Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = Endmember Extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9509 KB  
Article
Extraction of Remote Sensing Alteration Information Based on Integrated Spectral Mixture Analysis and Fractal Analysis
by Kai Qiao, Tao Luo, Shihao Ding, Licheng Quan, Jingui Kong, Yiwen Liu, Zhiwen Ren, Shisong Gong and Yong Huang
Minerals 2025, 15(10), 1047; https://doi.org/10.3390/min15101047 - 2 Oct 2025
Abstract
As a key target area in China’s new round of strategic mineral exploration initiatives, Tibet possesses favorable metallogenic conditions shaped by its unique geological evolution and tectonic setting. In this paper, the Saga region of Tibet is the research object, and Level-2A Sentinel-2 [...] Read more.
As a key target area in China’s new round of strategic mineral exploration initiatives, Tibet possesses favorable metallogenic conditions shaped by its unique geological evolution and tectonic setting. In this paper, the Saga region of Tibet is the research object, and Level-2A Sentinel-2 imagery is utilized. By applying mixed pixel decomposition, interfering endmembers were identified, and spectral unmixing and reconstruction were performed, effectively avoiding the drawback of traditional methods that tend to remove mineral alteration signals and masking interference. Combined with band ratio analysis and principal component analysis (PCA), various types of remote sensing alteration anomalies in the region were extracted. Furthermore, the fractal box-counting method was employed to quantify the fractal dimensions of the different alteration anomalies, thereby delineating their spatial distribution and fractal structural characteristics. Based on these results, two prospective mineralization zones were identified. The results indicate the following: (1) In areas of Tibet with low vegetation cover, applying spectral mixture analysis (SMA) effectively removes substantial background interference, thereby enabling the extraction of subtle remote sensing alteration anomalies. (2) The fractal dimensions of various remote sensing alteration anomalies were calculated using the fractal box-counting method over a spatial scale range of 0.765 to 6.123 km. These values quantitatively characterize the spatial fractal properties of the anomalies, and the differences in fractal dimensions among alteration types reflect the spatiotemporal heterogeneity of the mineralization system. (3) The high-potential mineralization zones identified in the composite contour map of fractal dimensions of alteration anomalies show strong spatial agreement with known mineralization sites. Additionally, two new prospective mineralization zones were delineated in their periphery, providing theoretical support and exploration targets for future prospecting in the study area. Full article
Show Figures

Figure 1

24 pages, 8871 KB  
Article
Satellite-Derived Multi-Temporal Palm Trees and Urban Cover Changes to Understand Drivers of Changes in Agroecosystem in Al-Ahsa Oasis Using a Spectral Mixture Analysis (SMA) Model
by Abdelrahim Salih, Abdalhaleem Hassaballa and Abbas E. Rahma
Agriculture 2025, 15(19), 2043; https://doi.org/10.3390/agriculture15192043 - 29 Sep 2025
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, [...] Read more.
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

30 pages, 8388 KB  
Article
ASTER and Hyperion Satellite Remote Sensing Data for Lithological Mapping and Mineral Exploration in Ophiolitic Zones: A Case Study from Lasbela, Baluchistan, Pakistan
by Saima Khurram, Zahid Khalil Rao, Amin Beiranvand Pour, Khurram Riaz, Arshia Fatima and Amna Ahmed
Mining 2025, 5(3), 53; https://doi.org/10.3390/mining5030053 - 2 Sep 2025
Viewed by 636
Abstract
This study evaluates the capabilities of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion remote sensing sensors for mapping ophiolitic sequences and identifying manganese mineralization in the Bela Ophiolite region, located along the axial fold–thrust belt northwest of Karachi, Pakistan. [...] Read more.
This study evaluates the capabilities of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion remote sensing sensors for mapping ophiolitic sequences and identifying manganese mineralization in the Bela Ophiolite region, located along the axial fold–thrust belt northwest of Karachi, Pakistan. The study area comprises tholeiitic basalts, gabbros, mafic and ultramafic rocks, and sedimentary formations where manganese occurrences are associated with jasperitic chert and shale. To delineate lithological units and Mn mineralization, advanced image processing techniques were applied, including band ratio (BR), Principal Component Analysis (PCA), and Spectral Angle Mapper (SAM) on visible and near-infrared (VNIR) and shortwave infrared (SWIR) bands of ASTER. Using these methods, gabbros, basalts, and mafic-ultramafic rocks were effectively mapped, and previously unrecognized basaltic outcrops and gabbroic outcrops were also discovered. The ENVI Spectral Hourglass Wizard was used to analyze the hyperspectral data, integrating the Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and N-Dimensional Visualizer to extract the spectra of end-members associated with Mn-bearing host rocks. In addition, the Hyperspectral Material Identification (HMI) tool was tested to recognize Mn minerals. The remote sensing results were validated by petrographic analysis and ground-truth data, confirming the effectiveness of these techniques in ophiolite mapping and mineral exploration. This study shows that ASTER band combinations (3-6-7, 3-7-9) and band ratios (1/4, 4/9, 9/1 and 3/4, 4/9, 9/1) provide optimal results for lithological discrimination. The results show that remote sensing-based image processing is a powerful tool for mapping ophiolites on a regional scale and can help geologists identify potential mineralization zones in ophiolitic sequences. Full article
Show Figures

Figure 1

13 pages, 8445 KB  
Article
Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary
by Hongli Pang and Yunxia Jia
Atmosphere 2025, 16(9), 1019; https://doi.org/10.3390/atmos16091019 - 29 Aug 2025
Viewed by 566
Abstract
The frequency and intensity of paleofloods reveal long-term hydrological changes and their responses to regional climate variations. This study focuses on sediment core HDZ04 from the desert section of the upper Yellow River, analyzing sediment grain size and elemental characteristics to reconstruct paleoflood [...] Read more.
The frequency and intensity of paleofloods reveal long-term hydrological changes and their responses to regional climate variations. This study focuses on sediment core HDZ04 from the desert section of the upper Yellow River, analyzing sediment grain size and elemental characteristics to reconstruct paleoflood events over the past 30,000 years. Using the EMMA end-member model, four end-member components were extracted, and the proportion of the two coarser end-members was used as a proxy for flood dynamics. Pearson correlation analysis indicated that ln(Zr/Ti) correlates more significantly with grain size value than ln(Zr/Rb), establishing Zr/Ti as a reliableproxy for paleoflood reconstruction. Integrating physical and chemical indicators with OSL dating, the reconstructed paleoflood sequence shows high frequency and intensity from 30~12 ka, lower values during the early and middle Holocene, and a significant increase in the late Holocene (3~0 ka). Comparison with regional climate records indicates that cold and dry periods correspond to higher paleoflood frequency and intensity. This multi-proxy approach provides a transferable framework for reconstructing past flood events in other alluvial systems worldwide, enhancing our understanding of hydrological responses to climatic forcing. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

44 pages, 3439 KB  
Review
Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review
by Jinlin Zou, Hongwei Qu and Peng Zhang
Remote Sens. 2025, 17(17), 2968; https://doi.org/10.3390/rs17172968 - 27 Aug 2025
Viewed by 1296
Abstract
Hyperspectral images often contain many mixed pixels, primarily resulting from their inherent complexity and low spatial resolution. To enhance surface classification and improve sub-pixel target detection accuracy, hyperspectral unmixing technology has consistently become a topical issue. This review provides a comprehensive overview of [...] Read more.
Hyperspectral images often contain many mixed pixels, primarily resulting from their inherent complexity and low spatial resolution. To enhance surface classification and improve sub-pixel target detection accuracy, hyperspectral unmixing technology has consistently become a topical issue. This review provides a comprehensive overview of methodologies for hyperspectral unmixing, from traditional to advanced deep learning approaches. A systematic analysis of various challenges is presented, clarifying underlying principles and evaluating the strengths and limitations of prevalent algorithms. Hyperspectral unmixing is critical for interpreting spectral imagery but faces significant challenges: limited ground-truth data, spectral variability, nonlinear mixing effects, computational demands, and barriers to practical commercialization. Future progress requires bridging the gap to applications through user-centric solutions and integrating multi-modal and multi-temporal data. Research priorities include uncertainty quantification, transfer learning for generalization, neuromorphic edge computing, and developing tuning-free foundation models for cross-scenario robustness. This paper is designed to foster the commercial application of hyperspectral unmixing algorithms and to offer robust support for engineering applications within the hyperspectral remote sensing domain. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

30 pages, 10140 KB  
Article
High-Accuracy Cotton Field Mapping and Spatiotemporal Evolution Analysis of Continuous Cropping Using Multi-Source Remote Sensing Feature Fusion and Advanced Deep Learning
by Xiao Zhang, Zenglu Liu, Xuan Li, Hao Bao, Nannan Zhang and Tiecheng Bai
Agriculture 2025, 15(17), 1814; https://doi.org/10.3390/agriculture15171814 - 25 Aug 2025
Viewed by 566
Abstract
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed [...] Read more.
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed that integrates multi-source satellite remote sensing data with machine learning methods. Using imagery from Sentinel-2, GF-1, and Landsat 8, we performed feature fusion using principal component, Gram–Schmidt (GS), and neural network techniques. Analyses of spectral, vegetation, and texture features revealed that the GS-fused blue bands of Sentinel-2 and Landsat 8 exhibited optimal performance, with a mean value of 16,725, a standard deviation of 2290, and an information entropy of 8.55. These metrics improved by 10,529, 168, and 0.28, respectively, compared with the original Landsat 8 data. In comparative classification experiments, the endmember-based random forest classifier (RFC) achieved the best traditional classification performance, with a kappa value of 0.963 and an overall accuracy (OA) of 97.22% based on 250 samples, resulting in a cotton-field extraction error of 38.58 km2. By enhancing the deep learning model, we proposed a U-Net architecture that incorporated a Convolutional Block Attention Module and Atrous Spatial Pyramid Pooling. Using the GS-fused blue band data, the model achieved significantly improved accuracy, with a kappa coefficient of 0.988 and an OA of 98.56%. This advancement reduced the area estimation error to 25.42 km2, representing a 34.1% decrease compared with that of the RFC. Based on the optimal model, we constructed a digital map of continuous cotton cropping from 2021 to 2023, which revealed a consistent decline in cotton acreage within the reclaimed areas. This finding underscores the effectiveness of crop rotation policies in mitigating the adverse effects of large-scale monoculture practices. This study confirms that the synergistic integration of multi-source satellite feature fusion and deep learning significantly improves crop identification accuracy, providing reliable technical support for agricultural policy formulation and sustainable farmland management. Full article
(This article belongs to the Special Issue Computers and IT Solutions for Agriculture and Their Application)
Show Figures

Figure 1

35 pages, 58241 KB  
Article
DGMNet: Hyperspectral Unmixing Dual-Branch Network Integrating Adaptive Hop-Aware GCN and Neighborhood Offset Mamba
by Kewen Qu, Huiyang Wang, Mingming Ding, Xiaojuan Luo and Wenxing Bao
Remote Sens. 2025, 17(14), 2517; https://doi.org/10.3390/rs17142517 - 19 Jul 2025
Viewed by 439
Abstract
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing [...] Read more.
Hyperspectral sparse unmixing (SU) networks have recently received considerable attention due to their model hyperspectral images (HSIs) with a priori spectral libraries and to capture nonlinear features through deep networks. This method effectively avoids errors associated with endmember extraction, and enhances the unmixing performance via nonlinear modeling. However, two major challenges remain: the use of large spectral libraries with high coherence leads to computational redundancy and performance degradation; moreover, certain feature extraction models, such as Transformer, while exhibiting strong representational capabilities, suffer from high computational complexity. To address these limitations, this paper proposes a hyperspectral unmixing dual-branch network integrating an adaptive hop-aware GCN and neighborhood offset Mamba that is termed DGMNet. Specifically, DGMNet consists of two parallel branches. The first branch employs the adaptive hop-neighborhood-aware GCN (AHNAGC) module to model global spatial features. The second branch utilizes the neighborhood spatial offset Mamba (NSOM) module to capture fine-grained local spatial structures. Subsequently, the designed Mamba-enhanced dual-stream feature fusion (MEDFF) module fuses the global and local spatial features extracted from the two branches and performs spectral feature learning through a spectral attention mechanism. Moreover, DGMNet innovatively incorporates a spectral-library-pruning mechanism into the SU network and designs a new pruning strategy that accounts for the contribution of small-target endmembers, thereby enabling the dynamic selection of valid endmembers and reducing the computational redundancy. Finally, an improved ESS-Loss is proposed, which combines an enhanced total variation (ETV) with an l1/2 sparsity constraint to effectively refine the model performance. The experimental results on two synthetic and five real datasets demonstrate the effectiveness and superiority of the proposed method compared with the state-of-the-art methods. Notably, experiments on the Shahu dataset from the Gaofen-5 satellite further demonstrated DGMNet’s robustness and generalization. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

22 pages, 32971 KB  
Article
Spatial-Channel Multiscale Transformer Network for Hyperspectral Unmixing
by Haixin Sun, Qiuguang Cao, Fanlei Meng, Jingwen Xu and Mengdi Cheng
Sensors 2025, 25(14), 4493; https://doi.org/10.3390/s25144493 - 19 Jul 2025
Viewed by 545
Abstract
In recent years, deep learning (DL) has been demonstrated remarkable capabilities in hyperspectral unmixing (HU) due to its powerful feature representation ability. Convolutional neural networks (CNNs) are effective in capturing local spatial information, but limited in modeling long-range dependencies. In contrast, transformer architectures [...] Read more.
In recent years, deep learning (DL) has been demonstrated remarkable capabilities in hyperspectral unmixing (HU) due to its powerful feature representation ability. Convolutional neural networks (CNNs) are effective in capturing local spatial information, but limited in modeling long-range dependencies. In contrast, transformer architectures extract global contextual features via multi-head self-attention (MHSA) mechanisms. However, most existing transformer-based HU methods focus only on spatial or spectral modeling at a single scale, lacking a unified mechanism to jointly explore spatial and channel-wise dependencies. This limitation is particularly critical for multiscale contextual representation in complex scenes. To address these issues, this article proposes a novel Spatial-Channel Multiscale Transformer Network (SCMT-Net) for HU. Specifically, a compact feature projection (CFP) module is first used to extract shallow discriminative features. Then, a spatial multiscale transformer (SMT) and a channel multiscale transformer (CMT) are sequentially applied to model contextual relations across spatial dimensions and long-range dependencies among spectral channels. In addition, a multiscale multi-head self-attention (MMSA) module is designed to extract rich multiscale global contextual and channel information, enabling a balance between accuracy and efficiency. An efficient feed-forward network (E-FFN) is further introduced to enhance inter-channel information flow and fusion. Experiments conducted on three real hyperspectral datasets (Samson, Jasper and Apex) and one synthetic dataset showed that SCMT-Net consistently outperformed existing approaches in both abundance estimation and endmember extraction, demonstrating superior accuracy and robustness. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 12865 KB  
Article
Mapping Crop Types and Cropping Patterns Using Multiple-Source Satellite Datasets in Subtropical Hilly and Mountainous Region of China
by Yaoliang Chen, Zhiying Xu, Hongfeng Xu, Zhihong Xu, Dacheng Wang and Xiaojian Yan
Remote Sens. 2025, 17(13), 2282; https://doi.org/10.3390/rs17132282 - 3 Jul 2025
Viewed by 919
Abstract
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed [...] Read more.
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed pixels resulted from fragmented patches and difficulty in obtaining optical satellites due to a frequently cloudy and rainy climate. Here we propose a crop type and cropping pattern mapping framework in subtropical hilly and mountainous areas, considering multiple sources of satellites (i.e., Landsat 8/9, Sentinel-2, and Sentinel-1 images and GF 1/2/7). To develop this framework, six types of variables from multi-sources data were applied in a random forest classifier to map major summer crop types (singe-cropped rice and double-cropped rice) and winter crop types (rapeseed). Multi-scale segmentation methods were applied to improve the boundaries of the classified results. The results show the following: (1) Each type of satellite data has at least one variable selected as an important feature for both winter and summer crop type classification. Apart from the endmember variables, the other five extracted variable types are selected by the RF classifier for both winter and summer crop classifications. (2) SAR data can capture the key information of summer crops when optical data is limited, and the addition of SAR data can significantly improve the accuracy as to summer crop types. (3) The overall accuracy (OA) of both summer and winter crop type mapping exceeded 95%, with clear and relatively accurate cropland boundaries. Area evaluation showed a small bias in terms of the classified area of rapeseed, single-cropped rice, and double-cropped rice from statistical records. (4) Further visual examination of the spatial distribution showed a better performance of the classified crop types compared to three existing products. The results suggest that the proposed method has great potential in accurately mapping crop types in a complex subtropical planting environment. Full article
Show Figures

Figure 1

18 pages, 3118 KB  
Article
AetherGeo: A Spectral Analysis Interface for Geologic Mapping
by Gonçalo Santos, Joana Cardoso-Fernandes and Ana C. Teodoro
Algorithms 2025, 18(7), 378; https://doi.org/10.3390/a18070378 - 21 Jun 2025
Viewed by 579
Abstract
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for [...] Read more.
AetherGeo is a standalone piece of software (current version 1.0) that aims to enable the user to analyze raster data, with a special focus on processing multi- and hyperspectral images. Being developed in Python 3.12.4, this application is a free, open-source alternative for spectral analysis, something considered beneficial for researchers, allowing for a flexible approach to start working on the topic without acquiring proprietary software licenses. It provides the user with a set of tools for spectral data analysis through classical approaches, such as band ratios and RGB combinations, but also more elaborate techniques, such as endmember extraction and unsupervised image classification with partial spectral unmixing techniques. While it has been tested on visible and near-infrared (VNIR), short-wave infrared (SWIR), and VNIR-SWIR datasets, the functions implemented have the potential to be applied to other spectral ranges. On top of this, all results can be visualized within the software, and some tools allow for the inspection and comparison of spectra and spectral libraries. Providing software with these capabilities in a unified platform has the potential to positively impact research and education, as students and educators usually have limited access to proprietary software. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

22 pages, 10608 KB  
Article
Hyperspectral Image Assessment of Archaeo-Paleoanthropological Stratigraphic Deposits from Atapuerca (Burgos, Spain)
by Berta García-Fernández, Alfonso Benito-Calvo, Adrián Martínez-Fernández, Isidoro Campaña, Andreu Ollé, Palmira Saladié, María Martinón-Torres and Marina Mosquera
Heritage 2025, 8(6), 233; https://doi.org/10.3390/heritage8060233 - 18 Jun 2025
Viewed by 769
Abstract
This paper proposes an experimental procedure based on hyperspectral imaging (HSI) combined with statistical classification for assessing archaeo-paleoanthropological stratigraphic deposits at the Gran Dolina site (TD10 unit), located in the Sierra de Atapuerca (Burgos, Spain). Representative spectral reflectance signatures were determined and analyzed [...] Read more.
This paper proposes an experimental procedure based on hyperspectral imaging (HSI) combined with statistical classification for assessing archaeo-paleoanthropological stratigraphic deposits at the Gran Dolina site (TD10 unit), located in the Sierra de Atapuerca (Burgos, Spain). Representative spectral reflectance signatures were determined and analyzed using HSI measurements and statistical classification methods in natural light conditions across various capture distances. This study aims to characterize and quantify cave sediments by defining spectral models for feature classification and spectral similarity analysis, evaluating the strengths and limitations of spectral captures at this specific site. HSI technology enhances the analysis and identification of materials at an internationally recognized reference site for human evolution studies. Hyperspectral imaging assessment of archaeo-paleoanthropological stratigraphic deposits emerges as an innovative digital tool, revolutionizing the sustainable management of cultural heritage and environmental sciences by enabling advanced material identification and stratigraphic analysis. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

27 pages, 10403 KB  
Article
Autoencoder-Based Hyperspectral Unmixing with Simultaneous Number-of-Endmembers Estimation
by Atheer Abdullah Alshahrani, Ouiem Bchir and Mohamed Maher Ben Ismail
Sensors 2025, 25(8), 2592; https://doi.org/10.3390/s25082592 - 19 Apr 2025
Viewed by 1416
Abstract
Hyperspectral unmixing plays a fundamental role in mining meaningful information from hyperspectral data. It promotes advancements in various scientific, environmental, and industrial applications by extracting meaningful information from hyperspectral data. However, it is still hindered by several challenges, including accurately identifying the number [...] Read more.
Hyperspectral unmixing plays a fundamental role in mining meaningful information from hyperspectral data. It promotes advancements in various scientific, environmental, and industrial applications by extracting meaningful information from hyperspectral data. However, it is still hindered by several challenges, including accurately identifying the number of endmembers in a hyperspectral image, extracting the endmembers, and estimating their abundance fractions. This research addresses these challenges by employing a convolutional-neural-network-based autoencoder that leverages both the spatial and spectral information present in the hyperspectral image. Additionally, a self-learning module utilizing a fuzzy clustering algorithm is designed to determine the number of endmembers. A novel approach is also introduced that estimates the abundances of the endmembers from the autoencoder and the clustering output. Real datasets and relevant performance metrics were used to validate and evaluate the performance of the proposed method. The results demonstrate that our approach outperforms related methods, achieving improvements of 47% in Spectral Angle Distance (SAD) and 42% in root-mean-square error (RMSE). Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 58618 KB  
Article
Multispectral Land Surface Reflectance Reconstruction Based on Non-Negative Matrix Factorization: Bridging Spectral Resolution Gaps for GRASP TROPOMI BRDF Product in Visible
by Weizhen Hou, Xiong Liu, Jun Wang, Cheng Chen and Xiaoguang Xu
Remote Sens. 2025, 17(6), 1053; https://doi.org/10.3390/rs17061053 - 17 Mar 2025
Cited by 3 | Viewed by 1012
Abstract
In satellite remote sensing, mixed pixels commonly arise in medium- and low-resolution imagery, where surface reflectance is a combination of various land cover types. The widely adopted linear mixing model enables the decomposition of mixed pixels into constituent endmembers, effectively bridging spectral resolution [...] Read more.
In satellite remote sensing, mixed pixels commonly arise in medium- and low-resolution imagery, where surface reflectance is a combination of various land cover types. The widely adopted linear mixing model enables the decomposition of mixed pixels into constituent endmembers, effectively bridging spectral resolution gaps by retrieving the spectral properties of individual land cover types. This study introduces a method to enhance multispectral surface reflectance data by reconstructing additional spectral information, particularly in the visible spectral range, using the TROPOMI BRDF product generated by the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) algorithm. Employing non-negative matrix factorization (NMF), the approach extracts spectral basis vectors from reference spectral libraries and reconstructs key spectral features using a limited number of wavelength bands. The comprehensive test results show that this method is particularly effective in supplementing surface reflectance information for specific wavelengths where gas absorption is strong or atmospheric correction errors are significant, demonstrating its applicability not only within the 400–800 nm range but also across the broader spectral range of 400–2400 nm. While not a substitute for hyperspectral observations, this approach provides a cost-effective means to address spectral resolution gaps in multispectral datasets, facilitating improved surface characterization and environmental monitoring. Future research will focus on refining spectral libraries, improving reconstruction accuracy, and expanding the spectral range to enhance the applicability and robustness of the method for diverse remote sensing applications. Full article
Show Figures

Graphical abstract

20 pages, 14766 KB  
Article
PICT-Net: A Transformer-Based Network with Prior Information Correction for Hyperspectral Image Unmixing
by Yiliang Zeng, Na Meng, Jinlin Zou and Wenbin Liu
Remote Sens. 2025, 17(5), 869; https://doi.org/10.3390/rs17050869 - 28 Feb 2025
Cited by 1 | Viewed by 949
Abstract
Transformers have performed favorably in recent hyperspectral unmixing studies in which the self-attention mechanism possesses the ability to retain spectral information and spatial details. However, the lack of reliable prior information for correction guidance has resulted in an inadequate accuracy and robustness of [...] Read more.
Transformers have performed favorably in recent hyperspectral unmixing studies in which the self-attention mechanism possesses the ability to retain spectral information and spatial details. However, the lack of reliable prior information for correction guidance has resulted in an inadequate accuracy and robustness of the network. To benefit from the advantages of the Transformer architecture and to improve the interpretability and robustness of the network, a dual-branch network with prior information correction, incorporating a Transformer network (PICT-Net), is proposed. The upper branch utilizes pre-extracted endmembers to provide pure pixel prior information. The lower branch employs a Transformer structure for feature extraction and unmixing processing. A weight-sharing strategy is employed between the two branches to facilitate information sharing. The deep integration of prior knowledge into the Transformer architecture effectively reduces endmember variability in hyperspectral unmixing and enhances the model’s generalization capability and accuracy across diverse scenarios. Experimental results from experiments conducted on four real datasets demonstrate the effectiveness and superiority of the proposed model. Full article
Show Figures

Figure 1

17 pages, 4186 KB  
Article
Anomaly-Guided Double Autoencoders for Hyperspectral Unmixing
by Hongyi Liu, Chenyang Zhang, Jianing Huang and Zhihui Wei
Remote Sens. 2025, 17(5), 800; https://doi.org/10.3390/rs17050800 - 25 Feb 2025
Cited by 1 | Viewed by 1085
Abstract
Deep learning has emerged as a prevalent approach for hyperspectral unmixing. However, most existing unmixing methods employ a single network, resulting in moderate estimation errors and less meaningful endmembers and abundances. To address this imitation, this paper proposes a novel double autoencoders-based unmixing [...] Read more.
Deep learning has emerged as a prevalent approach for hyperspectral unmixing. However, most existing unmixing methods employ a single network, resulting in moderate estimation errors and less meaningful endmembers and abundances. To address this imitation, this paper proposes a novel double autoencoders-based unmixing method, consisting of an endmember extraction network and an abundance estimation network. In the endmember network, to improve the spectral discrimination, a logarithm spectral angle distance (SAD), integrated with anomaly-guided weight, is developed as the loss function. Specifically, the logarithm function is used to boost the reliability of a pixel based on its high SAD similarity to other pixels. Moreover, the anomaly-guided weight mitigates the influence of outliers. As for the abundance network, a spectral convolutional autoencoder combined with the channel attention module is employed to exploit the spectral features. Additionally, the decoder weight is shared between the two networks to reduce computational complexity. Extensive comparative experiments with state-of-the-art unmixing methods demonstrate that the proposed method achieves superior performance in both endmember extraction and abundance estimation. Full article
(This article belongs to the Special Issue Recent Advances in the Processing of Hyperspectral Images)
Show Figures

Figure 1

Back to TopTop