Lilium species produce some of the most commercially valuable ornamental flowers in the world, characterized by their attractiveness and high demand in cut flower markets. However, it is necessary to strengthen the competitiveness of this sector in the global market. Due to strong competition from international producers and an increasingly demanding market regarding quality, shelf life, and sustainability, alternatives are being sought to counteract the use of conventional agrochemicals. The use of nanoparticles has emerged as a promising strategy in ornamental horticulture due to their ability to enhance plant growth, improve stress tolerance, and stimulate physiological processes, ultimately contributing to higher quality and productivity. The hypothesis of this research is that the foliar application of selenium and titanium dioxide nanoparticles during the vegetative growth and flowering stages significantly enhances the growth, development, and flowering of
Lilium plants when compared with untreated plants. Therefore, the physiological effects of SeNPs and TiO
2NPs applied via foliar application in two concentrations (SeNPsD1, SeNPsD2, TiNPsD1, and TiNPsD2) were evaluated against absolute control. The treatments were applied in two phenological stages (vegetative and reproductive development), and their effects on vegetative and reproductive variables in
Lilium plants were evaluated from 120 to 270 days after sowing. The surface of seeds obtained from SeNPsD1-treated plants was further analyzed via scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The results demonstrate that the application of SeNPs generated variable effects depending on the phenological stage. In the vegetative stage (46 DAS), SeNPsD2 increased the number of leaves by 118%, while SeNPsD1 increased the fresh weight of leaves by 110%. Regarding ovaries, the application of SeNPsD2 resulted in a 276% increase in fresh weight and a 230% increase in dry weight, while SeNPsD1 achieved an increase of 164% in fresh weight. Furthermore, at this stage, SeNPsD2 promoted a 223% increase in the number of bulbils, a 240% increase in fresh weight, and a 199% increase in dry weight. In the reproductive stage (69 DAS), SeNPsD1 increased the leaf fresh weight by 1% and yielded a 107% increase in the number of ovaries, in addition to 307% and 328% increases in their fresh and dry weights, respectively. In the same stage, SeNPsD2 increased the fresh ovary weight by 153%, compared with the control. Finally, capsule formation was observed only under the SeNPsD1 treatment. Meanwhile, TiO
2NPs had an effect on the number of buds and the number of open buds: the number of buds increased by 115% with TiNPsD1 (69 DAS) and the number of open buds increased by 104% (46 DAS) with TiNPsD1; in the reproductive stage, the number increased by 115% with TiNPsD1 compared with the control. In the seed capsules of plants treated with selenium nanoparticles (SeNPsD1), although no surface selenium was detected via EDS, elements that had possibly been physiologically redistributed were identified, including iron (Fe), silicon (Si), and aluminum (Al). These findings confirm the hypothesis of this research, demonstrating that the foliar application of SeNPs and TiO
2NPs to
Lilium plants during the vegetative and reproductive stages significantly improves their vegetative growth, reproductive development, and floral quality under controlled conditions. This work presents the first comparative evidence regarding the effects of SeNPs and TiO
2NPs on the vegetative and reproductive characteristics of
Lilium Sunny Oriental, providing unprecedented information for the use of nanotechnology in ornamental horticulture. The findings confirm the potential use of nanoparticles as agents to optimize the productivity and commercial quality of ornamental flowers in highly competitive markets.
Full article