Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = EMT and cell stemness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1263 KB  
Review
Shared and Context-Specific Mechanisms of EMT and Cellular Plasticity in Cancer and Fibrotic Diseases
by Victor Alexandre F. Bastos, Aline Gomes de Souza, Virginia C. Silvestrini Guedes and Thúlio M. Cunha
Int. J. Mol. Sci. 2025, 26(19), 9476; https://doi.org/10.3390/ijms26199476 (registering DOI) - 27 Sep 2025
Abstract
Cellular plasticity enables cells to dynamically adapt their phenotype in response to environmental cues, a process central to development, tissue repair, and disease. Among the most studied plasticity programs is epithelial–mesenchymal transition (EMT), a transcriptionally controlled process by which epithelial cells acquire mesenchymal [...] Read more.
Cellular plasticity enables cells to dynamically adapt their phenotype in response to environmental cues, a process central to development, tissue repair, and disease. Among the most studied plasticity programs is epithelial–mesenchymal transition (EMT), a transcriptionally controlled process by which epithelial cells acquire mesenchymal traits. Originally described in embryogenesis, EMT is now recognized as a key driver in both tumor progression and fibrotic remodeling. In cancer, EMT and hybrid epithelial/mesenchymal (E/M) states promote invasion, metastasis, stemness, therapy resistance, and immune evasion. In fibrotic diseases, partial EMT (pEMT) contributes to fibroblast activation and excessive extracellular matrix deposition, sustaining organ dysfunction mainly in the kidney, liver, lung, and heart. This review integrates recent findings on the molecular regulation of EMT, including signaling pathways (TGF-β, WNT, NOTCH, HIPPO), transcription factors (SNAIL, ZEB, TWIST), and regulatory layers involving microRNAs and epigenetic modifications. Moreover, we discuss the emergence of pEMT states as drivers of phenotypic plasticity, functional heterogeneity, and poor prognosis. By comparing EMT in cancer and fibrosis, we reveal shared mechanisms and disease-specific features, emphasizing the translational relevance of targeting EMT plasticity. Finally, we explore how cutting-edge technologies, such as single-cell transcriptomics and lineage tracing, are reshaping our understanding of EMT across pathological contexts. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

46 pages, 17128 KB  
Article
A Robust Marine Collagen Peptide–Agarose 3D Culture System for In Vitro Modeling of Hepatocellular Carcinoma and Anti-Cancer Therapeutic Development
by Lata Rajbongshi, Ji-Eun Kim, Jin-Eui Lee, Su-Rin Lee, Seon-Yeong Hwang, Yuna Kim, Young Mi Hong, Sae-Ock Oh, Byoung Soo Kim, Dongjun Lee and Sik Yoon
Mar. Drugs 2025, 23(10), 386; https://doi.org/10.3390/md23100386 (registering DOI) - 27 Sep 2025
Abstract
The development of physiologically relevant three-dimensional (3D) culture systems is essential for modeling tumor complexity and improving the translational impact of cancer research. We established a 3D in vitro model of human hepatocellular carcinoma (HCC) using a marine collagen peptide-based (MCP-B) biomimetic hydrogel [...] Read more.
The development of physiologically relevant three-dimensional (3D) culture systems is essential for modeling tumor complexity and improving the translational impact of cancer research. We established a 3D in vitro model of human hepatocellular carcinoma (HCC) using a marine collagen peptide-based (MCP-B) biomimetic hydrogel scaffold optimized for multicellular spheroid growth. Compared with conventional two-dimensional (2D) cultures, the MCP-B hydrogel more accurately recapitulated native tumor biology while offering simplicity, reproducibility, bioactivity, and cost efficiency. HCC cells cultured in MCP-B hydrogel displayed tumor-associated behaviors, including enhanced proliferation, colony formation, migration, invasion, and chemoresistance, and enriched cancer stem cell (CSC) populations. Molecular analyses revealed upregulated expression of genes associated with multidrug resistance; stemness regulation and markers; epithelial–mesenchymal transition (EMT) transcription factors, markers, and effectors; growth factors and their receptors; and cancer progression. The spheroids also retained liver-specific functions, suppressed apoptotic signaling, and exhibited extracellular matrix remodeling signatures. Collectively, these findings demonstrate that the 3D HCC model using MCP-B hydrogel recapitulates key hallmarks of tumor biology and provides a robust, physiologically relevant platform for mechanistic studies of HCC and CSC biology. This model further holds translational value for preclinical drug screening and the development of novel anti-HCC and anti-CSC therapeutics. Full article
(This article belongs to the Special Issue Marine Collagen: From Biological Insights to Biomedical Breakthroughs)
25 pages, 1153 KB  
Review
Exosomal miRNAs: Key Regulators of the Tumor Microenvironment and Cancer Stem Cells
by Shuangmin Wang, Sikan Jin, Jidong Zhang and Xianyao Wang
Int. J. Mol. Sci. 2025, 26(19), 9323; https://doi.org/10.3390/ijms26199323 - 24 Sep 2025
Viewed by 67
Abstract
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal [...] Read more.
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal microRNAs (miRNAs) are central to epigenetic regulation and intercellular signaling, significantly influencing tumor biology. This review provides a comprehensive overview of the multifaceted roles of exosomal miRNAs in remodeling the tumor microenvironment (TME) and regulating cancer stem cells (CSCs). Specifically, exosomal miRNAs modulate various immune cells (such as macrophages, T cells, and NK cells) as well as cancer-associated fibroblasts (CAFs), thereby promoting immune evasion, angiogenesis, epithelial–mesenchymal transition (EMT), and metastatic progression. At the same time, they enhance CSC stemness, self-renewal, and therapeutic resistance, ultimately driving tumor recurrence and dissemination. Furthermore, exosome-mediated miRNA signaling acts as a critical force in malignant progression. Finally, we discuss the clinical potential of exosomal miRNAs as diagnostic and prognostic biomarkers, therapeutic targets, and vehicles for targeted drug delivery, highlighting their translational value and future directions in cancer research. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

27 pages, 2143 KB  
Review
Targeting the CXCR4/CXCL12 Axis to Overcome Drug Resistance in Triple-Negative Breast Cancer
by Desh Deepak Singh, Dharmendra Kumar Yadav and Dongyun Shin
Cells 2025, 14(18), 1482; https://doi.org/10.3390/cells14181482 - 22 Sep 2025
Viewed by 174
Abstract
Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment [...] Read more.
Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment options and contributes to high recurrence rates. Among the key pathways involved in TNBC progression and resistance, the CXCR4/CXCL12 chemokine axis has emerged as a critical player. CXCR4, a G-protein-coupled receptor, binds specifically to its ligand CXCL12, promoting tumour cell proliferation, metastasis, immune evasion, and stromal remodelling. Its overexpression is frequently associated with poor prognosis, disease progression, and resistance to conventional therapies in TNBC. This review explores how the chemokine receptor type 4 (CXCR4/CXCL12) axis facilitates drug resistance through mechanisms such as epithelial–mesenchymal transition (EMT), cancer stemness, and microenvironmental interactions. Notably, CXCR4 antagonists like plerixafor, balixafortide, and POL5551 have shown encouraging preclinical and clinical results, particularly when combined with chemotherapy or immunotherapy. Additionally, innovative strategies, including radiopharmaceuticals, peptide inhibitors, and nanotechnology-based delivery platforms, offer expanded therapeutic avenues. Despite persistent challenges such as tumour heterogeneity and potential toxicity, growing clinical evidence supports the translational relevance of this axis. This manuscript provides an in-depth analysis of CXCR4/CXCL12-mediated drug resistance in TNBC and evaluates current and emerging therapeutic interventions. Full article
(This article belongs to the Special Issue Unlocking the Secrets Behind Drug Resistance at the Cellular Level)
Show Figures

Figure 1

13 pages, 8472 KB  
Article
Radiation-Induced EMT of Adipose-Derived Stem Cells in 3D Organotypic Culture via Notch Signaling Pathway
by Seon Jeong Choi, Meesun Kim, Kyung Tae Chung and Tae Gen Son
Biology 2025, 14(9), 1306; https://doi.org/10.3390/biology14091306 - 22 Sep 2025
Viewed by 172
Abstract
In our previous study, adipose-derived stem cells (ASCs) cultured in a three-dimensional (3D) organotypic system exhibited mesenchymal-to-epithelial transition (MET) features, including cobblestone morphology and increased expression of E-cadherin and CK18. In this study, we investigated whether ionizing radiation could reverse this phenotype via [...] Read more.
In our previous study, adipose-derived stem cells (ASCs) cultured in a three-dimensional (3D) organotypic system exhibited mesenchymal-to-epithelial transition (MET) features, including cobblestone morphology and increased expression of E-cadherin and CK18. In this study, we investigated whether ionizing radiation could reverse this phenotype via epithelial–mesenchymal transition (EMT) and examined the involvement of Notch signaling. Mouse ASCs were cultured in Matrigel-based 3D organotypic conditions and exposed to 8 Gy of γ-radiation, and EMT- and Notch-related gene and protein expression were assessed 96 h post-irradiation using ATP viability assays, RT-qPCR, and Western blotting. Exposure to 8 Gy significantly reduced cell viability in 2D ASCs to 49.50 ± 6.50% compared with 61.02 ± 5.77% in 3D organoids (p < 0.0001). Irradiated 3D organoids showed EMT-like changes, including an increase of ~2.5-fold in fibronectin and an increase of ~2.0-fold in Twist1 expression, while epithelial CK18 was modestly elevated. Notch signaling was concurrently activated, with Notch1 and Jagged1 increasing by more than twofold and Fra-1 being significantly upregulated. Pretreatment with 20 μM of the γ-secretase inhibitor (GSI) kept cell viability above 90% and suppressed radiation-induced fibronectin, Twist1, Notch1, and Jagged1 expression. These findings indicate that ionizing radiation promotes EMT in 3D-cultured ASCs and reverses prior epithelialization, with Notch signaling playing a key regulatory role. The 3D ASC organoid model may thus provide a physiologically relevant platform for investigating radiation-induced plasticity and potential antifibrotic interventions. Full article
Show Figures

Figure 1

32 pages, 2307 KB  
Review
The Colonic Crypt: Cellular Dynamics and Signaling Pathways in Homeostasis and Cancer
by Anh L. Nguyen, Molly A. Lausten and Bruce M. Boman
Cells 2025, 14(18), 1428; https://doi.org/10.3390/cells14181428 - 11 Sep 2025
Viewed by 634
Abstract
The goal of this review is to expand our understanding of how the cellular organization of the normal colonic crypt is maintained and elucidate how this intricate architecture is disrupted during tumorigenesis. Additionally, it will focus on implications for new therapeutic strategies targeting [...] Read more.
The goal of this review is to expand our understanding of how the cellular organization of the normal colonic crypt is maintained and elucidate how this intricate architecture is disrupted during tumorigenesis. Additionally, it will focus on implications for new therapeutic strategies targeting Epithelial–Mesenchymal Transition (EMT). The colonic crypt is a highly structured epithelial unit that functions in maintaining homeostasis through a complex physiological function of diverse cell types: SCs, transit-amplifying (TA) progenitors, goblet cells, absorptive colonocytes, Paneth-like cells, M cells, tuft cells, and enteroendocrine cells. These cellular subpopulations are spatially organized and regulated by multiple crucial signaling pathways, including WNT, Notch, Bone Morphogenetic Protein (BMP), and Fibroblast Growth Factor (FGF). Specifically, we discuss how these regulatory networks control the precise locations and functions of crypt cell types that are necessary to achieve cellular organization and homeostasis in the normal colon crypt. In addition, we detail how the crypt’s hierarchical structure is profoundly perturbed in colorectal cancer (CRC) development. Tumorigenesis appears to be driven by LGR5+ cancer stem cells (CSCs) and the hyperproliferation of TA cells as colonocytes undergo metabolic reprogramming. Goblet cells lose their secretory phenotype, while REG4+ Paneth-like cells foster SC niches. Tumor microenvironment is also disrupted by upregulation of M cells and by tumor-immune crosstalk that is promoted by tuft cell expansion. Moreover, the presence of enteroendocrine cells in CRC has been implicated in treatment resistance due to its contribution to tumor heterogeneity. These cellular changes are caused by the disruption of homeostasis signaling whereby: overactivation of WNT/β-catenin promotes stemness, dysregulation of Notch inhibits differentiation, suppression of BMP promotes hyperproliferation, and imbalance of FGF/WNT/BMP/NOTCH enhances cellular plasticity and invasion. Further discussion of emerging therapies targeting epithelial markers and regulatory factors, emphasizing current development in novel, precision-based approaches in CRC treatment is also included. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Graphical abstract

26 pages, 1372 KB  
Review
Epithelial–Mesenchymal Transition in Osteosarcoma as a Key Driver of Pulmonary Metastasis
by Fangcheng Luo, Kosei Ando, Yoshinori Takemura, Tae-Hwi Park, Takafumi Yayama and Shinji Imai
Cancers 2025, 17(17), 2922; https://doi.org/10.3390/cancers17172922 - 6 Sep 2025
Viewed by 778
Abstract
Background: Osteosarcoma is an aggressive bone tumor with a high risk of lung metastasis, which severely affects patient survival. EMT plays a major role in tumor spread, therapy resistance, and cancer stemness. This review explores how EMT contributes to osteosarcoma metastasis and the [...] Read more.
Background: Osteosarcoma is an aggressive bone tumor with a high risk of lung metastasis, which severely affects patient survival. EMT plays a major role in tumor spread, therapy resistance, and cancer stemness. This review explores how EMT contributes to osteosarcoma metastasis and the underlying molecular mechanisms. Methods: We reviewed recent studies on EMT-related signaling pathways, transcription factors, and regulatory RNAs in osteosarcoma. We also examined the role of the tumor microenvironment. Results: EMT promotes cell detachment, migration, and lung colonization. Key pathways such as TGF-β, MAPK, PI3K/Akt, STAT3, Notch, and Wnt/β-catenin are involved. Non-coding RNAs further regulate EMT by interacting with these pathways. The tumor microenvironment, including hypoxia and immune cells, also supports EMT and metastasis. Conclusions: EMT is a key driver of metastasis and poor outcomes in osteosarcoma. Targeting EMT and its regulators may help prevent lung spread and improve treatment. Future strategies combining EMT inhibition with existing therapies could be promising for clinical application. Full article
Show Figures

Figure 1

24 pages, 43654 KB  
Article
Analysis of Microarray and Single-Cell RNA-Seq Finds Gene Co-Expression and Tumor Environment Associated with Extracellular Matrix in Epithelial–Mesenchymal Transition in Prostate Cancer
by Ali Shakeri Abroudi, Mahtab Mashhouri Moghaddam, Danial Hashemi Karoii, Melika Djamali, Hossein Azizi and Thomas Skutella
Int. J. Mol. Sci. 2025, 26(17), 8575; https://doi.org/10.3390/ijms26178575 - 3 Sep 2025
Viewed by 580
Abstract
A complex and gradual process, the epithelial–mesenchymal transition (EMT) occurs both during embryonic development and tumor progression. Cells undergo a transition from an epithelial to a mesenchymal state throughout this process. More and more evidence points to EMT as a cause of increased [...] Read more.
A complex and gradual process, the epithelial–mesenchymal transition (EMT) occurs both during embryonic development and tumor progression. Cells undergo a transition from an epithelial to a mesenchymal state throughout this process. More and more evidence points to EMT as a cause of increased metastatic spread of prostate cancer (PCa), along with stemness enhancement and therapy resistance. Here, we used bioinformatic methods to analyze gene expression microarray data, single-cell RNA sequencing, oncogenes, and tumor suppressor genes (TSGs) in order to reconstruct the network of differentially expressed genes (DEGs) involved in the epithelial–mesenchymal transition with PCa. No prior study has documented this sort of analysis. We next validated our results using data from the Cancer Genome Atlas (TCGA), which included microarray and single-cell RNA sequencing. Potentially useful in PCa diagnosis and treatment are extracellular matrix in epithelial–mesenchymal transition genes, including ITGBL1, DSC3, COL4A6, ANGPT1, ARMCX1, MICAL2, and EPHA5. In this study, we aimed to shed light on the molecular characteristics and pathways of DEGs in PCa, as well as to identify possible biomarkers that are important in the development and advancement of this cancer. These insights have important implications for understanding prostate cancer progression and for the development of therapeutic strategies targeting ECM-mediated pathways. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 16819 KB  
Article
LncRNA TSPEAR-AS2 Maintains the Stemness of Gastric Cancer Stem Cells by Regulating the miR-15a-5p/CCND1 Axis
by Qiong Li, Yanan Wang, Liyang Chen, Yan Shen, Shijiao Zhang, Dengyuan Yue and Xiaowei Chen
Biomolecules 2025, 15(9), 1227; https://doi.org/10.3390/biom15091227 - 26 Aug 2025
Viewed by 584
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly [...] Read more.
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly understood. This study investigates the functional significance of lncRNA TSPEAR-AS2 in modulating GCSC properties and uncovers its underlying molecular mechanisms. Through integrated whole-transcriptome sequencing, bioinformatics analysis, and validation in 48 paired gastric cancer tissues and adjacent normal tissues, TSPEAR-AS2 was identified as a differentially expressed lncRNA upregulated in both GCSCs and tumor samples. Functional experiments revealed that TSPEAR-AS2 overexpression significantly enhanced GCSC sphere-forming ability, proliferation, cell cycle progression, epithelial–mesenchymal transition (EMT), and expression of stemness markers (CD54, CD44, OCT4, NANOG, and SOX2) while suppressing apoptosis. Conversely, TSPEAR-AS2 knockdown attenuated these malignant phenotypes. In vivo tumorigenicity assays in nude mice further confirmed that TSPEAR-AS2 promotes tumor growth, with overexpression accelerating and knockdown inhibiting tumor formation. Mechanistically, bioinformatics predictions and dual-luciferase reporter assays established TSPEAR-AS2 as a competing endogenous RNA (ceRNA) that sponges miR-15a-5p, thereby derepressing the miR-15a-5p target gene CCND1. Rescue experiments demonstrated that overexpression of miR-15a-5p phenocopied TSPEAR-AS2 knockdown, reducing GCSC stemness, while miR-15a-5p inhibition rescued the effects of TSPEAR-AS2 suppression. Collectively, these findings reveal a novel TSPEAR-AS2/miR-15a-5p/CCND1 regulatory axis that sustains GCSC stemness and tumorigenicity. These results highlight TSPEAR-AS2 as a potential therapeutic target for eradicating gastric cancer stem cells and improving clinical outcomes. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

22 pages, 7333 KB  
Article
Profiling of Breast Cancer Stem Cell Types/States Shows the Role of CD44hi/CD24lo-ALDH1hi as an Independent Prognostic Factor After Neoadjuvant Chemotherapy
by Hazem Ghebeh, Jumanah Y. Mirza, Taher Al-Tweigeri, Monther Al-Alwan and Asma Tulbah
Int. J. Mol. Sci. 2025, 26(17), 8219; https://doi.org/10.3390/ijms26178219 - 24 Aug 2025
Viewed by 745
Abstract
Multiple markers exist for breast cancer stem cells (CSCs), which are believed to represent the phenotypes of various CSC types and/or states. The relationship between each CSC subpopulation/state and the primary hallmarks of cancer has not been sufficiently clarified. In this study, six [...] Read more.
Multiple markers exist for breast cancer stem cells (CSCs), which are believed to represent the phenotypes of various CSC types and/or states. The relationship between each CSC subpopulation/state and the primary hallmarks of cancer has not been sufficiently clarified. In this study, six CSC markers (CD44hi/CD24lo, CD24, Ep-CAM, ALDH1, CD10, and BMI1) were assessed in a surgical cohort of 73 breast cancer patients. The expression of a single or multiple CSC markers was correlated with clinicopathological parameters, including markers of immune evasion, proliferation, epithelial–mesenchymal transition (EMT), and survival. All CSC phenotypes, except for CD10, correlated with markers indicative of higher proliferation. The CD44hi/CD24lo phenotype correlated with markers of EMT and PD-L1 expression, unlike ALDH1hi. Both Ep-CAMhi and CD24hi breast cancer were associated with indicators of immune evasion, including PD-L1 expression, and the infiltration of FOXP3+ and PD-1+ tumor-infiltrating lymphocytes (TIL). While the CD44hi/CD24lo, Ep-CAMhi, and ALDH1hi phenotypes correlated with shorter overall survival (OS), CD24hi correlated with reduced disease-free survival (DFS). Interestingly, among all tested CSC markers, the CD44hi/CD24lo-ALDH1hi combination phenotype correlated with the worst DFS (HR 2.8, p = 0.014 in univariate/multivariate analysis) and OS (p < 0.001, HR 6.4 in univariate and 5.4 in multivariate analysis). A side-by-side comparison of multiple CSC markers demonstrated the differential linkage of CSC phenotype/state with distinct features of breast cancer. This comparison demonstrates the advantage of the CD44hi/CD24lo-ALDH1hi combination marker for prognostication, especially after neoadjuvant chemotherapy. In the future, distinct markers of CSCs can hopefully be leveraged to trace/monitor different disease characteristics or treatment outcomes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 5518 KB  
Article
NOD2 Promotes Glioblastoma Progression Through Effects on Epithelial–Mesenchymal Transition and Cancer Stemness
by Eshrat Jahan, Shubhash Chandra Chaudhary, S M Abdus Salam, Eun-Jung Ahn, Nah Ihm Kim, Tae-Young Jung, Jong-Hwan Park, Sung Sun Kim, Ji Young Lee, Kyung-Hwa Lee and Kyung-Sub Moon
Biomedicines 2025, 13(8), 2041; https://doi.org/10.3390/biomedicines13082041 - 21 Aug 2025
Viewed by 1164
Abstract
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as [...] Read more.
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as a potential driver of GBM progression. This study investigates NOD2’s role in promoting glioblastoma through its effects on the epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) markers. Methods: NOD2 expression levels and survival outcomes were assessed using TCGA data from GBM tumor samples (n = 153) and normal brain tissues (n = 5). NOD2 protein expression was validated in glioma cell lines using Western blot and immunofluorescence analyses. Functional studies employed siRNA-mediated NOD2 knockdown to evaluate effects on cellular proliferation, migration, invasion, and colony formation, while correlations between NOD2 and EMT/CSC markers were assessed. Results: The analysis of TCGA data revealed a significantly elevated NOD2 expression in GBM tumors compared to normal brain tissue, with a high NOD2 expression correlating with a reduced disease-free survival in GBM patients. All tested glioma cell lines demonstrated robust NOD2 expression. Functional analyses demonstrated that NOD2 depletion substantially impaired cellular proliferation, migration, invasion, and the colony-forming capacity. Mechanistically, siRNA-mediated NOD2 knockdown significantly decreased the expression of EMT (Snail, SLUG, Vimentin) and CSC markers (CD44, CD133) at both protein and mRNA levels. Conclusions: Our results indicate that NOD2 contributes to GBM progression by influencing EMT and CSC pathways. These findings suggest NOD2’s potential as a therapeutic target in glioblastoma, highlighting the need for further mechanistic studies and therapeutic exploration. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

24 pages, 726 KB  
Review
Transcriptomic Comparisons of Somatic and Cancer Stem Cells
by Austin Drysch, Arun Ahuja, Dillan Prasad, Rishi Jain, Sharbel Romanos, Amr Alwakeal and Christopher Ahuja
Biomedicines 2025, 13(8), 2039; https://doi.org/10.3390/biomedicines13082039 - 21 Aug 2025
Viewed by 825
Abstract
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of [...] Read more.
Stem cells are essential for tissue maintenance, repair, and regeneration, yet their dysregulation gives rise to cancer stem cells (CSCs), which drive tumor progression, metastasis, and therapy resistance. Despite extensive research on stemness and oncogenesis, a critical gap remains in our understanding of how the transcriptomic landscapes of normal somatic stem cells (SSCs) diverge from those of CSCs to enable malignancy. This review synthesizes current knowledge of the key signaling pathways (Wnt, Notch, Hedgehog, TGF-β), transcription factors (Oct4, Sox2, Nanog, c-Myc, YAP/TAZ), and epigenetic mechanisms (chromatin remodeling, DNA methylation, microRNA regulation) that govern stemness in SSCs and are hijacked or dysregulated in CSCs. We highlight how context-specific modulation of these pathways distinguishes physiological regeneration from tumorigenesis. Importantly, we discuss the role of epithelial–mesenchymal transition (EMT), cellular plasticity, and microenvironmental cues in reprogramming and maintaining CSC phenotypes. By integrating transcriptomic and epigenetic insights across cancer biology and regenerative medicine, this review provides a framework for identifying vulnerabilities specific to CSCs while still preserving normal stem cell function. Understanding these distinctions is essential for the development of targeted therapies that minimize damage to healthy tissues and advance precision oncology. Full article
(This article belongs to the Special Issue Advances in Precision Cancer Therapy)
Show Figures

Figure 1

16 pages, 1118 KB  
Review
The Role of Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1) in Cancer Stem Cell Signaling
by Matthew S. Jung, Won-Young Choi, Wenjing Zhang, Francisco N. Barrera and Rachel S. Perkins
Int. J. Mol. Sci. 2025, 26(16), 7828; https://doi.org/10.3390/ijms26167828 - 13 Aug 2025
Viewed by 940
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a key regulator of cancer stem cell (CSC) biology and signaling. In CSCs, ROR1 acts as a receptor or co-receptor, interacting with non-canonical WNT ligands, and forming complexes with proteins like CD19 and HER2, to [...] Read more.
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a key regulator of cancer stem cell (CSC) biology and signaling. In CSCs, ROR1 acts as a receptor or co-receptor, interacting with non-canonical WNT ligands, and forming complexes with proteins like CD19 and HER2, to activate diverse downstream signaling pathways. ROR1 signaling in CSCs promotes proliferation, maintains stemness, and enhances migration, invasion, and the epithelial-to-mesenchymal transition (EMT). While minimally expressed after embryogenesis, ROR1 is aberrantly upregulated in numerous cancers, including ovarian, breast, pancreatic, and hematologic malignancies. ROR1 overexpression drives tumor progression, resistance to chemotherapies, disease recurrence, and ultimately metastasis. This expression pattern positions ROR1 as a promising target for CSC-specific therapies. High ROR1 expression is consistently linked to aggressive disease and poor patient outcomes. Here, we review ROR1′s role in CSCs and highlight the complex signaling that is observed in the CSC population. Further, we evaluate the gaps in the current understanding of ROR1 signaling in CSCs and describe how ROR1 regulates the associated signaling pathways. Finally, we provide an up-to-date summary of the promising therapeutic strategies targeting ROR1 that overcome conventional cancer treatment limitations. This review highlights the role of ROR1 as a critical, functional driver of CSCs and adverse patient outcomes across various malignancies. Full article
(This article belongs to the Special Issue New Advances in Cancer Stem Cell Research: 2nd Edition)
Show Figures

Figure 1

13 pages, 3790 KB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Viewed by 739
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

22 pages, 3527 KB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 739
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

Back to TopTop