolfgang Ferrari, Hans Reiner Figulla, Axel Heller, Gerhard Hindricks, Emel Pichler-Cetin, Burkert Pieske, Roland Prondzinsky, Johann Bauersachs, Ina Kopp, Karl Werdan and Matthias Thielmannadd Show full author list remove Hide full author list
Hearts 2024, 5(1), 142-164; https://doi.org/10.3390/hearts5010010 - 14 Mar 2024
Cited by 1 | Viewed by 2788
Abstract
The mortality of patients with MI has significantly decreased in recent decades, mainly due to early reperfusion therapy with a probability of surviving of more than 90% if the patient reaches the hospital [...] Full article
Show Figures

Figure 1

18 pages, 3313 KB  
Article
Role of Diacylglycerol Kinases in Acute Myeloid Leukemia
by Teresa Gravina, Chiara Maria Teresa Boggio, Elisa Gorla, Luisa Racca, Silvia Polidoro, Sara Centonze, Daniela Ferrante, Monia Lunghi, Andrea Graziani, Davide Corà and Gianluca Baldanzi
Biomedicines 2023, 11(7), 1877; https://doi.org/10.3390/biomedicines11071877 - 1 Jul 2023
Cited by 5 | Viewed by 6473
Abstract
Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In [...] Read more.
Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In the TGCA database, high DGKA expression negatively correlates with survival, while high DGKG expression is associated with a more favorable prognosis. DGKA and DGKG also feature different patterns of co-expressed genes. Conversely, the BeatAML and TARGET databases show that high DGKH expression is correlated with shorter survival. To assess the suitability of DGKs as therapeutic targets, we treated HL-60 and HEL cells with DGK inhibitors and compared cell growth and survival with those of untransformed lymphocytes. We observed a specific sensitivity to R59022 and R59949, two poorly selective inhibitors, which promoted cytotoxicity and cell accumulation in the S phase in both cell lines. Conversely, the DGKA-specific inhibitors CU-3 and AMB639752 showed poor efficacy. These findings underscore the pivotal and isoform-specific involvement of DGKs in AML, offering a promising pathway for the identification of potential therapeutic targets. Notably, the DGKA and DGKH isoforms emerge as relevant players in AML pathogenesis, albeit DGKA inhibition alone seems insufficient to impair AML cell viability. Full article
(This article belongs to the Special Issue Development of Small Molecules for Acute Myeloid Leukemia Therapy)
Show Figures

Figure 1

15 pages, 3002 KB  
Review
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy
by Daiki Hayashi and Yasuhito Shirai
Molecules 2022, 27(20), 6784; https://doi.org/10.3390/molecules27206784 - 11 Oct 2022
Cited by 8 | Viewed by 3666
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic [...] Read more.
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study. Full article
Show Figures

Figure 1

20 pages, 15591 KB  
Article
Regulation of Airway Smooth Muscle Cell Proliferation by Diacylglycerol Kinase: Relevance to Airway Remodeling in Asthma
by Miguel Angel Hernandez-Lara, Santosh K. Yadav, Sushrut D. Shah, Mariko Okumura, Yuichi Yokoyama, Raymond B. Penn, Taku Kambayashi and Deepak A. Deshpande
Int. J. Mol. Sci. 2022, 23(19), 11868; https://doi.org/10.3390/ijms231911868 - 6 Oct 2022
Cited by 10 | Viewed by 3058
Abstract
Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, [...] Read more.
Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, generation of inositol triphosphate (IP3) and diacylglycerol (DAG). Diacylglycerol kinase (DGK) converts DAG into phosphatidic acid (PA) and terminates DAG signaling while promoting PA-mediated signaling and function. Herein, we hypothesized that PA is a pro-mitogenic second messenger in ASM, and DGK inhibition reduces the conversion of DAG into PA resulting in inhibition of ASM cell proliferation. We assessed the effect of pharmacological inhibition of DGK on pro-mitogenic signaling and proliferation in primary human ASM cells. Pretreatment with DGK inhibitor I (DGKI) significantly inhibited platelet-derived growth factor-stimulated ASM cell proliferation. Anti-mitogenic effect of DGKI was associated with decreased mTOR signaling and expression of cyclin D1. Exogenous PA promoted pro-mitogenic signaling and rescued DGKI-induced attenuation of ASM cell proliferation. Finally, house dust mite (HDM) challenge in wild type mice promoted airway remodeling features, which were attenuated in DGKζ-/- mice. We propose that DGK serves as a potential drug target for mitigating airway remodeling in asthma. Full article
Show Figures

Figure 1

13 pages, 1215 KB  
Article
Elevating Phospholipids Production Yarrowia lipolytica from Crude Glycerol
by Patrycja Szczepańska, Magdalena Rychlicka, Paweł Moroz, Tomasz Janek, Anna Gliszczyńska and Zbigniew Lazar
Int. J. Mol. Sci. 2022, 23(18), 10737; https://doi.org/10.3390/ijms231810737 - 14 Sep 2022
Cited by 5 | Viewed by 4001
Abstract
Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used [...] Read more.
Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes. In Yarrowia lipolytica, PLs are synthesized through a similar pathway like in higher eukaryotes. However, PL biosynthesis in this yeast is still poorly understood. The key intermediate in this pathway is phosphatidic acid, which in Y. lipolytica is mostly directed to the production of triacylglycerols and, in a lower amount, to PL. This study aimed to deliver a strain with improved PL production, with a particular emphasis on increased biosynthesis of phosphatidylcholine (PC). Several genetic modifications were performed: overexpression of genes from PL biosynthesis pathways as well as the deletion of genes responsible for PL degradation. The best performing strain (overexpressing CDP-diacylglycerol synthase (CDS) and phospholipid methyltransferase (OPI3)) reached 360% of PL improvement compared to the wild-type strain in glucose-based medium. With the substitution of glucose by glycerol, a preferred carbon source by Y. lipolytica, an almost 280% improvement of PL was obtained by transformant overexpressing CDS, OPI3, diacylglycerol kinase (DGK1), and glycerol kinase (GUT1) in comparison to the wild-type strain. To further increase the amount of PL, the optimization of culture conditions, followed by the upscaling to a 2 L bioreactor, were performed. Crude glycerol, being a cheap and renewable substrate, was used to reduce the costs of PL production. In this process 653.7 mg/L of PL, including 352.6 mg/L of PC, was obtained. This study proved that Y. lipolytica is an excellent potential producer of phospholipids, especially from waste substrates. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

11 pages, 2913 KB  
Article
Dichloroacetyl Amides of 3,5-Bis(benzylidene)-4-piperidones Displaying Greater Toxicity to Neoplasms than to Non-Malignant Cells
by Mohammad Hossain, Praveen K. Roayapalley, Hiroshi Sakagami, Keitaro Satoh, Kenjiro Bandow, Umashankar Das and Jonathan R. Dimmock
Medicines 2022, 9(6), 35; https://doi.org/10.3390/medicines9060035 - 8 Jun 2022
Viewed by 2770
Abstract
A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1al was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the [...] Read more.
A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1al was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency–selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage. Full article
Show Figures

Figure 1

19 pages, 2639 KB  
Review
Immune Checkpoint Receptors Signaling in T Cells
by Gianluca Baldanzi
Int. J. Mol. Sci. 2022, 23(7), 3529; https://doi.org/10.3390/ijms23073529 - 24 Mar 2022
Cited by 48 | Viewed by 6172
Abstract
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses [...] Read more.
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses on the less explored area of the signaling mechanisms of these receptors, of those expressed in T cells. Studies conducted mainly on PD-1, CTLA-4, and BTLA have evidenced that the extracellular parts of some of the receptors act as decoy receptors for activating ligands, but in all instances, the tyrosine phosphorylation of their cytoplasmatic tail drives a crucial inhibitory signal. This negative signal is mediated by a few key signal transducers, such as tyrosine phosphatase, inositol phosphatase, and diacylglycerol kinase, which allows them to counteract TCR-mediated activation. The characterization of these signaling pathways is of great interest in the development of therapies for counteracting tumor-infiltrating lymphocyte exhaustion/anergy independently from the receptors involved. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Immunology in Italy)
Show Figures

Graphical abstract

19 pages, 3457 KB  
Review
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels
by Rita Gutorov, Ben Katz, Elisheva Rhodes-Mordov, Rachel Zaguri, Tal Brandwine-Shemmer and Baruch Minke
Biomolecules 2022, 12(3), 382; https://doi.org/10.3390/biom12030382 - 28 Feb 2022
Cited by 4 | Viewed by 4515
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to [...] Read more.
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions. Full article
(This article belongs to the Special Issue Lipid-Gating and Lipid-Protein Interactions in Ion Channels)
Show Figures

Figure 1

13 pages, 1266 KB  
Review
The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis
by Fumio Sakane, Fumi Hoshino, Masayuki Ebina, Hiromichi Sakai and Daisuke Takahashi
Cancers 2021, 13(20), 5190; https://doi.org/10.3390/cancers13205190 - 16 Oct 2021
Cited by 21 | Viewed by 6570
Abstract
Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In [...] Read more.
Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers. Full article
(This article belongs to the Special Issue Diacylglycerol Kinases in Cancer)
Show Figures

Figure 1

10 pages, 1583 KB  
Case Report
Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders
by Ksenia Orekhova, Sandro Mazzariol, Beatrice Sussan, Massimo Bucci, Federico Bonsembiante, Ranieri Verin and Cinzia Centelleghe
Vet. Sci. 2021, 8(10), 203; https://doi.org/10.3390/vetsci8100203 - 22 Sep 2021
Cited by 1 | Viewed by 2617
Abstract
Seizures in puppies often present a diagnostic challenge in terms of identifying and treating the underlying cause. Dog breeds with mutations of the MDR1-gene are known to show adverse reactions to certain drugs, yet metabolic imbalance exacerbated by physiologically immature organs and [...] Read more.
Seizures in puppies often present a diagnostic challenge in terms of identifying and treating the underlying cause. Dog breeds with mutations of the MDR1-gene are known to show adverse reactions to certain drugs, yet metabolic imbalance exacerbated by physiologically immature organs and other contributing pathologies require consideration before arriving at a diagnosis. This study analysed the brains of two male, 5-week-old Australian Shepherd siblings that died after displaying severe neurological symptoms upon administration of MilproVet® to treat severe intestinal helminth infection. Despite the initial symptoms being similar, their case histories varied in terms of the symptom duration, access to supportive therapy and post-mortem interval. Histopathology and immunohistochemistry were used to obtain more information about the phase of the pathological processes in the brain, employing protein markers associated with acute hypoxic damage (β-amyloid precursor protein/APP) and apoptosis (diacylglycerolkinase-ζ/DGK-ζ, apoptotic protease activating factor 1/Apaf1, and B-cell lymphoma related protein 2/Bcl-2). The results seem to reflect the course of the animals’ clinical deterioration, implicating that the hypoxic damage to the brains was incompatible with life, and suggesting the usefulness of the mentioned immunohistochemical markers in clarifying the cause of death in animals with acute neurological deficits. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

18 pages, 2059 KB  
Article
The Lactococcal dgkB (yecE) and dxsA Genes for Lipid Metabolism Are Involved in the Resistance to Cell Envelope-Acting Antimicrobials
by Aleksandra Tymoszewska and Tamara Aleksandrzak-Piekarczyk
Int. J. Mol. Sci. 2021, 22(3), 1014; https://doi.org/10.3390/ijms22031014 - 20 Jan 2021
Cited by 9 | Viewed by 3153
Abstract
The emergence of antibiotic-resistant bacteria led to an urgent need for next-generation antimicrobial agents with novel mechanisms of action. The use of positively charged antimicrobial peptides that target cytoplasmic membrane is an especially promising strategy since essential functions and the conserved structure of [...] Read more.
The emergence of antibiotic-resistant bacteria led to an urgent need for next-generation antimicrobial agents with novel mechanisms of action. The use of positively charged antimicrobial peptides that target cytoplasmic membrane is an especially promising strategy since essential functions and the conserved structure of the membrane hinder the development of bacterial resistance. Aureocin A53- and enterocin L50-like bacteriocins are highly cationic, membrane-targeting antimicrobial peptides that have potential as next-generation antibiotics. However, the mechanisms of resistance to these bacteriocins and cross-resistance against antibiotics must be examined before application to ensure their safe use. Here, in the model bacterium Lactococcus lactis, we studied the development of resistance to selected aureocin A53- and enterocin L50-like bacteriocins and its correlation with antibiotics. First, to generate spontaneous resistant mutants, L.lactis was exposed to bacteriocin BHT-B. Sequencing of their genomes revealed single nucleotide polymorphisms (SNPs) in the dgkB (yecE) and dxsA genes encoding diacylglycerol kinase and 1-deoxy-D-xylulose 5-phosphate synthase, respectively. Then, selected mutants underwent susceptibility tests with a wide array of bacteriocins and antibiotics. The highest alterations in the sensitivity of studied mutants were seen in the presence of cytoplasmic membrane targeting bacteriocins (K411, Ent7, EntL50, WelM, SalC, nisin) and antibiotics (daptomycin and gramicidin) as well as lipid II cycle-blocking bacteriocins (nisin and Lcn972) and antibiotics (bacitracin). Interestingly, decreased via the SNPs accumulation sensitivity to membrane-active bacteriocins and antibiotics resulted in the concurrently increased vulnerability to bacitracin, carbenicillin, or chlortetracycline. It is suspected that SNPs may result in alterations to the efficiency of the nascent enzymes rather than a total loss of their function as neither deletion nor overexpression of dxsA restored the phenotype observed in spontaneous mutants. Full article
(This article belongs to the Special Issue Antibiotic Resistance: Appearance, Evolution, and Spread)
Show Figures

Figure 1

Back to TopTop