Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = GEMSS model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5675 KB  
Article
Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland
by Aleksandra Ziemińska-Stolarska and Magdalena Kempa
Water 2021, 13(3), 296; https://doi.org/10.3390/w13030296 - 26 Jan 2021
Cited by 15 | Viewed by 4359
Abstract
The aim of this work is to evaluate core variables of the ecological potential of the Sulejów Reservoir (temperature distribution, flow velocities, and concentrations of selected indicators, e.g., phosphates, nitrates, the abundance of phytoplankton) using a three-dimensional hydrodynamic model, GEMSS-HDM (generalized environmental modeling [...] Read more.
The aim of this work is to evaluate core variables of the ecological potential of the Sulejów Reservoir (temperature distribution, flow velocities, and concentrations of selected indicators, e.g., phosphates, nitrates, the abundance of phytoplankton) using a three-dimensional hydrodynamic model, GEMSS-HDM (generalized environmental modeling system for surface waters), coupled with a water quality model, WASP EUTRO (GEMSS-WQM). The monitoring data necessary to build the model were obtained from two multiparameter probes that were submerged in two locations in the Sulejów Reservoir. An ADCP current profiler was used to collect data for hydrodynamic model calibration and verification. Total error between computed and measured velocity was estimated at 10–15%. A high concentration of chlorophyll-a during the vegetation season of 2015 (0.02 mg/L) was coupled with high water temperature (above 25 °C) and low concentrations of biogenic compounds (phosphorus and nitrogen at 0.02 and 0.001 mg/L, respectively). In 2015, NO3-N was the limiting nutrient in the Sulejów Reservoir. Maximum growth of algae was observed in June and July 2015 (0.02 mg/L chla) along the entire length of the reservoir; algae bloom volume reduction was observed in September (0.004 mg/L chla). Proposed scenarios for nutrient reduction—50% reduction of phosphate-phosphorus (PO4-P) and nitrate-nitrogen (NO3-N) from agriculture areas as well as 50% reduction of discharges from septic tanks—led to a considerable reduction of nutrient concentrations in the reservoir waters; it additionally favors reducing the concentration of chlorophyll-a. The obtained results indicate that these sources of pollutants are mainly responsible for the poor water quality status of the reservoir and more intensive eutrophication phenomena. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 9541 KB  
Article
Multi-Layered Stratification in the Baltic Sea: Insight from a Modeling Study with Reference to Environmental Conditions
by Bijan Dargahi, Venkat Kolluru and Vladimir Cvetkovic
J. Mar. Sci. Eng. 2017, 5(1), 2; https://doi.org/10.3390/jmse5010002 - 7 Jan 2017
Cited by 23 | Viewed by 12443
Abstract
The hydrodynamic and transport characteristics of the Baltic Sea in the period 2000–2009 were studied using a fully calibrated and validated 3D hydrodynamic model with a horizontal resolution of 4.8 km. This study provided new insight into the type and dynamics of vertical [...] Read more.
The hydrodynamic and transport characteristics of the Baltic Sea in the period 2000–2009 were studied using a fully calibrated and validated 3D hydrodynamic model with a horizontal resolution of 4.8 km. This study provided new insight into the type and dynamics of vertical structure in the Baltic Sea, not considered in previous studies. Thermal and salinity stratification are both addressed, with a focus on the structural properties of the layers. The detection of cooler regions (dicothermal) within the layer structure is an important finding. The detailed investigation of thermal stratification for a 10-year period (i.e., 2000–2009) revealed some new features. A multilayered structure that contains several thermocline and dicothermal layers was identified from this study. Statistical analysis of the simulation results made it possible to derive the mean thermal stratification properties, expressed as mean temperatures and the normalized layer thicknesses. The three-layered model proposed by previous investigators appears to be valid only during the winter periods; for other periods, a multi-layered structure with more than five layers has been identified during this investigation. This study provides detailed insight into thermal and salinity stratification in the Baltic Sea during a recent decade that can be used as a basis for diverse environmental assessments. It extends previous studies on stratification in the Baltic Sea regarding both the extent and the nature of stratification. Full article
Show Figures

Figure 1

21 pages, 3776 KB  
Article
Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater
by Suhur Saeed, Shwet Prakash, Nandita Deb, Ross Campbell, Venkat Kolluru, Eric Febbo and Jennifer Dupont
J. Mar. Sci. Eng. 2015, 3(3), 772-792; https://doi.org/10.3390/jmse3030772 - 31 Jul 2015
Cited by 11 | Viewed by 7682
Abstract
Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs) when exposed to naturally-occurring organic matter (NOM). Some of these CBPs can pose [...] Read more.
Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs) when exposed to naturally-occurring organic matter (NOM). Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC), Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS)-chlorine kinetics module (CKM), a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements. Full article
Show Figures

Figure 1

Back to TopTop