Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = GEDI laser altimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3285 KB  
Article
Performance Evaluation of GEDI for Monitoring Changes in Mountain Glacier Elevation: A Case Study in the Southeastern Tibetan Plateau
by Zhijie Zhang, Yong Han, Liming Jiang, Shuanggen Jin, Guodong Chen and Yadi Song
Remote Sens. 2025, 17(17), 2945; https://doi.org/10.3390/rs17172945 - 25 Aug 2025
Viewed by 922
Abstract
Mountain glaciers are the most direct and sensitive indicators of climate change. In the context of global warming, monitoring changes in glacier elevation has become a crucial issue in modern cryosphere research. The Global Ecosystem Dynamics Investigation (GEDI) is a full-waveform laser altimeter [...] Read more.
Mountain glaciers are the most direct and sensitive indicators of climate change. In the context of global warming, monitoring changes in glacier elevation has become a crucial issue in modern cryosphere research. The Global Ecosystem Dynamics Investigation (GEDI) is a full-waveform laser altimeter with a multi-beam that provides unprecedented measurements of the Earth’s surface. Many studies have investigated its applications in assessing the vertical structure of various forests. However, few studies have assessed GEDI’s performance in detecting variations in glacier elevation in land ice in high-mountain Asia. To address this limitation, we selected the Southeastern Tibetan Plateau (SETP), one of the most sensitive areas to climate change, as a test area to assess the feasibility of using GEDI to monitor glacier elevation changes by comparing it with ICESat-2 ATL06 and the reference TanDEM-X DEM products. Moreover, this study further analyzes the influence of environmental factors (e.g., terrain slope and aspect, and altitude distribution) and glacier attributes (e.g., glacier area and debris cover) on changes in glacier elevation. The results show the following: (1) Compared to ICESat-2, in most cases, GEDI overestimated glacier thinning (i.e., elevation reduction) to some extent from 2019 to 2021, with an average overestimation value of about −0.29 m, while the annual average rate of elevation change was relatively close, at −0.70 ± 0.12 m/yr versus −0.62 ± 0.08 m/yr, respectively. (2) In terms of time, GEDI reflected glacier elevation changes at interannual and seasonal scales, and the trend of change was consistent with that found with ICESat-2. The results indicate that glacier accumulation mainly occurred in spring and winter, while the melting rate accelerated in summer and autumn. (3) GEDI effectively monitored and revealed the characteristics and patterns of glacier elevation changes with different terrain features, glacier area grades, etc.; however, as the slope increased, the accuracy of the reported changes in glacier elevation gradually decreased. Nonetheless, GEDI still provided reasonable estimates for changes in mountain glacier elevation. (4) The spatial distribution of GEDI footprints was uneven, directly affecting the accuracy of the monitoring results. Thus, to improve analyses of changes in glacier elevation, terrain factors should be comprehensively considered in further research. Overall, these promising results have the potential to be used as a basic dataset for further investigations of glacier mass and global climate change research. Full article
Show Figures

Graphical abstract

15 pages, 4236 KB  
Article
Automated Estimation of Building Heights with ICESat-2 and GEDI LiDAR Altimeter and Building Footprints: The Case of New York City and Los Angeles
by Yunus Kaya
Buildings 2024, 14(11), 3571; https://doi.org/10.3390/buildings14113571 - 9 Nov 2024
Cited by 5 | Viewed by 2647
Abstract
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) [...] Read more.
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) cadastral data, ground measurements (total station, Global Positioning System (GPS), ground laser scanning) and air-based (such as Unmanned Aerial Vehicle—UAV) measurement methods are used to determine building heights, more comprehensive and advanced techniques need to be used in large-scale studies, such as in cities or countries. Although satellite-based altimetry data, such as Ice, Cloud and land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI), provide important information on building heights due to their high vertical accuracy, it is often difficult to distinguish between building photons and other objects. To overcome this challenge, a self-adaptive method with minimal data is proposed. Using building photons from ICESat-2 and GEDI data and building footprints from the New York City (NYC) and Los Angeles (LA) open data platform, the heights of 50,654 buildings in NYC and 84,045 buildings in LA were estimated. As a result of the study, root mean square error (RMSE) 8.28 m and mean absolute error (MAE) 6.24 m were obtained for NYC. In addition, 46% of the buildings had an RMSE of less than 5 m and 7% less than 1 m. In LA data, the RMSE and MAE were 6.42 m and 4.66 m, respectively. It was less than 5 m in 67% of the buildings and less than 1 m in 7%. However, ICESat-2 data had a better RMSE than GEDI data. Nevertheless, combining the two data provided the advantage of detecting more building heights. This study highlights the importance of using minimum data for determining urban-scale building heights. Moreover, continuous monitoring of urban alterations using satellite altimetry data would provide more effective energy consumption assessment and management. Full article
Show Figures

Figure 1

20 pages, 12475 KB  
Article
Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models
by Maarten Pronk, Marieke Eleveld and Hugo Ledoux
Remote Sens. 2024, 16(13), 2259; https://doi.org/10.3390/rs16132259 - 21 Jun 2024
Cited by 9 | Viewed by 3572
Abstract
Digital Elevation Models (DEMs) are a necessity for modelling many large-scale environmental processes. In this study, we investigate the potential of data from two spaceborne lidar altimetry missions, ICESat-2 and GEDI—with respect to their vertical accuracies and planimetric data collection patterns—as sources for [...] Read more.
Digital Elevation Models (DEMs) are a necessity for modelling many large-scale environmental processes. In this study, we investigate the potential of data from two spaceborne lidar altimetry missions, ICESat-2 and GEDI—with respect to their vertical accuracies and planimetric data collection patterns—as sources for rasterisation towards creating global DEMs. We validate the terrain measurements of both missions against airborne lidar datasets over three areas in the Netherlands, Switzerland, and New Zealand and differentiate them using land-cover classes. For our experiments, we use five years of ICESat-2 ATL03 data and four years of GEDI L2A data for a total of 252 million measurements. The datasets are filtered using parameter flags provided by the higher-level products ICESat-2 ATL08 and GEDI L3A. For all areas and land-cover classes combined, ICESat-2 achieves a bias of −0.11 m, an MAE of 0.43 m, and an RMSE of 0.93 m. From our experiments, we find that GEDI is less accurate, with a bias of 0.09 m, an MAE of 0.98 m, and an RMSE of 2.96 m. Measurements in open land-cover classes, such as “Cropland” and “Grassland”, result in the best accuracy for both missions. We also find that the slope of the terrain has a major influence on vertical accuracy, more so for GEDI than ICESat-2 because of its larger horizontal geolocation error. In contrast, we find little effect of either beam power or background solar radiation, nor do we find noticeable seasonal effects on accuracy. Furthermore, we investigate the spatial coverage of ICESat-2 and GEDI by deriving a DEM at different horizontal resolutions and latitudes. GEDI has higher spatial coverage than ICESat-2 at lower latitudes due to its beam pattern and lower inclination angle, and a derived DEM can achieve a resolution of 500 m. ICESat-2 only reaches a DEM resolution of 700 m at the equator, but it increases to almost 200 m at higher latitudes. When combined, a 500 m resolution lidar-based DEM can be achieved globally. Our results indicate that both ICESat-2 and GEDI enable accurate terrain measurements anywhere in the world. Especially in data-poor areas—such as the tropics—this has potential for new applications and insights. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

22 pages, 4754 KB  
Article
Modeling Uncertainty of GEDI Clear-Sky Terrain Height Retrievals Using a Mixture Density Network
by Jonathan Sipps and Lori A. Magruder
Remote Sens. 2023, 15(23), 5594; https://doi.org/10.3390/rs15235594 - 1 Dec 2023
Cited by 1 | Viewed by 2232
Abstract
Early spaceborne laser altimetry mission development starts in pre-phase A design, where diverse ideas are evaluated against mission science requirements. A key challenge is predicting realistic instrument performance through forward modeling at an arbitrary spatial scale. Analytical evaluations compromise accuracy for speed, while [...] Read more.
Early spaceborne laser altimetry mission development starts in pre-phase A design, where diverse ideas are evaluated against mission science requirements. A key challenge is predicting realistic instrument performance through forward modeling at an arbitrary spatial scale. Analytical evaluations compromise accuracy for speed, while radiative transfer modeling is not applicable at the global scale due to computational expense. Instead of predicting the arbitrary properties of a lidar measurement, we develop a baseline theory to predict only the distribution of uncertainty, specifically for the terrain elevation retrieval based on terrain slope and fractional canopy cover features through a deep neural network Gaussian mixture model, also known as a mixture density network (MDN). Training data were created from differencing geocorrected Global Ecosystem Dynamics Investigation (GEDI) L2B elevation measurements with 32 independent reference lidar datasets in the contiguous U.S. from the National Ecological Observatory Network. We trained the MDN and selected hyperparameters based on the regional distribution predictive capability. On average, the relative error of the equivalent standard deviation of the predicted regional distributions was 15.9%, with some anomalies in accuracy due to generalization and insufficient feature diversity and correlation. As an application, we predict the percent of elevation residuals of a GEDI-like lidar within a given mission threshold from 60°S to 78.25°N, which correlates to a qualitative understanding of prediction accuracy and instrument performance. Full article
(This article belongs to the Special Issue Remote Sensing and Ecosystem Modeling for Nature-Based Solutions)
Show Figures

Figure 1

19 pages, 5733 KB  
Article
Evaluation of NASA’s GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests
by Mei Sun, Lei Cui, Jongmin Park, Mariano García, Yuyu Zhou, Carlos Alberto Silva, Long He, Hu Zhang and Kaiguang Zhao
Forests 2022, 13(10), 1686; https://doi.org/10.3390/f13101686 - 13 Oct 2022
Cited by 27 | Viewed by 5886
Abstract
Accurate estimation of forest aboveground biomass (AGB) is vital for informing ecosystem and carbon management. The Global Ecosystem Dynamics Investigation (GEDI) instrument—a new-generation spaceborne lidar system from NASA—provides the first global coverage of high-resolution 3D altimetry data aimed specifically for mapping Earth’s forests, [...] Read more.
Accurate estimation of forest aboveground biomass (AGB) is vital for informing ecosystem and carbon management. The Global Ecosystem Dynamics Investigation (GEDI) instrument—a new-generation spaceborne lidar system from NASA—provides the first global coverage of high-resolution 3D altimetry data aimed specifically for mapping Earth’s forests, but its performance is yet to be tested for large parts of the world. Here, our goal is to evaluate the accuracies of GEDI in measuring terrain, forest vertical structures, and AGB in reference to independent airborne lidar data over temperate and tropical forests in North America. We compared GEDI-derived elevations and canopy heights (e.g., relative height percentiles such as RH50 and RH100) with those from the Shuttle Radar Topography Mission (SRTM) or from two airborne lidar systems: the Laser Vegetation Imaging Sensor (LVIS) and Goddard’s Lidar, Hyperspectral and Thermal system (G-LiHT). We also estimated GEDI’s geolocation errors by matching GEDI waveforms and G-LiHT pseudo-waveforms. We assessed the predictive power of GEDI metrics in estimating AGB using Random Forests regression. Results showed that GEDI-derived ground elevations correlated strongly those from LVIS, G-LiHT, and LVIS (R2 > 0.91), but with nonnegligible RMSEs of 5.7 m (G-LiHT), 3.1 m (LVIS), and 10.9 m (SRTM). GEDI canopy heights had poorer correlation with LVIS (e.g., R2 = 0.44 for RH100) than with G-LiHT (e.g., R2 = 0.60 for RH100). The estimated horizontal geolocation errors of GEDI footprints averaged 6.5 meters, comparable to the nominal accuracy of 9 m. Correction for the locational errors improved the correlation of GEDI vs G-LiHT canopy heights significantly, on average by 53% (e.g., R2 from 0.57 to 0.82 for RH50). GEDI canopy metrics were useful for predicting AGB (R2 = 0.82 and RMSE = 19.1 Mg/Ha), with the maximum canopy height RH100 being the most useful predictor. Our results highlight the importance of accommodating or correcting for GEDI geolocation errors for estimating forest characteristics and provide empirical evidence on the utility of GEDI for monitoring global biomass dynamics from space. Full article
(This article belongs to the Special Issue New Insights into Remote Sensing of Vegetation Structural Parameters)
Show Figures

Figure 1

23 pages, 9044 KB  
Article
Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry
by Ibrahim Fayad, Nicolas Baghdadi, Jean Stéphane Bailly, Frédéric Frappart and Mehrez Zribi
Remote Sens. 2020, 12(17), 2714; https://doi.org/10.3390/rs12172714 - 21 Aug 2020
Cited by 41 | Viewed by 8098
Abstract
The Global Ecosystem Dynamics Investigation (GEDI) Light Detection And Ranging (LiDAR) altimetry mission was recently launched to the International Space Station with a capability of providing billions of high-quality measurements of vertical structures globally. This study assesses the accuracy of the GEDI LiDAR [...] Read more.
The Global Ecosystem Dynamics Investigation (GEDI) Light Detection And Ranging (LiDAR) altimetry mission was recently launched to the International Space Station with a capability of providing billions of high-quality measurements of vertical structures globally. This study assesses the accuracy of the GEDI LiDAR altimetry estimation of lake water levels. The difference between GEDI’s elevation estimates to in-situ hydrological gauge water levels was determined for eight natural lakes in Switzerland. The elevation accuracy of GEDI was assessed as a function of each lake, acquisition date, and the laser used for acquisition (beam). The GEDI elevation estimates exhibit an overall good agreement with in-situ water levels with a mean elevation bias of 0.61 cm and a standard deviation (std) of 22.3 cm and could be lowered to 8.5 cm when accounting for instrumental and environmental factors. Over the eight studied lakes, the bias between GEDI elevations and in-situ data ranged from −13.8 cm to +9.8 cm with a standard deviation of the mean difference ranging from 14.5 to 31.6 cm. Results also show that the acquisition date affects the precision of the GEDI elevation estimates. GEDI data acquired in the mornings or late at night had lower bias in comparison to acquisitions during daytime or over weekends. Even though GEDI is equipped with three identical laser units, a systematic bias was found based on the laser units used in the acquisitions. Considering the eight studied lakes, the beams with the highest elevation differences compared to in-situ data were beams 1 and 6 (standard deviations of −10.2 and +18.1 cm, respectively). In contrast, the beams with the smallest mean elevation difference to in-situ data were beams 5 and 7 (−1.7 and −2.5 cm, respectively). The remaining beams (2, 3, 4, and 8) showed a mean difference between −7.4 and +4.4 cm. The standard deviation of the mean difference, however, was similar across all beams and ranged from 17.2 and 22.9 cm. This study highlights the importance of GEDI data for estimating water levels in lakes with good accuracy and has potentials in advancing our understanding of the hydrological significance of lakes especially in data scarce regions of the world. Full article
Show Figures

Graphical abstract

Back to TopTop