Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,828)

Search Parameters:
Keywords = Exosome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 2570 KB  
Review
Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review
by Charles F. Manful, Eric Fordjour, Emmanuel Ikumoinein, Lord Abbey and Raymond Thomas
BioChem 2025, 5(4), 35; https://doi.org/10.3390/biochem5040035 (registering DOI) - 6 Oct 2025
Abstract
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical [...] Read more.
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical applications due to challenges with efficacy, safety, and bioavailability. This review explores the molecular interplay between redox imbalance and inflammatory signaling and highlights why conventional therapeutic translation has often been inconsistent. It further examines emerging strategies that aim to overcome these limitations, including mitochondrial-targeted antioxidants, Nrf2 activators, immunometabolic modulators, redox enzyme mimetics, and advanced delivery platforms such as nanoparticle-enabled delivery. Natural polyphenols, nutraceuticals, and regenerative approaches, including stem cell-derived exosomes, are also considered for their dual anti-inflammatory and antioxidant potential. By integrating recent preclinical and clinical evidence, this review underscores the need for multimodal, personalized interventions that target the redox-inflammatory axis more precisely. These advances offer renewed promise for addressing complex diseases rooted in chronic inflammation and oxidative stress. Full article
Show Figures

Graphical abstract

21 pages, 3778 KB  
Article
Synergistic Upregulation of Extracellular Vesicles and Cell-Free Nucleic Acids by Chloroquine and Temozolomide in Glioma Cell Cultures
by Aleksander Emilov Aleksandrov, Banko Ivaylov Bankov, Vera Lyubchova Djeliova, Georgi Georgiev Antov, Svetozar Stoichev, Roumyana Silvieva Mironova and Dimitar Borisov Iliev
Int. J. Mol. Sci. 2025, 26(19), 9692; https://doi.org/10.3390/ijms26199692 (registering DOI) - 4 Oct 2025
Abstract
Extracellular vesicles (EVs) secreted by glioblastoma multiforme and other types of cancer cells are key factors contributing to the aggressiveness of the disease and its resistance to therapy. Chloroquine (CHQ), a lysosomal inhibitor, has shown potential as an enhancer of temozolomide (TMZ) cytotoxicity [...] Read more.
Extracellular vesicles (EVs) secreted by glioblastoma multiforme and other types of cancer cells are key factors contributing to the aggressiveness of the disease and its resistance to therapy. Chloroquine (CHQ), a lysosomal inhibitor, has shown potential as an enhancer of temozolomide (TMZ) cytotoxicity against glioblastoma cells. Since both CHQ and TMZ are known to modulate EV secretion, we sought to investigate their potential interplay in this process. Simultaneous treatment of TMZ-sensitive (U87-MG) and TMZ-resistant (U138-MG) glioblastoma cells with TMZ and CHQ led to a synergistic upregulation of EV secretion. Although CHQ did not enhance the TMZ cytotoxicity in U87-MG cells, it synergized with the latter to upregulate the release of extracellular nucleic acids implicating activation of unconventional secretory pathways. Synergistic upregulation of the autophagy markers LC3B-II and p62 by CHQ and TMZ in both cells and EVs indicates that secretory autophagy is likely involved in the observed unconventional secretion. Moreover, a significant enrichment of caveolin-1 in small EVs highlights their potential role in modulating tumor aggressiveness. The synergy in EV upregulation was not confined to the specific biological activity of TMZ and CHQ; similar effects were observed upon co-treatments with CHQ and etoposide (a topoisomerase inhibitor) and TMZ and Bafilomycin A1 (another lysosomal inhibitor). Heightened EV release was also observed in THP-1 monocytes and macrophages treated with Bafilomycin and TMZ, highlighting a broader, cell-type-independent mechanism. These findings indicate that combined DNA damage and lysosomal inhibition synergistically stimulate secretory autophagy and EV release, potentially impacting the tumor microenvironment and driving disease progression. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 4195 KB  
Article
When Fat Talks: How Adipose-Derived Extracellular Vesicles Fuel Breast Cancer
by Maria Pia Cavaleri, Tommaso Pusceddu, Lucia Sileo, Luna Ardondi, Ilaria Vitali, Ilenia Pia Cappucci, Laura Basile, Giuseppe Pezzotti, Francesco Fiorica, Letizia Ferroni and Barbara Zavan
Int. J. Mol. Sci. 2025, 26(19), 9666; https://doi.org/10.3390/ijms26199666 - 3 Oct 2025
Abstract
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast [...] Read more.
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast cancer (BC) progression. Human mesenchymal stem cells (hMSCs) were differentiated into adipocytes following a 21-day induction protocol that led to significant accumulation of lipid droplets within the cells. EVs were isolated from the conditioned medium of both hMSC-derived adipocytes and BC cells. Particle size distribution, morphology, and uptake into the recipient cell were investigated via nanoparticle tracking analysis, transmission electron microscopy, and fluorescence microscopy, respectively. Our results show that BC-derived EVs notably impaired cell viability and modulated the expression of key genes involved in apoptosis resistance within stromal cells. On the other hand, stromal-derived EVs significantly altered tumor cell behavior, indicating a dynamic, bidirectional exchange of bioactive signals. These findings underscore the pivotal role of EV-mediated communication in the tumor-stroma interplay, suggesting that adipocyte-cancer cell EV crosstalk contributes to the remodeling of the TME, potentially facilitating tumor progression. Full article
Show Figures

Figure 1

40 pages, 2870 KB  
Review
Application of Biomaterials in Diabetic Wound Healing: The Recent Advances and Pathological Aspects
by Chenglong Han, Rajeev K. Singla and Chengshi Wang
Pharmaceutics 2025, 17(10), 1295; https://doi.org/10.3390/pharmaceutics17101295 (registering DOI) - 2 Oct 2025
Abstract
Diabetic wounds, especially diabetic foot ulcers, pose a major global clinical challenge due to their slow healing and high infection susceptibility. Their typical pathological features include impaired angiogenesis, chronic hypoxia, persistent inflammation, oxidative stress, bacterial colonization, and neuropathy. Traditional treatment methods have limited [...] Read more.
Diabetic wounds, especially diabetic foot ulcers, pose a major global clinical challenge due to their slow healing and high infection susceptibility. Their typical pathological features include impaired angiogenesis, chronic hypoxia, persistent inflammation, oxidative stress, bacterial colonization, and neuropathy. Traditional treatment methods have limited efficacy, creating an urgent need for innovative therapeutic strategies. In recent years, biomaterials have emerged as a research focus in diabetic wound treatment, owing to their biocompatibility, versatility, and tissue regeneration potential. This article comprehensively reviews the pathological mechanisms of diabetic wounds. It also summarizes the application progress of biomaterials in diabetic wound healing. Over the past decade, researchers have explored the properties, mechanisms of action, and roles of various natural and synthetic biomaterials. These biomaterials include DNA nanomaterials, peptide hydrogels, cells, exosomes, and cytokines. These biomaterials play significant role in promoting angiogenesis, regulating inflammation, inhibiting bacteria, and enhancing cell proliferation and migration. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

18 pages, 1232 KB  
Review
The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans
by Sebastian Gawlak-Socka, Paulina Sokołowska, Gabriela Henrykowska, Edward Kowalczyk, Sebastian Kłosek and Anna Wiktorowska-Owczarek
Int. J. Mol. Sci. 2025, 26(19), 9620; https://doi.org/10.3390/ijms26199620 - 2 Oct 2025
Abstract
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced [...] Read more.
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced periodontitis in rodents, as well as chemical hypoxia, have consistently demonstrated the activation of unfolded protein response (UPR) pathways in periodontal cells. Key ER stress markers, including CHOP, GRP78, PERK, and ATF6, were upregulated in periodontal ligament cells, stem cells, and gingival epithelial cells under these conditions. While ER stress in periodontitis is primarily associated with detrimental outcomes such as apoptosis and inflammation, it may also have a physiological role in bone remodeling via the PERK-eIF2α-ATF4 axis. Importantly, several ER stress-modulating agents—such as oridonin, melatonin, and exosomes derived from M2 macrophages—have shown therapeutic potential by reducing stress marker expression and limiting periodontal damage. These findings suggest that targeting ER stress may offer a novel therapeutic strategy. Future human studies are essential to determine whether a combined approach targeting inflammation and ER stress could more effectively halt or reverse periodontal tissue destruction, while also assessing the long-term safety of ER stress modulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 256 KB  
Review
Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC
by Grant M. Pham
J. Clin. Med. 2025, 14(19), 6959; https://doi.org/10.3390/jcm14196959 - 1 Oct 2025
Abstract
This narrative review synthesizes PubMed- and Scopus-indexed studies from 2020 to 2025, including preclinical animal models, prospective cohort studies, and level I and II randomized trials, to compare two leading biologic augmentation strategies: platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC). The [...] Read more.
This narrative review synthesizes PubMed- and Scopus-indexed studies from 2020 to 2025, including preclinical animal models, prospective cohort studies, and level I and II randomized trials, to compare two leading biologic augmentation strategies: platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC). The review examines underlying mechanisms of action, delivery techniques, imaging biomarkers of graft maturation, patient-reported and functional outcomes, safety profiles, cost-effectiveness, and regulatory frameworks. PRP provides early anti-inflammatory and proangiogenic signaling, while BMAC delivers a concentrated population of mesenchymal stem cells and growth factors to the tendon–bone interface. Both modalities consistently enhance MRI-defined graft maturation, yet evidence of long-term functional or biomechanical superiority remains inconclusive. Emerging therapies such as peptide hydrogels, adipose-derived stem cells, and exosome delivery offer promising avenues for future research. Standardized protocols and large multicenter trials are needed to clarify comparative efficacy and inform personalized rehabilitation strategies. Full article
21 pages, 1963 KB  
Review
Lipids, Tetraspanins, and Exosomes: Cell Factors in Orthoflavivirus Replication and Propagation
by Magda L. Benitez-Vega, Carlos D. Cordero-Rivera, Jose De Jesus Bravo-Silva, Ricardo Jimenez-Camacho, Carlos Noe Farfan-Morales, Jonathan Hernández-Castillo, Marcos Pérez-García and Rosa M. del Ángel
Viruses 2025, 17(10), 1321; https://doi.org/10.3390/v17101321 - 29 Sep 2025
Abstract
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, [...] Read more.
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, endocytosis, extracellular vesicle formation, and the organization of proteins and lipids at specific membrane sites known as Tetraspanin-Enriched Microdomains (TEMs). These lipid–protein interactions play a critical role in the replicative cycle of Orthoflavivirus, including dengue, Zika, and West Nile, by facilitating viral entry, replication, assembly, and egress. In addition, tetraspanins also regulate the biogenesis and function of extracellular vesicles, contributing to viral dissemination, persistent infection, and immune evasion. This review summarizes the current knowledge on the structural and functional aspects of tetraspanins, their interplay with lipids, and their emerging roles in the Orthoflavivirus replicative cycle. We also discuss how these insights may inform the development of antiviral strategies targeting membrane organization and virus–host interactions. Full article
(This article belongs to the Special Issue Dengue, Zika and Yellow Fever Virus Replication)
Show Figures

Figure 1

28 pages, 2416 KB  
Article
Reduced Expression of Selected Exosomal MicroRNAs Is Associated with Poor Outcomes in Patients with Acute Stroke Receiving Reperfusion Therapy—Preliminary Study
by Daria Gendosz de Carrillo, Olga Kocikowska, Aleksandra Krzan, Sebastian Student, Małgorzata Rak, Magdalena Nowak-Andraka, Junqiao Mi, Małgorzata Burek, Anetta Lasek-Bal and Halina Jędrzejowska-Szypułka
Int. J. Mol. Sci. 2025, 26(19), 9533; https://doi.org/10.3390/ijms26199533 - 29 Sep 2025
Abstract
Reperfusion therapy uses thrombolysis and clot removal to restore blood flow in the brain after stroke; however, three months after reperfusion therapy, roughly 46% of stroke patients become independent again. MiRNAs (micro RNA) regulate cerebral ischemia/reperfusion injury, and their transfer between cells via [...] Read more.
Reperfusion therapy uses thrombolysis and clot removal to restore blood flow in the brain after stroke; however, three months after reperfusion therapy, roughly 46% of stroke patients become independent again. MiRNAs (micro RNA) regulate cerebral ischemia/reperfusion injury, and their transfer between cells via exosomes may differentially affect recipient cells. We examined serum exosomal miRNA levels, stroke treatments, and functional outcomes in stroke patients, and we explored the potential role of estimated differentially expressed miRNA (DEmiRNA) target genes in the brain’s reaction to reperfusion after ischemia. The patients in the study received aspirin or reperfusion therapy with either intravenous thrombolysis (rt-PA), mechanical thrombectomy (MT), or a combination of both (rt-PA/MT). Serum samples were collected from stroke patients on days 1 and 10 post-stroke. Serum exosomes’ miRNA was analyzed using qRT-PCR. We identified DEmiRNAs, estimated their targets, and performed enrichment analysis. Functional outcomes were assessed using the modified Rankin Scale (mRS) on days 10 and 90 post-stroke. Among studied treatments, only rt-PA/MT lowered DEmiRNA by day 10 vs. other groups. Specifically, patients with unfavorable mRS score exhibited decreased levels of miR-17, miR-20, miR-186 and miR-222 after combined stroke therapy. Functional analysis identified target genes and pathways associated with cytoskeleton remodeling, cell death, autophagy, inflammation, and dementia. In conclusion, unfavorable stroke outcomes following poor rt-PA/MT response could result from lower miRNA expression levels, thus activating cell death and neurodegenerative processes in brain. Full article
Show Figures

Figure 1

31 pages, 1529 KB  
Review
Artificial Intelligence-Enhanced Liquid Biopsy and Radiomics in Early-Stage Lung Cancer Detection: A Precision Oncology Paradigm
by Swathi Priya Cherukuri, Anmolpreet Kaur, Bipasha Goyal, Hanisha Reddy Kukunoor, Areesh Fatima Sahito, Pratyush Sachdeva, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, Thangeswaran Natarajan, Jayarajasekaran Janarthanan, Samuel Richard, Shakthidevi Pallikaranai Venkatesaprasath, Shiva Sankari Karuppiah, Vivek N. Iyer, Scott A. Helgeson and Shivaram P. Arunachalam
Cancers 2025, 17(19), 3165; https://doi.org/10.3390/cancers17193165 - 29 Sep 2025
Cited by 1
Abstract
Background: Lung cancer remains the leading cause of cancer-related mortality globally, largely due to delayed diagnosis in its early stages. While conventional diagnostic tools like low-dose CT and tissue biopsy are routinely used, they suffer from limitations including invasiveness, radiation exposure, cost, and [...] Read more.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, largely due to delayed diagnosis in its early stages. While conventional diagnostic tools like low-dose CT and tissue biopsy are routinely used, they suffer from limitations including invasiveness, radiation exposure, cost, and limited sensitivity for early-stage detection. Liquid biopsy, a minimally invasive alternative that captures circulating tumor-derived biomarkers such as ctDNA, cfRNA, and exosomes from body fluids, offers promising diagnostic potential—yet its sensitivity in early disease remains suboptimal. Recent advances in Artificial Intelligence (AI) and radiomics are poised to bridge this gap. Objective: This review aims to explore how AI, in combination with radiomics, enhances the diagnostic capabilities of liquid biopsy for early detection of lung cancer and facilitates personalized monitoring strategies. Content Overview: We begin by outlining the molecular heterogeneity of lung cancer, emphasizing the need for earlier, more accurate detection strategies. The discussion then transitions into liquid biopsy and its key analytes, followed by an in-depth overview of AI techniques—including machine learning (e.g., SVMs, Random Forest) and deep learning models (e.g., CNNs, RNNs, GANs)—that enable robust pattern recognition across multi-omics datasets. The role of radiomics, which quantitatively extracts spatial and morphological features from imaging modalities such as CT and PET, is explored in conjunction with AI to provide an integrative, multimodal approach. This convergence supports the broader vision of precision medicine by integrating omics data, imaging, and electronic health records. Discussion: The synergy between AI, liquid biopsy, and radiomics signifies a shift from traditional diagnostics toward dynamic, patient-specific decision-making. Radiomics contributes spatial information, while AI improves pattern detection and predictive modeling. Despite these advancements, challenges remain—including data standardization, limited annotated datasets, the interpretability of deep learning models, and ethical considerations. A push toward rigorous validation and multimodal AI frameworks is necessary to facilitate clinical adoption. Conclusion: The integration of AI with liquid biopsy and radiomics holds transformative potential for early lung cancer detection. This non-invasive, scalable, and individualized diagnostic paradigm could significantly reduce lung cancer mortality through timely and targeted interventions. As technology and regulatory pathways mature, collaborative research is crucial to standardize methodologies and translate this innovation into routine clinical practice. Full article
(This article belongs to the Special Issue The Genetic Analysis and Clinical Therapy in Lung Cancer: 2nd Edition)
Show Figures

Figure 1

38 pages, 1612 KB  
Review
Microengineered Breast Cancer Models: Shaping the Future of Personalized Oncology
by Tudor-Alexandru Popoiu, Anca Maria Cimpean, Florina Bojin, Simona Cerbu, Miruna-Cristiana Gug, Catalin-Alexandru Pirvu, Stelian Pantea and Adrian Neagu
Cancers 2025, 17(19), 3160; https://doi.org/10.3390/cancers17193160 - 29 Sep 2025
Abstract
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor [...] Read more.
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor microenvironment (TME), immune, and metastatic behavior. In recent years, breast cancer-on-a-chip (BCOC) have emerged as powerful microengineered systems that integrate patient-derived cells, stromal and immune components, and physiological stimuli such as perfusion, hypoxia, and acidic milieu within controlled three-dimensional microenvironments. Aim: To comprehensively review the BCOC development and application, encompassing fabrication materials, biological modeling of key subtypes (DCIS, luminal A, triple-negative), dynamic tumor–stroma–immune crosstalk, and organotropic metastasis to bone, liver, brain, lungs, and lymph nodes. Methods: We selected papers from academic trusted databases (PubMed, Web of Science, Google Scholar) by using Breast Cancer, Microfluidic System, and Breast Cancer on a Chip as the main search terms. Results: We critically discuss and highlight how microfluidic systems replicate essential features of disease progression—such as epithelial-to-mesenchymal transition, vascular invasion, immune evasion, and therapy resistance—with unprecedented physiological relevance. Special attention has been paid to the integration of liquid biopsy technologies within microfluidic platforms for non-invasive, real-time analysis of circulating tumor cells, cell-free nucleic acids, and exosomes. Conclusions: In light of regulatory momentum toward reducing animal use in drug development, BCOC platforms stand at the forefront of a new era in precision oncology. By bridging biological fidelity with engineering innovation, these systems hold immense potential to transform cancer research, therapy screening, and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

23 pages, 17396 KB  
Article
Cargo and Biological Properties of Extracellular Vesicles Released from Human Adenovirus Type 4-Infected Lung Epithelial Cells
by Alessio Noghero, Stephanie Byrum, Chioma Okeoma and Adriana E. Kajon
Viruses 2025, 17(10), 1300; https://doi.org/10.3390/v17101300 - 25 Sep 2025
Abstract
Extracellular vesicles (EVs) are rapidly gaining recognition as critical mediators of inter-cellular communication during viral infections. To contribute to fill the gap in knowledge regarding the role of EVs in adenovirus infection, we used human adenovirus type 4 of species Mastadenovirus exoticum (HAdV-E4), [...] Read more.
Extracellular vesicles (EVs) are rapidly gaining recognition as critical mediators of inter-cellular communication during viral infections. To contribute to fill the gap in knowledge regarding the role of EVs in adenovirus infection, we used human adenovirus type 4 of species Mastadenovirus exoticum (HAdV-E4), a prevalent respiratory and ocular pathogen, and characterized the cargo and biological properties of EVs released by HAdV-E4-infected A549 lung epithelial cells at a pre-lytic stage of infection. Using immunocapture-based isolation and multi-omics approaches, we found that infection profoundly alters the EV uploaded proteome and small non-coding RNA repertoire. Mass spectrometry identified 268 proteins unique to EVs purified from infected cells (AdV-EVs), with enrichment in pathways supporting vesicle trafficking and viral protein translation, and importantly also a few virus-encoded proteins. A small RNA transcriptome analysis showed differential uploading in AdV-EVs of various small non-coding RNAs, including snoRNAs, as well as the presence of virus associated RNAs I and II. Notably, AdV-EVs contained viral genomic DNA and could initiate productive infection upon delivery to naïve cells in the absence of detectable viral particles. Our data suggest that EVs released during the HAdV-E4 infection may serve as vehicles for non-lytic viral dissemination and highlight their possible role in intra-host dissemination Full article
(This article belongs to the Special Issue Epidemiology, Pathogenesis and Immunity of Adenovirus)
Show Figures

Figure 1

25 pages, 1153 KB  
Review
Exosomal miRNAs: Key Regulators of the Tumor Microenvironment and Cancer Stem Cells
by Shuangmin Wang, Sikan Jin, Jidong Zhang and Xianyao Wang
Int. J. Mol. Sci. 2025, 26(19), 9323; https://doi.org/10.3390/ijms26199323 - 24 Sep 2025
Viewed by 67
Abstract
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal [...] Read more.
Exosomes are lipid bilayer vesicles approximately 30–150 nm in diameter that serve as key mediators of intercellular communication. By transporting diverse bioactive molecules, including proteins and nucleic acids, they play a crucial role in tumor initiation and progression. Among their functional cargo, exosomal microRNAs (miRNAs) are central to epigenetic regulation and intercellular signaling, significantly influencing tumor biology. This review provides a comprehensive overview of the multifaceted roles of exosomal miRNAs in remodeling the tumor microenvironment (TME) and regulating cancer stem cells (CSCs). Specifically, exosomal miRNAs modulate various immune cells (such as macrophages, T cells, and NK cells) as well as cancer-associated fibroblasts (CAFs), thereby promoting immune evasion, angiogenesis, epithelial–mesenchymal transition (EMT), and metastatic progression. At the same time, they enhance CSC stemness, self-renewal, and therapeutic resistance, ultimately driving tumor recurrence and dissemination. Furthermore, exosome-mediated miRNA signaling acts as a critical force in malignant progression. Finally, we discuss the clinical potential of exosomal miRNAs as diagnostic and prognostic biomarkers, therapeutic targets, and vehicles for targeted drug delivery, highlighting their translational value and future directions in cancer research. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases: 2nd Edition)
Show Figures

Figure 1

25 pages, 2183 KB  
Systematic Review
Skin Microbiome, Nanotoxicology, and Regulatory Gaps: Chronic Cosmetic Exposure and Skin Barrier Dysfunction—A Systematic Review
by Loredana-Elena Pîrvulescu, Sorana-Cristiana Popescu, Roman Popescu, Vlad-Mihai Voiculescu and Carolina Negrei
Pharmaceutics 2025, 17(10), 1246; https://doi.org/10.3390/pharmaceutics17101246 - 24 Sep 2025
Viewed by 176
Abstract
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks [...] Read more.
Background: Engineered nanoparticles (NPs)—titanium dioxide, silver, zinc oxide and silica—are widely used in cosmetics for UV protection, antimicrobial activity and texturising effects. Chronic consumer-level exposure may impair skin-barrier integrity, disturb microbiome composition and dysregulate immune signalling via the gut–skin axis. Current regulatory frameworks typically omit chronic- or microbiome-focused safety assessments, leaving potential gaps. Objectives: This study aimed to evaluate the long-term effects of cosmetic-relevant NPs (titanium dioxide, silver, zinc oxide, silica) on skin and gut microbiota, epithelial-barrier integrity and immune signalling—including telocyte- and exosome-mediated pathways—and to identify regulatory shortcomings, particularly the absence of microbiome endpoints, validated chronic models and consideration of vulnerable populations. Methods: Following PRISMA 2020, PubMed, Scopus and Web of Science were searched for English-language in vivo animal or human studies (December 2014–April 2025) meeting chronic-exposure criteria (≥90 days in rodents or >10% of lifespan in other species; for humans, prolonged, repetitive application over months to years consistent with cosmetic use). Although not registered in PROSPERO, the review adhered to a pre-specified protocol. Two independent reviewers screened studies; risk of bias was assessed using a modified SYRCLE tool (animal) or adapted NIH guidance (zebrafish). Owing to heterogeneity, findings were synthesised narratively. Results: Of 600 records, 450 unique articles were screened, 50 full texts were assessed and 12 studies were included. Oral exposure predominated and was associated with dysbiosis, barrier impairment, immune modulation and metabolic effects. Dermal models showed outcomes from minimal change to pronounced immune activation, contingent on host susceptibility. Comparative human–animal findings are summarised; telocyte and exosome pathways were largely unexplored. Regulatory reviews (EU SCCS, US FDA and selected Asian frameworks) revealed no requirements for chronic microbiome endpoints. Limitations: Evidence is limited by the small number of eligible studies, heterogeneity in NP characteristics and exposure routes, predominance of animal models and a scarcity of longitudinal human data. Conclusions: Cosmetic nanoparticles may disrupt the microbiome, compromise barrier integrity and trigger immune dysregulation—risks amplified in vulnerable users. Existing regulations lack requirements for chronic exposure, microbiome endpoints and testing in vulnerable groups, and neglect mechanistic pathways involving telocytes and exosomes. Long-term, real-world exposure studies integrating gut–skin microbiome and immune outcomes, and harmonised global nanomaterial-safety standards, are needed to ensure safer cosmetic innovation. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

24 pages, 1806 KB  
Review
Exosomal MicroRNA: Diagnostic Potential and Role in Breast Cancer Dissemination
by Svetlana Tamkovich, Alexandra Borisova, Andrey Shevela, Alexander Chernyavskiy and Alyona Chernyshovа
Molecules 2025, 30(19), 3858; https://doi.org/10.3390/molecules30193858 - 23 Sep 2025
Viewed by 105
Abstract
Liquid biopsy, which analyzes tumor secretomes in biological fluids, allows us to not only diagnose cancer, but also evaluate the effectiveness of antitumor therapy, predict the prognosis of the disease, and select targeted therapy. One of the promising sources for identifying tumor markers [...] Read more.
Liquid biopsy, which analyzes tumor secretomes in biological fluids, allows us to not only diagnose cancer, but also evaluate the effectiveness of antitumor therapy, predict the prognosis of the disease, and select targeted therapy. One of the promising sources for identifying tumor markers using liquid biopsy is exosomes—small extracellular vesicles (sEVs) (30–150 nm in size) that are secreted by all types of cells, including tumor cells, to exchange information. It is known that during the maturation process, mainly biologically active proteins and non-coding RNA are packaged into exosomes, and tumor cells secrete significantly more exosomes than normal cells. Taking into account the involvement of microRNAs in the mechanisms of carcinogenesis, their high stability in EVs, and ease of detection, exosomal microRNAs are the most promising tumor markers for creating panels that can serve as a guide both for clarifying diagnostics and for making therapeutic decisions on effective cancer treatment, including breast cancer (BC). The purpose of this review is to summarize information on the shortcomings of modern methods for diagnosing early BC, the involvement of exosomal microRNAs in BC dissemination (impact on the immune system, epithelial–mesenchymal transition, proliferation, invasion, migration, angiogenesis, and metastasis), and the high diagnostic potential of exosomal microRNAs for detecting early BC. Full article
(This article belongs to the Topic Liquid Biopsy: A Modern Method Transforming Biomedicine)
Show Figures

Figure 1

47 pages, 903 KB  
Review
The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies
by Paula Stefana Pintilei, Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Pharmaceutics 2025, 17(10), 1243; https://doi.org/10.3390/pharmaceutics17101243 - 23 Sep 2025
Viewed by 131
Abstract
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained [...] Read more.
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained attention for their advanced wound management capabilities, which support wound healing by maintaining moisture, mimicking the extracellular matrix (ECM), and enabling targeted drug delivery triggered by wound-specific signals. They frequently carry antimicrobial or anti-inflammatory agents, promote blood vessel and nerve regeneration, and are biocompatible with customizable properties suited to different healing stages. Natural hydrogels, derived from polysaccharides, proteins, and peptides, offer several advantages over synthetic options, including inherent bioactivity, enzymatic degradability, and cell-adhesive qualities that closely resemble the native ECM. These features facilitate cell interaction, modulate inflammation, and speed up tissue remodeling. Moreover, natural hydrogels can be engineered as delivery systems for therapeutic agents like antimicrobial compounds, nanoparticles, growth factors, and exosomes. This review discusses recent advances in the use of natural hydrogels as multifunctional wound dressings and delivery platforms, with a focus on their composition, mechanisms of action, and potential for treating chronic and infected wounds by incorporating antimicrobial and regenerative additives such as silver and zinc oxide nanoparticles. Full article
Show Figures

Graphical abstract

Back to TopTop