Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations
Abstract
1. Introduction
2. Materials and Methods
2.1. GNSS Data and Processing
2.2. GRACE Mascon Data
2.3. Surface Elastic Loading Models
- NTAL displacements are calculated using ECMWF’s 3-hourly atmospheric surface pressure data. Tidal atmospheric effects are removed through harmonic analysis of the 12 primary tidal constituents.
- NTOL displacements are derived from 3-hourly ocean-bottom pressure data generated by the Max-Planck-Institute Ocean Model (MPIOM).
- Hydrological loading (HYDL) displacements are computed from 24-hourly hydrological variables using the Land Surface Discharge Model (LSDM).
2.4. Meteorological Data
2.5. Method
3. Results
3.1. Spatiotemporal Dynamics of TWS in the Amazon Basin Based on GRACE Data
3.2. Comparative Analysis of GNSS, GRACE, and HYDL in Quantifying Seasonal Hydrology-Induced Load Effects in the Amazon Basin
3.3. Interannual Fluctuations of Hydrological Variability in the Amazon Basin (2008–2021) and Their Response to Climate Change
- As shown in Figure 9a, the interannual fluctuations derived from GRACE observations for the Amazon basin are strongly anticorrelated with those of the first PC of the CMCs calculated from GNSS data, demonstrating a high degree of correspondence. This indicates that GNSS observations effectively capture surface load signals induced by hydrological mass changes in the Amazon basin.
- Comparison of Figure 9a–c reveals abrupt changes in both precipitation and temperature across the Amazon basin during 2010–2011, 2011–2012, 2013–2014, 2015–2016, and 2020–2021, closely aligned with corresponding anomalies in hydrological mass and minimal time lag. This suggests that precipitation is the primary driver of hydrological mass variability in the basin.
- Comparison with the ENSO index variation in Figure 9d reveals a strong correlation between hydrological mass changes in the Amazon basin and ENSO activity. ENSO-related extreme climate events, particularly anomalous precipitation and temperature variations, significantly influence the dynamic processes of regional hydrological mass.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TWS | Terrestrial water storage |
GRACE | The Gravity Recovery and Climate Experiment |
GRACE-FO | The Gravity Recovery and Climate Experiment and its follow-on |
GNSS | The Global Navigation Satellite System |
RMS | Root mean square |
PCA | Principal component analysis |
PC | Principal component |
ENSO | The El Niño–Southern Oscillation |
SH | Spherical harmonic |
NGL | Nevada Geodetic Laboratory |
IGS | International GNSS Service |
PPP | Precise Point Positioning |
GIA | Glacial isostatic adjustment |
CSR | The Center for Space Research |
JPL | Jet Propulsion Laboratory |
GSFC | Goddard Space Flight Center |
PREM | The Preliminary Reference Earth Model |
ESMGFZ | The German Research Centre for Geosciences |
NTAL | Non-tidal atmospheric loading |
NTOL | Non-tidal oceanic loading |
ECMWF | The European Centre for Medium-Range Weather Forecasts |
MPIOM | The Max-Planck-Institute Ocean Model |
HYDL | Hydrological loading |
LSDM | Land Surface Discharge Model |
MEI | Multivariate ENSO Index |
PCC | Pearson correlation coefficient |
CMCs | Common-mode components |
SSA | Singular Spectrum Analysis |
References
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Pan, Y.J.; Ding, H.; Jiao, J.; He, M. Investigating terrestrial water storage variation and its response to climate in southeastern Tibetan Pateau inferred through space geodetic observations. J. Hydrol. 2024, 640, 131742. [Google Scholar] [CrossRef]
- He, M.L.; Chen, T.; Pan, Y.J.; Jiao, J.; Wu, Q.; Lv, Y.; Jiang, W. Spatiotemporal variability of terrestrial water storage over the Tibetan Plateau from the joint inversion of GNSS and GRACE observations. Sci. Rep. 2025, 15, 27168. [Google Scholar] [CrossRef]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Pan, Y.J.; Chen, R.Z.; Yi, S.; Jiao, J.; Wu, Q.; Lv, Y.; Jiang, W. Contemporary mountain-building of the Tianshan and its relevance to geodynamics constrained by integrating GPS and GRACE measurements. J. Geophys. Res. Solid Earth 2019, 124, 12171–12188. [Google Scholar] [CrossRef]
- Chen, J.L.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and challenges of GRACE and GRACE Follow-On satellite gravimetry. Surv. Geophys. 2022, 43, 305–345. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, S.; Wang, Q.Y.; Chang, L.; Tang, H.; Sun, W. Evaluation of GRACE mascon solutions for small spatial scales and localized mass sources. Geophys. J. Int. 2019, 218, 1307–1321. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Jiao, J.S.; Pan, Y.J.; Bilker-Koivula, M.; Poutanen, M.; Ding, H. Basin mass changes in Finland from GRACE: Validation and explanation. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023489. [Google Scholar] [CrossRef]
- Chen, T.; Pan, Y.J.; Jiao, J.S.; He, M. Integrating GNSS and GRACE observations to investigate water storage variations across different climatic regions of China. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5801715. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; A, G.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; Broeke, M.v.D.; van Wessem, M.; et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Jiao, J.S.; Pan, Y.J.; Zhang, X.H.; Shum, C.K.; Zhang, Y.; Ding, H. Spatially heterogeneous nonlinear signal in Antarctic ice-sheet mass loss revealed by GRACE and GPS. Geophys. J. Int. 2023, 223, 826–838. [Google Scholar] [CrossRef]
- Pan, Y.J.; Shen, W.B.; Shum, C.K.; Chen, R. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth Planet. Sci. Lett. 2018, 502, 12–22. [Google Scholar] [CrossRef]
- Saji, A.P.; Sunil, P.S.; Sreejith, K.M.; Gautam, P.K.; Kumar, K.V.; Ponraj, M.; Amirtharaj, S.; Shaju, R.M.; Begum, S.K.; Reddy, C.D.; et al. Surface deformation and influence of hydrological mass over Himalaya and North India revealed from a decade of continuous GPS and GRACE observations. J. Geophys. Res. Earth Surf. 2020, 125, e2018JF004943. [Google Scholar] [CrossRef]
- Lombard, A.; Garcia, D.; Ramillien, G.; Cazenave, A.; Biancale, R.; Lemoine, J.; Flechtner, F.; Schmidt, R.; Ishii, M. Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet. Sci. Lett. 2007, 254, 194–202. [Google Scholar] [CrossRef]
- Yi, S.; Sun, W.K.; Heki, K.; Qian, A. An increase in the rate of global mean sea level rise since 2010. Geophys. Res. Lett. 2015, 42, 3998–4006. [Google Scholar] [CrossRef]
- Davis, J.L.; Elósegui, P.; Mitrovica, J.M. Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys. Res. Lett. 2004, 31, L24605. [Google Scholar] [CrossRef]
- Bevis, M.; Alsdorf, D.; Kendrick, E.; Fortes, L.P.; Forsberg, B.; Smalley, R.; Becker, J. Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys. Res. Lett. 2005, 32, L16308. [Google Scholar] [CrossRef]
- Fang, J.; He, M.L.; Luan, W.; Jiao, J. Crustal vertical deformation of Amazon Basin derived from GPS and GRACE/GFO data over past two decades. Geod. Geodyn. 2021, 12, 441–450. [Google Scholar] [CrossRef]
- Youm, K.; Eom, J.; Seo, K.W.; Chen, J.; Wilson, C.R.; Oh, S. High-resolution surface mass loads in the Amazon Basin combining GRACE and river routing model. Geophys. J. Int. 2023, 232, 2105–2118. [Google Scholar] [CrossRef]
- Wang, P.F.; Wang, S.Y.; Li, J. Comparison of GRACE/GRACE-FO spherical harmonic and mascon products in interpreting GNSS vertical loading deformations over the Amazon Basin. Remote Sens. 2023, 15, 252. [Google Scholar] [CrossRef]
- Xavier, L.; Becker, M.; Cazenave, A.; Longuevergne, L.; Llovel, W.; Filho, O.R. Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens. Environ. 2010, 114, 1629–1637. [Google Scholar] [CrossRef]
- Wu, D.C.; Yan, H.M.; Shen, S.C. TSAnalyzer, a GNSS time series analysis software. GPS Solut. 2017, 21, 1389–1394. [Google Scholar] [CrossRef]
- Wu, D.C.; Yan, H.M.; Yuan, S.L. L1 regularization for detecting offsets and trend change points in GNSS time series. GPS Solut. 2018, 22, 88. [Google Scholar] [CrossRef]
- Dong, D.N.; Fang, P.; Bock, Y.; Webb, F.; Prawirodirdjo, L.; Kedar, S.; Jamason, P. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res. 2006, 111, B03405. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSRGRACERL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Wang, H.S.; Xiang, L.W.; Jia, L.L.; Wang, Z.; Hu, B.; Gao, P. Load love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput. Geosci. 2012, 49, 190–199. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Blewitt, G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res. 2003, 108, B2. [Google Scholar] [CrossRef]
- Chanard, K.; Avouac, J.P.; Ramillien, G.; Genrich, J. Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure. J. Geophys. Res. Solid Earth 2014, 119, 5097–5113. [Google Scholar] [CrossRef]
- Jiao, J.S.; Pan, Y.J.; Ren, D.; Zhang, X. Present-day three-dimensional crustal deformation velocity of the Tibetan Plateau due to multi-component land water loading. Geophys. Res. Lett. 2024, 51, e2024GL108684. [Google Scholar] [CrossRef]
- Pan, Y.J.; Jiang, W.P.; Ding, H.; Shum, C.K.; Jiao, J.; Xiao, Y.; Wu, Q. Interannual variability of vertical land motion over high mountain Central Asia from GPS and GRACE/GRACE-FO observations. GPS Solut. 2023, 27, 168. [Google Scholar] [CrossRef]
- Chen, T.; Pan, Y.J.; Ding, H.; Jiao, J.; He, M.; Xiao, Y. Spatiotemporal variability of terrestrial water storage and climate response processes in the Tianshan from geodetic observations. J. Hydrol. Reg. Stud. 2024, 56, 102061. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H. Numerical simulations of global scale high-resolution hydrological crustal deformations. J. Geophys. Res. Solid Earth 2013, 118, 5008–5017. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- van Dam, T.; Wahr, J.; Lavallee, D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J. Geophys. Res. 2007, 112, B03404. [Google Scholar] [CrossRef]
- Fu, Y.N.; Freymueller, J.T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res. 2012, 117, B03407. [Google Scholar] [CrossRef]
- Pan, Y.J.; Jiang, W.P.; Ding, H.; Shum, C.K.; Jiao, J.; Li, J. Intradecadal fluctuations and three-dimensional crustal kinematic deformation of the Tianshan and Pamir derived from multi-geodetic imaging. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025325. [Google Scholar] [CrossRef]
- Chao, B.F.; Chung, W.Y.; Shih, Z.R.; Hsieh, Y. Earth’s rotation variations: A wavelet analysis. Terra Nova 2014, 26, 260–264. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the data gaps within GRACE missions using singular spectrum analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Kondrashov, D.; Ghil, M. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process. Geophys. 2006, 13, 151–159. [Google Scholar] [CrossRef]
- Shen, Y.; Peng, F.; Li, B. Improved singular spectrum analysis for time series with missing data. Nonlinear Process. Geophys. 2015, 22, 371–376. [Google Scholar] [CrossRef]
- Li, W.Q.; Wang, W.; Zhang, C.Y.; Wen, H.; Zhong, Y.; Zhu, Y.; Li, Z. Bridging terrestrial water storage anomaly during GRACE/GRACE-FO gap using SSA method: A case study in China. Sensors 2019, 19, 4144. [Google Scholar] [CrossRef]
- Wang, F.W.; Shen, Y.Z.; Chen, Q.J.; Wang, W. Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multichannel singular spectrum analysis. J. Hydrol. 2021, 594, 125972. [Google Scholar] [CrossRef]
- Gauer, L.M.; Chanard, K.; Fleitout, L. Data-driven gap filling and spatio-temporal filtering of the GRACE and GRACE-FO records. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025561. [Google Scholar] [CrossRef]
- Borsa, A.; Agnew, D.C.; Cayan, D.R. Ongoing drought-induced uplift in the western United States. Science 2014, 345, 1587–1590. [Google Scholar] [CrossRef]
- Knappe, E.; Bendick, R.; Martens, H.R.; Argus, D.F.; Gardner, W.P. Downscaling vertical GPS observations to derive watershed-scale hydrologic loading in the northern Rockies. Water Resour. Res. 2019, 55, 391–401. [Google Scholar] [CrossRef]
- Materna, K.; Feng, L.J.; Lindsey, E.O.; Hill, E.M.; Ahsan, A.; Alam, A.K.M.K.; Oo, K.M.; Than, O.; Aung, T.; Khaing, S.N.; et al. GNSS characterization of hydrological loading in South and Southeast Asia. Geophys. J. Int. 2021, 224, 1742–1752. [Google Scholar] [CrossRef]
- Pan, Y.J.; Chen, R.Z.; Ding, H.; Xu, X.; Zheng, G.; Shen, W.; Xiao, Y.; Li, S. Common mode component and its potential effect on GPS-inferred three-dimensional crustal deformations in the Eastern Tibetan Plateau. Remote Sens. 2019, 11, 1975. [Google Scholar] [CrossRef]
- He, M.L.; Shen, W.B.; Jiao, J.S.; Pan, Y. The interannual fluctuations in mass changes and hydrological elasticity on the Tibetan Plateau from geodetic measurements. Remote Sens. 2021, 13, 4277. [Google Scholar] [CrossRef]
- Ren, D.; Pan, Y.J.; Liu, L.L.; Huang, L.; Zhou, L.; Jiao, J.; Li, J. Interannual hydrological variability in the Mississippi river basin based on contemporary geodetic measurements and land surface models. J. Hydrol. 2023, 626, 130232. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Marengo, J.A.; Ronchail, J.; Carpio, J.M.; Flores, L.N.; Guyot, J.L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9, 124007. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Guyot, J.L.; Junquas, C.; Drapeau, G.; Martinez, J.M.; Santini, W.; Vauchel, P.; Lavado, W.; Ordoñez, J.; et al. From drought to flooding: Understanding the abrupt 2010–11 hydrological annual cycle in the Amazonas River and tributaries. Environ. Res. Lett. 2012, 7, 024008. [Google Scholar] [CrossRef]
- Knowles, L.A.; Bennett, R.A.; Harig, C. Vertical displacements of the Amazon basin from GRACE and GPS. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018105. [Google Scholar] [CrossRef]
- Ding, H.; Chao, B.F. A 6-year westward rotary motion in the Earth: Detection and possible MICG coupling mechanism. Earth Planet. Sci. Lett. 2018, 495, 50–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Chen, T.; Pan, Y.; Zhou, L.; Lv, Y.; Zhao, L. Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations. Remote Sens. 2025, 17, 2739. https://doi.org/10.3390/rs17152739
He M, Chen T, Pan Y, Zhou L, Lv Y, Zhao L. Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations. Remote Sensing. 2025; 17(15):2739. https://doi.org/10.3390/rs17152739
Chicago/Turabian StyleHe, Meilin, Tao Chen, Yuanjin Pan, Lv Zhou, Yifei Lv, and Lewen Zhao. 2025. "Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations" Remote Sensing 17, no. 15: 2739. https://doi.org/10.3390/rs17152739
APA StyleHe, M., Chen, T., Pan, Y., Zhou, L., Lv, Y., & Zhao, L. (2025). Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations. Remote Sensing, 17(15), 2739. https://doi.org/10.3390/rs17152739