Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = GqPCR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1920 KB  
Article
Novel Thiazolidinedione Derivatives as Potential ZIKV Antiviral Inhibitors
by Isabella Luiza Ralph de Oliveira, José Arion da Silva Moura, Patricia Recordon-Pinson, Floriane Lagadec, Michelle Melgarejo da Rosa, Sayonara Maria Calado Gonçalves, Douglas Carvalho Francisco Viana, Paulo André Teixeira de Moraes Gomes, Marina Galdino da Rocha Pitta, Moacyr Jesus Barreto de Melo Rêgo, Michelly Cristiny Pereira, Mathieu Métifiot, Marie-Line Andreola and Maira Galdino da Rocha Pitta
Microorganisms 2025, 13(9), 1967; https://doi.org/10.3390/microorganisms13091967 - 22 Aug 2025
Viewed by 340
Abstract
Zika virus (ZIKV) remains a pressing global health concern due to its association with congenital Zika syndrome and the current lack of approved antiviral therapies. In this study, we evaluated the antiviral activity of three novel thiazolidinedione derivatives, GQ-402, GQ-396, and ZKC-10, against [...] Read more.
Zika virus (ZIKV) remains a pressing global health concern due to its association with congenital Zika syndrome and the current lack of approved antiviral therapies. In this study, we evaluated the antiviral activity of three novel thiazolidinedione derivatives, GQ-402, GQ-396, and ZKC-10, against ZIKV in vitro and investigated their potential molecular targets through in silico analysis. GQ-402 exhibited the highest antiviral potency, with an IC50 of 15.7 µM, while ZKC-10 achieved the most substantial reduction in viral RNA levels, as determined by RT-qPCR. Molecular docking studies identified GQ-396 as the top-ranked inhibitor of the NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase, suggesting distinct mechanisms of action among the compounds. These findings highlight the therapeutic potential of thiazolidinedione derivatives and underscore the need for further investigation to develop effective treatments for ZIKV infection. Full article
(This article belongs to the Special Issue Emerging Infectious Diseases and Multidrug Resistance)
Show Figures

Figure 1

30 pages, 1333 KB  
Review
Ca2+ Signaling in Cardiac Fibroblasts: An Emerging Signaling Pathway Driving Fibrotic Remodeling in Cardiac Disorders
by Francesco Moccia, Antonio Totaro, Germano Guerra and Gianluca Testa
Biomedicines 2025, 13(3), 734; https://doi.org/10.3390/biomedicines13030734 - 17 Mar 2025
Cited by 3 | Viewed by 1714
Abstract
Cardiac fibrosis is a scarring event that occurs in the myocardium in response to multiple cardiovascular disorders, such as acute myocardial infarction (AMI), ischemic cardiomyopathy, dilated cardiomyopathy, hypertensive heart disease, inflammatory heart disease, diabetic cardiomyopathy, and aortic stenosis. Fibrotic remodeling is mainly sustained [...] Read more.
Cardiac fibrosis is a scarring event that occurs in the myocardium in response to multiple cardiovascular disorders, such as acute myocardial infarction (AMI), ischemic cardiomyopathy, dilated cardiomyopathy, hypertensive heart disease, inflammatory heart disease, diabetic cardiomyopathy, and aortic stenosis. Fibrotic remodeling is mainly sustained by the differentiation of fibroblasts into myofibroblasts, which synthesize and secrete most of the extracellular matrix (ECM) proteins. An increase in the intracellular Ca2+ concentration ([Ca2+]i) in cardiac fibroblasts is emerging as a critical mediator of the fibrogenic signaling cascade. Herein, we review the mechanisms that may shape intracellular Ca2+ signals involved in fibroblast transdifferentiation into myofibroblasts. We focus our attention on the functional interplay between inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). In accordance with this, InsP3Rs and SOCE drive the Ca2+ response elicited by Gq-protein coupled receptors (GqPCRs) that promote fibrotic remodeling. Then, we describe the additional mechanisms that sustain extracellular Ca2+ entry, including receptor-operated Ca2+ entry (ROCE), P2X receptors, Transient Receptor Potential (TRP) channels, and Piezo1 channels. In parallel, we discuss the pharmacological manipulation of the Ca2+ handling machinery as a promising approach to mitigate or reverse fibrotic remodeling in cardiac disorders. Full article
Show Figures

Figure 1

11 pages, 1646 KB  
Article
Fluorometric Detection of SARS-CoV-2 Single-Nucleotide Variant L452R Using Ligation-Based Isothermal Gene Amplification
by Kangwuk Kyung, Jamin Ku, Eunbin Cho, Junhyung Ryu, Jin Woo, Woong Jung and Dong-Eun Kim
Bioengineering 2023, 10(10), 1116; https://doi.org/10.3390/bioengineering10101116 - 23 Sep 2023
Cited by 1 | Viewed by 2364
Abstract
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant was first discovered, several variants showing different infectivity and immune responses have emerged globally. As the conventional method, whole-genome sequencing following polymerase chain reaction (PCR) is currently used for diagnosis of SARS-CoV-2 mutations. [...] Read more.
Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant was first discovered, several variants showing different infectivity and immune responses have emerged globally. As the conventional method, whole-genome sequencing following polymerase chain reaction (PCR) is currently used for diagnosis of SARS-CoV-2 mutations. However, these conventional PCR-based direct DNA sequencing methods are time-consuming, complicated, and require expensive DNA sequencing modules. Here, we developed a fluorometric method for the accurate detection of a single missense mutation of U to G in the spike (S) gene that changes leucine to arginine (L452R) in SARS-CoV-2 genomic RNA. Our method for the detection of single-nucleotide mutations (SNM) in the viral RNA genome includes RNA sequence-dependent DNA ligation and tandem isothermal gene amplification methods, such as strand displacement amplification (SDA) and rolling circle amplification (RCA) generating G-quadruplex (GQ). In the presence of SNM in the viral RNA, ligation of both ends of the probe DNAs occurs between 5′-phosphorylated hairpin DNA and linear probe DNA that can discriminate a single base mismatch. The ligated DNAs were then extended to generate long-stem hairpin DNAs that are subjected to the first isothermal gene amplification (SDA). SDA produces multitudes of short ssDNA from the long-stem hairpin DNAs, which then serve as primers by annealing to circular padlock DNA for the second isothermal gene amplification (RCA). RCA produces a long stretch of ssDNA containing GQ structures. Thioflavin T (ThT) is then intercalated into GQ and emits green fluorescence, which allows the fluorometric identification of SARS-CoV-2 variants. This fluorometric analysis sensitively distinguished SNM in the L452R variant of SARS-CoV-2 RNA as low as 10 pM within 2 h. Hence, this fluorometric detection method using ligation-assisted tandem isothermal gene amplification can be applied for the diagnosis of SARS-CoV-2 SNM variants with high accuracy and sensitivity, without the need for cumbersome whole-genome DNA sequencing. Full article
(This article belongs to the Topic Advances in COVID-19 and Cancer)
Show Figures

Figure 1

18 pages, 1071 KB  
Review
JNK Cascade-Induced Apoptosis—A Unique Role in GqPCR Signaling
by Guy Nadel, Galia Maik-Rachline and Rony Seger
Int. J. Mol. Sci. 2023, 24(17), 13527; https://doi.org/10.3390/ijms241713527 - 31 Aug 2023
Cited by 20 | Viewed by 3085
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via [...] Read more.
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade’s components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies. Full article
(This article belongs to the Special Issue MAPK Signaling Cascades in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 4797 KB  
Article
Highly-Sensitive In Vitro Bioassays for FSH, TSH, PTH, Kp, and OT in Addition to LH in Mouse Leydig Tumor Cell
by Danièle Klett, Lucie Pellissier, Didier Lomet, Flavie Derouin-Tochon, Vincent Robert, Thi Mong Diep Nguyen, Anne Duittoz, Eric Reiter, Yann Locatelli, Joëlle Dupont, Hugues Dardente, Frédéric Jean-Alphonse and Yves Combarnous
Int. J. Mol. Sci. 2023, 24(15), 12047; https://doi.org/10.3390/ijms241512047 - 27 Jul 2023
Cited by 1 | Viewed by 2122
Abstract
We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled [...] Read more.
We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled Receptors (GsPCR), such as FSHR, TSHR, or PTHR. Although the β2 adrenergic receptor is also a GsPCR, its expression in mLTC led to a significant but very low cAMP response compared to those observed with FSH, TSH, or PTH. Similarly, after transfection of the GiPCR MT1 melatonin receptor, we did not observe any inhibitory effect by melatonin of the LH or hCG stimulation. Interestingly, after transfection of mLTC with the human kisspeptin receptor (hKpR), which is a GqPCR, we observed a dose-dependent synergy of 10−12–10−7 M kisspeptin variants with a fixed concentration of 0.3 nM LH or hCG. Without any exogenous receptor transfection, a 2 h preincubation with OT or AVP led to a dose-dependent cAMP response to a fixed dose of LH or hCG. Therefore, highly sensitive in vitro bioassays for various hormones and other GPCR ligands can be set up in mLTC to measure circulating concentrations in only 3–10 µL of blood or other body fluids. Nevertheless, the development of an LHRKO mLTC cell line will be mandatory to obtain strict specificity for these bioassays to eliminate potential cross-reaction with LH or CG. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 3269 KB  
Article
An LW-Opsin Mutation Changes the Gene Expression of the Phototransduction Pathway: A Cryptochrome1 Mutation Enhances the Phototaxis of Male Plutella xylostella (Lepidoptera: Plutellidae)
by Shao-Ping Chen, Xiao-Lu Lin, Rong-Zhou Qiu, Mei-Xiang Chi and Guang Yang
Insects 2023, 14(1), 72; https://doi.org/10.3390/insects14010072 - 12 Jan 2023
Cited by 5 | Viewed by 2473
Abstract
Plutella xylostella is a typical phototactic pest. LW-opsin contributes to the phototaxis of P. xylostella, but the expression changes of other genes in the phototransduction pathway caused by the mutation of LW-opsin remain unknown. In the study, the head transcriptomes of male [...] Read more.
Plutella xylostella is a typical phototactic pest. LW-opsin contributes to the phototaxis of P. xylostella, but the expression changes of other genes in the phototransduction pathway caused by the mutation of LW-opsin remain unknown. In the study, the head transcriptomes of male G88 and LW-opsin mutants were compared. A GO-function annotation showed that DEGs mainly belonged to the categories of molecular functions, biological processes, and cell composition. Additionally, a KEGG-pathway analysis suggested that DEGs were significantly enriched in some classical pathways, such as the phototransduction-fly and vitamin digestion and absorption pathways. The mRNA expressions of genes in the phototransduction-fly pathway, such as Gq, ninaC, and rdgC were significantly up-regulated, and trp, trpl, inaD, cry1, ninaA and arr1 were significantly down-regulated. The expression trends of nine DEGs in the phototransduction pathway confirmed by a RT-qPCR were consistent with transcriptomic data. In addition, the influence of a cry1 mutation on the phototaxis of P. xylostella was examined, and the results showed that the male cry1 mutant exhibited higher phototactic rates to UV and blue lights than the male G88. Our results indicated that the LW-opsin mutation changed the expression of genes in the phototransduction pathway, and the mutation of cry1 enhanced the phototaxis of a P. xylostella male, providing a basis for further investigation on the phototransduction pathway in P. xylostella. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

30 pages, 2541 KB  
Review
Polymodal Control of TMEM16x Channels and Scramblases
by Emilio Agostinelli and Paolo Tammaro
Int. J. Mol. Sci. 2022, 23(3), 1580; https://doi.org/10.3390/ijms23031580 - 29 Jan 2022
Cited by 17 | Viewed by 5585
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., [...] Read more.
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors. Full article
(This article belongs to the Special Issue Ca2+-Activated Chloride Channels and Phospholipid Scramblases)
Show Figures

Figure 1

12 pages, 3773 KB  
Article
Identification, Expression, and Functional Characterization of ScCaM in Response to Various Stresses in Sugarcane
by Jinxian Liu, Chang Zhang, Weihua Su, Guangheng Wu, Xianyu Fu, Youxiong Que and Jun Luo
Agronomy 2021, 11(11), 2153; https://doi.org/10.3390/agronomy11112153 - 27 Oct 2021
Cited by 4 | Viewed by 2370
Abstract
Calmodulin (CaM), as an important factor in the calcium signaling pathway, is widely involved in plant growth and development regulation and responses to external stimuli. In this study, the full-length sequence of the ScCaM gene (GenBank: GQ246454) was isolated from the leaves of [...] Read more.
Calmodulin (CaM), as an important factor in the calcium signaling pathway, is widely involved in plant growth and development regulation and responses to external stimuli. In this study, the full-length sequence of the ScCaM gene (GenBank: GQ246454) was isolated from the leaves of a Saccharum spp. hybrid. Prokaryotic expression showed that ScCaM could be solubly expressed and purified in Escherichia coli BL21. Subcellular localization confirmed that ScCaM was localized in the plasma membrane and nucleus of cells. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that ScCaM can be induced by various stresses, including sodium chloride (NaCl), chromium trichloride (CrCl3), salicylic acid (SA), and methyl jasmonate (MeJA). Ectopic expression in Arabidopsis thaliana demonstrated that ScCaM can affect the growth and development of transgenic plants. Moreover, the qRT-PCR analysis indicated that the overexpression of the allogenic ScCaM gene inhibits the expression of AtSTM, leading to the phenomenon of multiple-tillering in transgenic A. thaliana. The present study provided valuable information and facilitates further investigation into the function of ScCaM in the future. Full article
Show Figures

Figure 1

18 pages, 572 KB  
Article
Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile
by Jessica Mühlhaus, Juliane Dinter, Daniela Nürnberg, Maren Rehders, Maren Depke, Janine Golchert, Georg Homuth, Chun-Xia Yi, Silke Morin, Josef Köhrle, Klaudia Brix, Matthias Tschöp, Gunnar Kleinau and Heike Biebermann
Int. J. Mol. Sci. 2014, 15(11), 20638-20655; https://doi.org/10.3390/ijms151120638 - 10 Nov 2014
Cited by 26 | Viewed by 10390
Abstract
The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1 [...] Read more.
The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs. Full article
(This article belongs to the Collection G Protein-Coupled Receptor Signaling and Regulation)
Show Figures

Figure 1

12 pages, 388 KB  
Article
Differential Expression of Copper-Zinc Superoxide Dismutase Gene of Polygonum sibiricum Leaves, Stems and Underground Stems, Subjected to High-Salt Stress
by Chun-Pu Qu, Zhi-Ru Xu, Guan-Jun Liu, Chun Liu, Yang Li, Zhi-Gang Wei and Gui-Feng Liu
Int. J. Mol. Sci. 2010, 11(12), 5234-5245; https://doi.org/10.3390/ijms11125234 - 17 Dec 2010
Cited by 26 | Viewed by 10004
Abstract
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. [...] Read more.
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1–16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO3. The different mRNA levels’ expression of PS-CuZnSOD show the gene’s different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop