Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = GNSS and GRACE/GRACE-FO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11346 KB  
Article
Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations
by Meilin He, Tao Chen, Yuanjin Pan, Lv Zhou, Yifei Lv and Lewen Zhao
Remote Sens. 2025, 17(15), 2739; https://doi.org/10.3390/rs17152739 - 7 Aug 2025
Viewed by 267
Abstract
The Amazon Basin plays a crucial role in the global hydrological cycle, where seasonal and interannual variations in terrestrial water storage (TWS) are essential for understanding climate–hydrology coupling mechanisms. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission [...] Read more.
The Amazon Basin plays a crucial role in the global hydrological cycle, where seasonal and interannual variations in terrestrial water storage (TWS) are essential for understanding climate–hydrology coupling mechanisms. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its follow-on mission (GRACE-FO, collectively referred to as GRACE) to investigate the spatiotemporal dynamics of hydrological mass changes in the Amazon Basin from 2002 to 2021. Results reveal pronounced spatial heterogeneity in the annual amplitude of TWS, exceeding 65 cm near the Amazon River and decreasing to less than 25 cm in peripheral mountainous regions. This distribution likely reflects the interplay between precipitation and topography. Vertical displacement measurements from the Global Navigation Satellite System (GNSS) show strong correlations with GRACE-derived hydrological load deformation (mean Pearson correlation coefficient = 0.72) and reduce its root mean square (RMS) by 35%. Furthermore, the study demonstrates that existing hydrological models, which neglect groundwater dynamics, underestimate hydrological load deformation. Principal component analysis (PCA) of the Amazon GNSS network demonstrates that the first principal component (PC) of GNSS vertical displacement aligns with abrupt interannual TWS fluctuations identified by GRACE during 2010–2011, 2011–2012, 2013–2014, 2015–2016, and 2020–2021. These fluctuations coincide with extreme precipitation events associated with the El Niño–Southern Oscillation (ENSO), confirming that ENSO modulates basin-scale interannual hydrological variability primarily through precipitation anomalies. This study provides new insights for predicting extreme hydrological events under climate warming and offers a methodological framework applicable to other critical global hydrological regions. Full article
Show Figures

Graphical abstract

18 pages, 5017 KB  
Article
Assessment of the Potential of Spaceborne GNSS-R Interferometric Altimetry for Monthly Marine Gravity Anomaly
by Lichang Duan, Weihua Bai, Junming Xia, Zhenhe Zhai, Feixiong Huang, Cong Yin, Ying Long, Yueqiang Sun, Qifei Du, Xianyi Wang, Dongwei Wang and Yixuan Sun
Remote Sens. 2025, 17(7), 1178; https://doi.org/10.3390/rs17071178 - 26 Mar 2025
Viewed by 515
Abstract
The Earth’s time-variable gravity field holds significant research and application value. However, satellite gravimetry missions such as GRACE and GRACE-FO face limitations in spatial resolution when detecting monthly gravity fields, while traditional radar altimeters lack the observational efficiency needed for monthly gravity anomaly [...] Read more.
The Earth’s time-variable gravity field holds significant research and application value. However, satellite gravimetry missions such as GRACE and GRACE-FO face limitations in spatial resolution when detecting monthly gravity fields, while traditional radar altimeters lack the observational efficiency needed for monthly gravity anomaly inversion. These limitations hinder further exploration and application of the Earth’s time-variable gravity field. Leveraging its advantages, such as rapid global coverage, high revisit frequency, and low cost for constellation formation, spaceborne GNSS-R technology holds the potential to address the observational efficiency gaps of traditional radar altimeters. This study presents the first assessment of the capability of spaceborne GNSS-R interferometric altimetry for high spatial resolution monthly marine gravity anomaly inversion through simulations. The results indicate that under the PARIS Operational scenario of a single GNSS-R satellite (a spaceborne GNSS-R interferometric altimetry scenario proposed by Martin-Neira), a 30′ grid resolution marine gravity anomaly can be inverted with an accuracy of 4.93 mGal using one month of simulated data. For a dual-satellite constellation, the grid resolution improves to 20′, achieving an accuracy of 4.82 mGal. These findings underscore the promise of spaceborne GNSS-R interferometric altimetry technology for high spatial resolution monthly marine gravity anomaly inversion. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

21 pages, 23303 KB  
Article
Toward Robust GNSS Real-Time Orbit Determination for Microsatellites Using Factor Graph Optimization
by Cong Hou, Xiaojun Jin, Xiaopeng Yang and Tong Xiao
Remote Sens. 2025, 17(7), 1125; https://doi.org/10.3390/rs17071125 - 21 Mar 2025
Viewed by 607
Abstract
Extended Kalman Filter (EKF) is extensively employed in Global Navigation Satellite System (GNSS)-based real-time orbit determination (RTOD) for microsatellites due to its low complexity. However, the performance of EKF-RTOD is markedly degraded when the microsatellite deviates from a stable Earth-pointing attitude and employs [...] Read more.
Extended Kalman Filter (EKF) is extensively employed in Global Navigation Satellite System (GNSS)-based real-time orbit determination (RTOD) for microsatellites due to its low complexity. However, the performance of EKF-RTOD is markedly degraded when the microsatellite deviates from a stable Earth-pointing attitude and employs a low-cost receiver. Factor graph optimization (FGO), which addresses nonlinear problems through multiple iterations and re-linearization, has demonstrated superior accuracy and robustness compared to EKF in challenging environments such as urban canyons. In this study, we introduce a novel FGO-based RTOD (FGO-RTOD) approach, which integrates state transfer factors to establish temporal connections between state nodes across multiple epochs. Real-time processing is achieved through a sliding window mechanism combined with marginalization. This paper evaluates the performance of the proposed algorithm in a regular scenario using data from GRACE-FO-A, which maintains the Earth-pointing attitude and employs a high-performance receiver. The positioning results of GRACE-FO-A indicate that FGO-RTOD marginally outperforms EKF-RTOD in accuracy. Furthermore, the performance of FGO-RTOD is assessed in challenging scenarios using simulation data and on-orbit data from Tianping-2B microsatellite, which is not in an Earth-pointing attitude and employs a low-cost receiver. The simulation results reveal that FGO-RTOD reduces the Root Mean Square (RMS) of positioning error by 79.0% relative to EKF-RTOD and exhibits significantly enhanced smoothing. In the Tianping-2B experiments, FGO-RTOD reduces the RMS of carrier-phase ionosphere-free combination residuals from 2 cm to 1 cm relative to EKF-RTOD, alongside a substantial improvement in the ratio of valid observations. These findings underscore the effectiveness of FGO-RTOD in managing outlier measurements in challenging scenarios. Full article
Show Figures

Figure 1

21 pages, 11665 KB  
Article
Influences of Discontinuous Attitudes on GNSS/LEO Integrated Precise Orbit Determination Based on Sparse or Regional Networks
by Yuanxin Wang, Baoqi Sun, Kan Wang, Xuhai Yang, Zhe Zhang, Minjian Zhang and Meifang Wu
Remote Sens. 2025, 17(4), 712; https://doi.org/10.3390/rs17040712 - 19 Feb 2025
Viewed by 617
Abstract
A uniformly distributed global ground network is essential for the accurate determination of GNSS orbit and clock parameters. However, achieving an ideal ground network is often difficult. When limited to a sparse or regional network of ground stations, the integration of LEO satellites [...] Read more.
A uniformly distributed global ground network is essential for the accurate determination of GNSS orbit and clock parameters. However, achieving an ideal ground network is often difficult. When limited to a sparse or regional network of ground stations, the integration of LEO satellites can substantially enhance the accuracy of GNSS Precise Orbit Determination (POD). In practical processing, discontinuities with complicated gaps can occur in LEO attitude quaternions, particularly when working with a restricted observation network. This hampers the accuracy of determining GNSS/LEO integrated orbits. To address this, an investigation was conducted using data from seven LEO satellites, including those from Sentinel-3, GRACE-FO, and Swarm, to evaluate integrated POD performance under sparse or regional station conditions. Particular focus was placed on addressing attitude discontinuities. Four scenarios were analyzed, encompassing both continuous data availability and one-, two-, and three-hour interruptions after one hour of continuous data availability. The results showed that the proposed quaternion rotation matrix interpolation method is reliable for the integrated POD of GNSSs and LEOs with strict attitude control. Full article
Show Figures

Figure 1

16 pages, 7218 KB  
Article
Influence of South-to-North Water Diversion on Land Subsidence in North China Plain Revealed by Using Geodetic Measurements
by Jingqi Wang, Kaihua Ding, Xiaodong Chen, Rumeng Guo and Heping Sun
Remote Sens. 2024, 16(1), 162; https://doi.org/10.3390/rs16010162 - 30 Dec 2023
Cited by 2 | Viewed by 1967
Abstract
As a major grain-producing region in China, the North China Plain (NCP) faces serious challenges such as water shortage and land subsidence. In late 2014, the Central Route of the South-to-North Water Diversion Project (SNWD-C) began to provide NCP with water resources. However, [...] Read more.
As a major grain-producing region in China, the North China Plain (NCP) faces serious challenges such as water shortage and land subsidence. In late 2014, the Central Route of the South-to-North Water Diversion Project (SNWD-C) began to provide NCP with water resources. However, the effectiveness of this supply in mitigating land subsidence remains a pivotal and yet unassessed aspect. In this paper, we utilized various geodetic datasets, including the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO), Global Navigation Satellite System (GNSS) and leveling data, to conduct a spatial-temporal analysis of the equivalent water height (EWH) and vertical ground movement in the NCP. The results reveal a noteworthy decline in EWH from 2011 to 2015, followed by a slight increase with minor fluctuations from 2015 to 2020, demonstrating a strong correlation with the water resources supplied by the SNWD-C. The GRACE-derived surface deformation rate induced by hydrological loading is estimated to be <1 mm/yr. In comparison, GNSS-derived vertical ground movements exhibit considerable regional differences during the 2011–2020 period. Substantial surface subsidence is evident in the central and eastern NCP, contrasting with a gradual uplift in the front plain of the Taihang Mountains. Three-stage leveling results indicate that the rate of subsidence in the central and eastern plains is gradually increasing with the depression area expanding from 1960 to 2010. Based on these geodetic results, it can be inferred that the SNWD-C’s operation since 2014 has effectively mitigated the reduction in terrestrial water storage in the NCP. However, land subsidence in the NCP persists, as the subsidence rate does not turn around in sync with the change in EWH following the operation of SNWD-C. Consequently, it’s necessary to maintain and enforce existing policies, including controlling groundwater exploitation and water resources supply (e.g., SNWD-C) to curtail the exacerbation of land subsidence in the NCP. Additionally, continuous monitoring of land subsidence by GRACE, GNSS, leveling and other geodetic techniques is crucial to enable timely policy adjustments based on monitoring results. Full article
Show Figures

Figure 1

17 pages, 5528 KB  
Article
Applying Reconstructed Daily Water Storage and Modified Wetness Index to Flood Monitoring: A Case Study in the Yangtze River Basin
by Cuiyu Xiao, Yulong Zhong, Yunlong Wu, Hongbing Bai, Wanqiu Li, Dingcheng Wu, Changqing Wang and Baoming Tian
Remote Sens. 2023, 15(12), 3192; https://doi.org/10.3390/rs15123192 - 20 Jun 2023
Cited by 7 | Viewed by 3022
Abstract
The terrestrial water storage anomaly (TWSA) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provides a new means for monitoring floods. However, due to the coarse temporal resolution of GRACE/GRACE-FO, the understanding of flood occurrence [...] Read more.
The terrestrial water storage anomaly (TWSA) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provides a new means for monitoring floods. However, due to the coarse temporal resolution of GRACE/GRACE-FO, the understanding of flood occurrence mechanisms and the monitoring of short-term floods are limited. This study utilizes a statistical model to reconstruct daily TWS by combining monthly GRACE observations with daily temperature and precipitation data. The reconstructed daily TWSA is utilized to monitor the catastrophic flood event that occurred in the middle and lower reaches of the Yangtze River basin in 2020. Furthermore, the study compares the reconstructed daily TWSA with the vertical displacements of eight Global Navigation Satellite System (GNSS) stations at grid scale. A modified wetness index (MWI) and a normalized daily flood potential index (NDFPI) are introduced and compared with in situ daily streamflow to assess their potential for flood monitoring and early warning. The results show that terrestrial water storage (TWS) in the study area increases from early June, reaching a peak on 19 July, and then receding till September. The reconstructed TWSA better captures the changes in water storage on a daily scale compared to monthly GRACE data. The MWI and NDFPI based on the reconstructed daily TWSA both exceed the 90th percentile 7 days earlier than the in situ streamflow, demonstrating their potential for daily flood monitoring. Collectively, these findings suggest that the reconstructed TWSA can serve as an effective tool for flood monitoring and early warning. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

22 pages, 7949 KB  
Article
LEO Satellite Clock Modeling and Its Benefits for LEO Kinematic POD
by Kan Wang, Ahmed El-Mowafy and Xuhai Yang
Remote Sens. 2023, 15(12), 3149; https://doi.org/10.3390/rs15123149 - 16 Jun 2023
Cited by 7 | Viewed by 2831
Abstract
High-accuracy Low Earth Orbit (LEO) satellite clock and orbital products are preconditions to realize LEO augmentation for high-accuracy GNSS-based positioning on the ground. There is a high correlation between the orbit and clock parameters in the kinematic Precise Orbit Determination (POD) process. While [...] Read more.
High-accuracy Low Earth Orbit (LEO) satellite clock and orbital products are preconditions to realize LEO augmentation for high-accuracy GNSS-based positioning on the ground. There is a high correlation between the orbit and clock parameters in the kinematic Precise Orbit Determination (POD) process. While future LEO satellites are planned to be equipped with better clocks, the benefits of modeling high-stability LEO satellite clocks are not yet thoroughly investigated, particularly when mid- to long-term systematic effects induced by the complex LEO relativistic effects and the external environment remain in the clocks. Through clock modeling, this study attempts to reduce not only the short-term noise of radial kinematic orbits, but also mis-modeled effects caused by, e.g., real-time GNSS orbital and clock errors. To explore the benefits of clock modeling, the clocks need to be first detrended by the mid- to long-term systematic effects. While over-detrending limits the orbital improvements, weak detrending would also hamper strong clock modeling and easily lead to performance degradations. A balance between the strengths of the detrending and the model thus needs to be investigated for different clock types. In this study, the Piece-Wise Linear (PWL) model of different time lengths and a 2.5-state filter with different strengths (h values) are tested using real data from GRACE FO-1 with an Ultra-Stable Oscillator (USO) on board. Using the CNES real-time GPS products, it was found that when detrending the clocks with a smoothing window of 300 to 500 s, one could generally expect an improvement larger than 10% in the estimation of radial orbits when applying a PWL model with a length from 300 to 1200 s. Improvements of this size can also be expected when using the 2.5-state model with h−1 (for Flicker Frequency Noise) from 10−28 to 10−30. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

19 pages, 23018 KB  
Article
Comparison of GRACE/GRACE-FO Spherical Harmonic and Mascon Products in Interpreting GNSS Vertical Loading Deformations over the Amazon Basin
by Pengfei Wang, Song-Yun Wang, Jin Li, Jianli Chen and Zhaoxiang Qi
Remote Sens. 2023, 15(1), 252; https://doi.org/10.3390/rs15010252 - 1 Jan 2023
Cited by 6 | Viewed by 4246
Abstract
We compute the vertical displacements in the Amazon Basin using the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) observations, including both the gravity spherical harmonic (SH) solutions from the Center for Space Research (CSR), GeoForschungsZentrum (GFZ) and Jet Propulsion Laboratory [...] Read more.
We compute the vertical displacements in the Amazon Basin using the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) observations, including both the gravity spherical harmonic (SH) solutions from the Center for Space Research (CSR), GeoForschungsZentrum (GFZ) and Jet Propulsion Laboratory (JPL) and mascons from CSR, JPL and Goddard Space Flight Center (GSFC). The correlation coefficients, annual amplitude and root mean squares (RMS) reductions are calculated to assess the agreements between the GRACE/GRACE-FO and Global Navigation Satellite System (GNSS) vertical displacements at 22 selected GNSS stations. For the six GRACE/GRACE-FO products (i.e., CSR SH, GFZ SH, JPL SH, CSR mascon, GSFC mascon and JPL mascon), the mean annual amplitude reductions are 77.6%, 76.4%, 76.3%, 78.6%, 78.5% and 76.6%, respectively, the corresponding mean RMS reductions are 63.2%, 61.7%, 62.3%, 64.9%, 65.3% and 63.8%, respectively, and the mean correlation coefficients are all over 0.93. On the whole, mascon solutions agree slightly better with GNSS solutions than SH solutions do. The CSR SH and the GSFC mascon solutions show the best agreements with the GNSS solution among the 3 SH and 3 mascon products, respectively. We estimate GRACE/GRACE-FO noises using the three-cornered hat (TCH) method and find that the CSR SH and GSFC mascons also have the smallest noise variances among the SH and mascon products, respectively. By analyzing the GNSS stations from the central and southern Amazon Basin, we find that: (1) the RMS reductions when the mascon solutions are removed from GNSS height series are slightly larger than those using the SH solutions in the center, while in south all the RMS reductions are fairly close; (2) for both SH solutions and mascon solutions, the correlation coefficients in the center are slightly larger than those in the south, but conversely, the mean annual amplitude reductions in the center are much smaller than those in the south. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

17 pages, 9781 KB  
Article
Inverted Algorithm of Groundwater Storage Anomalies by Combining the GNSS, GRACE/GRACE-FO, and GLDAS: A Case Study in the North China Plain
by Yifan Shen, Wei Zheng, Huizhong Zhu, Wenjie Yin, Aigong Xu, Fei Pan, Qiang Wang and Yelong Zhao
Remote Sens. 2022, 14(22), 5683; https://doi.org/10.3390/rs14225683 - 10 Nov 2022
Cited by 13 | Viewed by 3213
Abstract
As the largest groundwater drainage region in China, the per capita water resources in the North China Plain (NCP) account for only one-seventh of the country’s available water resources. Currently, the NCP is experiencing a serious water shortage due to the overexploitation of [...] Read more.
As the largest groundwater drainage region in China, the per capita water resources in the North China Plain (NCP) account for only one-seventh of the country’s available water resources. Currently, the NCP is experiencing a serious water shortage due to the overexploitation of groundwater resources and a subsequent series of natural disasters. Thus, accurate regional assessments and effective water resource management policies are of critical importance. To accomplish this phenomenon, the daily terrestrial water storage anomaly (TWSA) over the NCP is calculated from the combination of the GNSS vertical deformation sequences (seasonal items) and GRACE (trend items). The groundwater storage anomaly (GWSA) in the NCP is obtained by subtracting the canopy water, soil water, and snow water equivalent components from the TWSA. The inversion results of this study are verified by comparisons with the Global Land Data Assimilation System (GLDAS) data products. The elevated annual amplitude areas are located in Beijing and Tianjin, and the Pearson correlation coefficient (PCC), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) between the two GWSA results are 0.67, 4.01 cm, and 0.61, respectively. This indicates that the methods proposed in this study are reliable. Finally, the groundwater drought index was calculated for the period from 2011 to 2021, and the results showed that 2019 was the driest year, with a drought severity index value of −0.12, indicative of slightly moderate drought conditions. By calculating and analyzing the annual GWSA, this work shows that the South–North Water Transfer Project does provide some regional drought mitigation. Full article
(This article belongs to the Special Issue Remote Sensing Approaches to Groundwater Management and Mapping)
Show Figures

Graphical abstract

18 pages, 9465 KB  
Article
Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations
by Peng Luo, Shuanggen Jin and Qiqi Shi
Sensors 2022, 22(3), 1071; https://doi.org/10.3390/s22031071 - 29 Jan 2022
Cited by 5 | Viewed by 3437
Abstract
Low Earth Orbit (LEO) satellites can be used for remote sensing and gravity field recovery, while precise orbit determination (POD) is vital for LEO satellite applications. However, there are some systematic errors when using the LEO satellite orbits released by different agencies in [...] Read more.
Low Earth Orbit (LEO) satellites can be used for remote sensing and gravity field recovery, while precise orbit determination (POD) is vital for LEO satellite applications. However, there are some systematic errors when using the LEO satellite orbits released by different agencies in multi-satellite-based applications, e.g., Swarm and Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO), as different GNSS precise orbit and clock products are used as well as processing strategies and software. In this paper, we performed undifferenced kinematic PODs for Swarm and GRACE-FO satellites simultaneously over a total of 14 days by using consistent International Global Navigation Satellite System (GNSS) Service (IGS) precise orbit and clock products. The processing strategy based on an undifferenced ionosphere-free combination and a least squares method was applied for Swarm and GRACE-FO satellites. Furthermore, the quality control for the kinematic orbits was adopted to mitigate abrupt position offsets. Moreover, the accuracy of the kinematic orbits solution was evaluated by carrier phase residual analysis and Satellite Laser Ranging (SLR) observations, as well as comparison with official orbits. The results show that the kinematic orbits solution is better than 4 cm, according to the SLR validation. With quality control, the accuracy of the kinematic orbit solution is improved by 2.49 % for the Swarm-C satellite and 6.98 % for the GRACE-D satellite when compared with their precise orbits. By analyzing the accuracy of the undifferenced kinematic orbit solution, the reliability of the LEO orbit determination is presented in terms of processing strategies and quality control procedures. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 20400 KB  
Article
GRACE-FO Antenna Phase Center Modeling and Precise Orbit Determination with Single Receiver Ambiguity Resolution
by Biao Jin, Yuqiang Li, Kecai Jiang, Zhulian Li and Shanshan Chen
Remote Sens. 2021, 13(21), 4204; https://doi.org/10.3390/rs13214204 - 20 Oct 2021
Cited by 14 | Viewed by 4943
Abstract
Precise knowledge of the phase center location of the global navigation satellite system (GNSS) antenna is a prerequisite for precise orbit determination (POD) of the low Earth orbit (LEO) satellite. The phase center offset (PCO) and phase center variation (PCV) values for the [...] Read more.
Precise knowledge of the phase center location of the global navigation satellite system (GNSS) antenna is a prerequisite for precise orbit determination (POD) of the low Earth orbit (LEO) satellite. The phase center offset (PCO) and phase center variation (PCV) values for the LEO antenna obtained from ground calibration cannot reflect the error sources encountered in the actual spacecraft environment. PCV corrections are estimated by ionosphere free (IF) carrier phase post-fit residuals of reduced dynamic orbit determination. Ambiguity resolution (AR) plays a crucial role in achieving the best orbit accuracy. The single receiver AR concept is realized using wide-lane (WL) and narrow-lane (NL) bias products. Single difference (SD) observations between satellites are applied to remove the receiver dependent phase bias. SD AR and traditional double difference (DD) AR methods are applied to fix the ambiguities. The recovered SD and DD IF ambiguities are taken as pseudo-observations to constrain the undifferenced IF ambiguity parameters in the POD process. The LEO orbits based on float ambiguity (FA), SD, AR, and DD AR are investigated. One year’s data collected by the Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) mission and GPS precise products provided by the Center for Orbit Determination in Europe (CODE) were analyzed. Precise orbit generated by the Jet Propulsion Laboratory (JPL), independent satellite laser ranging (SLR), and K-band ranging (KBR) measurements were utilized to assess the orbit accuracy. More than 98% of SD WL and 95% of SD NL ambiguities are fixed, which confirms the good quality of the bias products and correctness of the SD AR method. With PCV corrections, the average phase residuals of DD and SD AR solutions are 0.13 and 0.41 mm, which indicates improved consistency between applied models and observations. Compared with JPL’s orbit, the SD AR orbits achieve the accuracy of 6.0, 6.2, and 5.1 mm in along-track, cross-track, and radial directions. The SD AR solutions show an average improvement of 18.3% related to the FA orbits while 6.3% is gained by the DD AR approach. The root mean squares (RMSs) of SLR residuals for FA, DD AR, and SD AR solutions are 11.5, 10.2, and 9.6 mm, which validate the positive effect of AR on POD. Standard deviation (STD) of KBR residuals for SD AR orbits is 1.8 mm while 0.9 mm is achieved by the DD AR method. The explanation is that the phase bias products used for SD AR are not free of errors and the errors may degrade the KBR validation. In-flight PCV calibration and ambiguity resolution improve the LEO orbit accuracy effectively. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation)
Show Figures

Figure 1

18 pages, 6482 KB  
Article
GNSS Profile from the Greenland Korth Expeditions in the Context of Satellite Data
by Aleš Bezděk, Jakub Kostelecký, Josef Sebera and Thomas Hitziger
Appl. Sci. 2021, 11(3), 1115; https://doi.org/10.3390/app11031115 - 26 Jan 2021
Cited by 2 | Viewed by 2872
Abstract
Over the last two decades, a small group of researchers repeatedly crossed the Greenland interior skiing along a 700-km long route from east to west, acquiring precise GNSS measurements at exactly the same locations. Four such elevation profiles of the ice sheet measured [...] Read more.
Over the last two decades, a small group of researchers repeatedly crossed the Greenland interior skiing along a 700-km long route from east to west, acquiring precise GNSS measurements at exactly the same locations. Four such elevation profiles of the ice sheet measured in 2002, 2006, 2010 and 2015 were differenced and used to analyze the surface elevation change. Our goal is to compare such locally measured GNSS data with independent satellite observations. First, we show an agreement in the rate of elevation change between the GNSS data and satellite radar altimetry (ERS, Envisat, CryoSat-2). Both datasets agree well (2002–2015), and both correctly display local features such as an elevation increase in the central part of the ice sheet and a sharp gradual decline in the surface heights above Jakobshavn Glacier. Second, we processed satellite gravimetry data (GRACE) in order for them to be comparable with local GNSS measurements. The agreement is demonstrated by a time series at one of the measurement sites. Finally, we provide our own satellite gravimetry (GRACE, GRACE-FO, Swarm) estimate of the Greenland mass balance: first a mild decrease (2002–2007: −210 ± 29 Gt/yr), then an accelerated mass loss (2007–2012: −335 ± 29 Gt/yr), which was noticeably reduced afterwards (2012–2017: −178 ± 72 Gt/yr), and nowadays it seems to increase again (2018–2019: −278 ± 67 Gt/yr). Full article
(This article belongs to the Special Issue Analyses in Geomatics: Processing Spatial Data on History and Today)
Show Figures

Figure 1

22 pages, 15681 KB  
Article
The Use of National CORS Networks for Determining Temporal Mass Variations within the Earth’s System and for Improving GRACE/GRACE-FO Solutions
by Walyeldeen Godah, Jagat Dwipendra Ray, Malgorzata Szelachowska and Jan Krynski
Remote Sens. 2020, 12(20), 3359; https://doi.org/10.3390/rs12203359 - 15 Oct 2020
Cited by 8 | Viewed by 3574
Abstract
Temporal mass variations within the Earth’s system can be detected on a regional/global scale using GRACE (Gravity Recovery and Climate Experiment) and GRACE Follow-On (GRACE-FO) satellite missions’ data, while GNSS (Global Navigation Satellite System) data can be used to detect those variations on [...] Read more.
Temporal mass variations within the Earth’s system can be detected on a regional/global scale using GRACE (Gravity Recovery and Climate Experiment) and GRACE Follow-On (GRACE-FO) satellite missions’ data, while GNSS (Global Navigation Satellite System) data can be used to detect those variations on a local scale. The aim of this study is to investigate the usefulness of national GNSS CORS (Continuously Operating Reference Stations) networks for the determination of those temporal mass variations and for improving GRACE/GRACE-FO solutions. The area of Poland was chosen as a study area. Temporal variations of equivalent water thickness ΔEWT and vertical deformations of the Earth’s surface Δh were determined at the sites of the ASG-EUPOS (Active Geodetic Network of the European Position Determination System) CORS network using GRACE/GRACE-FO-based GGMs and GNSS data. Moreover, combined solutions of ΔEWT were developed by combining ΔEWT obtained from GNSS data with the corresponding ones determined from GRACE satellite mission data. Strong correlations (correlation coefficients ranging from 0.6 to 0.9) between detrended Δh determined from GRACE/GRACE-FO satellite mission data and the corresponding ones from GNSS data were observed at 93% of the GNSS stations investigated. Furthermore, for the determination of temporal mass variations, GNSS data from CORS network stations provide valuable information complementary to GRACE satellite mission data. Full article
(This article belongs to the Special Issue Terrestrial Hydrology Using GRACE and GRACE-FO)
Show Figures

Graphical abstract

Back to TopTop