Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = Harris hawks optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10051 KB  
Article
Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO
by Ramesh Bonela, Sasmita Tripathy, Sriparna Roy Ghatak, Sarat Chandra Swain, Fernando Lopes and Parimal Acharjee
Energies 2025, 18(21), 5728; https://doi.org/10.3390/en18215728 (registering DOI) - 30 Oct 2025
Abstract
This study aims to provide an efficient framework for the coordinated integration of AC and DC chargers, intermittent solar Photovoltaic (PV) Distributed Generation (DG) units, and a Distribution Static Compensator (DSTATCOM) across residential, commercial, and industrial zones of a Radial Distribution Network (RDN) [...] Read more.
This study aims to provide an efficient framework for the coordinated integration of AC and DC chargers, intermittent solar Photovoltaic (PV) Distributed Generation (DG) units, and a Distribution Static Compensator (DSTATCOM) across residential, commercial, and industrial zones of a Radial Distribution Network (RDN) considering the benefits of various stakeholders: Electric Vehicle (EV) charging station owners, EV owners, and distribution network operators. The model uses a multi-zone planning method and healthy-bus strategy to allocate Electric Vehicle Charging Stations (EVCSs), Photovoltaic Distributed Generation (PVDG) units, and DSTATCOMs. The proposed framework optimally determines the numbers of EVCSs, PVDG units, and DSTATCOMs using Harris Hawk Optimization, considering the maximization of techno-economic benefits while satisfying all the security constraints. Further, to showcase the benefits from the perspective of EV owners, an EV waiting-time evaluation is performed. The simulation results show that integrating EVCSs (with both AC and DC chargers) with solar PVDG units and DSTATCOMs in the existing RDN improves the voltage profile, reduces power losses, and enhances cost-effectiveness compared to the system with only EVCSs. Furthermore, the zonal division ensures that charging infrastructure is distributed across the network increasing accessibility to the EV users. It is also observed that combining AC and DC chargers across the network provides overall benefits in terms of voltage profile, line loss, and waiting time as compared to a system with only AC or DC chargers. The proposed framework improves EV owners’ access and reduces waiting time, while supporting distribution network operators through enhanced grid stability and efficient integration of EV loads, PV generation, and DSTATCOM. Full article
Show Figures

Figure 1

27 pages, 3834 KB  
Article
An Intelligent Framework for Energy Forecasting and Management in Photovoltaic-Integrated Smart Homes in Tunisia with V2H Support Using LSTM Optimized by the Harris Hawks Algorithm
by Aymen Mnassri, Nouha Mansouri, Sihem Nasri, Abderezak Lashab, Juan C. Vasquez and Adnane Cherif
Energies 2025, 18(21), 5635; https://doi.org/10.3390/en18215635 - 27 Oct 2025
Viewed by 209
Abstract
This paper presents an intelligent hybrid framework for short-term energy consumption forecasting and real-time energy management in photovoltaic (PV)-integrated smart homes with Vehicle-to-Home (V2H) systems, tailored to the Tunisian context. The forecasting module employs an Attention-based Long Short-Term Memory (LSTM) neural network, whose [...] Read more.
This paper presents an intelligent hybrid framework for short-term energy consumption forecasting and real-time energy management in photovoltaic (PV)-integrated smart homes with Vehicle-to-Home (V2H) systems, tailored to the Tunisian context. The forecasting module employs an Attention-based Long Short-Term Memory (LSTM) neural network, whose hyperparameters (learning rate, hidden units, temporal window size) are optimized using the Harris Hawks Optimization (HHO) algorithm. Simulation results show that the proposed LSTM-HHO model achieves a Root Mean Square Error (RMSE) of 269 Wh, a Mean Absolute Error (MAE) of 187 Wh, and a Mean Absolute Percentage Error (MAPE) of 9.43%, with R2 = 0.97, substantially outperforming conventional LSTM (RMSE: 945 Wh, MAPE: 51.05%) and LSTM-PSO (RMSE: 586 Wh, MAPE: 28.72%). These accurate forecasts are exploited by the Energy Management System (EMS) to optimize energy flows through dynamic appliance scheduling, HVAC load shifting, and coordinated operation of home and EV batteries. Compared with baseline operation, PV self-consumption increased by 18.6%, grid reliance decreased by 25%, and household energy costs were reduced by 17.3%. Cost savings are achieved via predictive and adaptive control that prioritizes PV utilization, shifts flexible loads to surplus periods, and hierarchically manages distributed storage (home battery for short-term balancing, EV battery for extended deficits). Overall, the proposed LSTM-HHO-based EMS provides a practical and effective pathway toward smart, sustainable, and cost-efficient residential energy systems, contributing directly to Tunisia’s energy transition goals. Full article
Show Figures

Figure 1

12 pages, 1308 KB  
Article
Pattern Synthesis for Uniform Linear and Concentric Elliptical Antenna Arrays Using Kepler Optimization Algorithm
by Yi Tang, Jiaxin Wan, Yixin Sun, Xiao Wang, Guoqing Ma and Chuan Liu
Symmetry 2025, 17(10), 1680; https://doi.org/10.3390/sym17101680 - 8 Oct 2025
Viewed by 241
Abstract
In this paper, a pattern synthesis method of uniform linear and concentric elliptical antenna arrays using the Kepler optimization algorithm (KOA) is proposed. The KOA, which utilizes Kepler’s laws to predict the position and velocity of planets at arbitrary times, is first applied [...] Read more.
In this paper, a pattern synthesis method of uniform linear and concentric elliptical antenna arrays using the Kepler optimization algorithm (KOA) is proposed. The KOA, which utilizes Kepler’s laws to predict the position and velocity of planets at arbitrary times, is first applied to deal with the optimization problems of linear and elliptical antenna arrays. Radiation patterns with high gain and low sidelobe levels (SLLs) are synthesized by optimizing the critical parameters (amplitude, phase, and rotation) of the linear arrays. Moreover, a concentric elliptical array is designed to demonstrate the capability of the KOA framework to solve complex problems and achieve the desired performance. In order to accurately consider mutual coupling between the elements, the full-wave method of moments (MoM) is used to calculate the radiation characteristics of the arrays in the optimization method. The effectiveness of the proposed method is proved by four typical examples. The results show that, compared with the butterfly optimization algorithm (BOA), Harris hawks optimization (HHO), and crayfish optimization algorithm (COA), the proposed method possesses high gain and SLL suppression capabilities, which makes it suitable for various array types. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

26 pages, 1947 KB  
Article
Active Suspension Control for Improved Ride Comfort and Vehicle Performance Using HHO-Based Type-I and Type-II Fuzzy Logic
by Tayfun Abut, Enver Salkim and Harun Tugal
Biomimetics 2025, 10(10), 673; https://doi.org/10.3390/biomimetics10100673 - 7 Oct 2025
Viewed by 486
Abstract
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and [...] Read more.
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and vehicle handling. To overcome these limitations, this work explores the application of active suspension control strategies aimed at improving both comfort and performance. Type-I and Type-II Fuzzy Logic Control (FLC) methods were designed and implemented to enhance vehicle stability and ride quality. The Harris Hawks Optimization (HHO) algorithm was employed to optimize the membership function parameters of both fuzzy control types. The system was tested under two distinct road disturbance inputs to evaluate performance. The designed control methods were evaluated in simulations where results demonstrated that the proposed active control approaches significantly outperformed the passive suspension system in terms of vibration reduction. Specifically, the Type-II FLC achieved a 54.7% reduction in vehicle body displacement and a 76.8% reduction in acceleration for the first road input, while improvements of 75.2% and 72.8% were recorded, respectively, for the second input. Performance was assessed using percentage-based metrics and Root Mean Square Error (RMSE) criteria. Numerical and graphical analyses of suspension deflection and tire deformation further confirm that the proposed control strategies substantially enhance both ride comfort and vehicle handling. Full article
Show Figures

Figure 1

22 pages, 2620 KB  
Article
Optimal Scheduling of Microgrids Based on a Two-Population Cooperative Search Mechanism
by Liming Wei and Heng Zhong
Biomimetics 2025, 10(10), 665; https://doi.org/10.3390/biomimetics10100665 - 1 Oct 2025
Viewed by 477
Abstract
Aiming at the problems of high-dimensional nonlinear constraints, multi-objective conflicts, and low solution efficiency in microgrid optimal scheduling, this paper proposes a multi-objective Harris Hawk–Grey Wolf hybrid intelligent algorithm (IMOHHOGWO). The problem of balancing the global exploration and local exploitation of the algorithm [...] Read more.
Aiming at the problems of high-dimensional nonlinear constraints, multi-objective conflicts, and low solution efficiency in microgrid optimal scheduling, this paper proposes a multi-objective Harris Hawk–Grey Wolf hybrid intelligent algorithm (IMOHHOGWO). The problem of balancing the global exploration and local exploitation of the algorithm is solved by introducing an adaptive energy factor and a nonlinear convergence factor; in terms of the algorithm’s exploration scope, the stochastic raid strategy of Harris Hawk optimization (HHO) is used to generate diversified solutions to expand the search scope, and constraints such as the energy storage SOC and DG outflow are finely tuned through the α/β/δ wolf bootstrapping of the Grey Wolf Optimizer (GWO). It is combined with a simulated annealing perturbation strategy to enhance the adaptability of complex constraints and local search accuracy, at the same time considering various constraints such as power generation, energy storage, power sales, and power purchase. We establish the microgrid multi-objective operation cost and carbon emission cost objective function, and through the simulation examples, we verify and determine that the IMOHHOGWO hybrid intelligent algorithm is better than the other three algorithms in terms of both convergence speed and convergence accuracy. According to the results of the multi-objective test function analysis, its performance is superior to the other four algorithms. The IMOHHOGWO hybrid intelligent algorithm reduces the grid operation cost and carbon emissions in the microgrid optimal scheduling model and is more suitable for the microgrid multi-objective model, which provides a feasible reference for future integrated microgrid optimal scheduling. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

21 pages, 4360 KB  
Article
Chaos-Enhanced Harris Hawks Optimizer for Cascade Reservoir Operation with Ecological Flow Similarity
by Zhengyang Tang, Shuai Liu, Hui Qin, Yongchuan Zhang, Xin Zhu, Xiaolin Chen and Pingan Ren
Sustainability 2025, 17(19), 8616; https://doi.org/10.3390/su17198616 - 25 Sep 2025
Viewed by 253
Abstract
In the pursuit of sustainable development, optimizing water resources management while maintaining ecological balance is crucial. This study introduces a Chaos-enhanced Harris Hawks Optimizer (CEHHO) aimed at optimizing natural flow patterns in cascade reservoirs. First, an ecological scheduling model considering ensuring guaranteed output [...] Read more.
In the pursuit of sustainable development, optimizing water resources management while maintaining ecological balance is crucial. This study introduces a Chaos-enhanced Harris Hawks Optimizer (CEHHO) aimed at optimizing natural flow patterns in cascade reservoirs. First, an ecological scheduling model considering ensuring guaranteed output is established based on the similarity of ecological flows. Subsequently, the CEHHO algorithm is proposed, which uses tilted skew chaos mapping for population initialization, improving the quality of the initial population. In the exploration phase, an adaptive strategy enhances the efficiency of group search algorithms, enabling effective navigation of the complex solution space. A random difference mutation strategy, combined with the Q-learning algorithm, mitigates premature convergence and maintains algorithmic diversity. Comparative analysis with the existing technology under different typical hydrological frequency shows that the search accuracy and convergence efficiency of the proposed method are significantly improved. Under the guaranteed output limit of 1000 MW, the proposed method enhances the optimal, median, mean, and worst values by 293.92, 493.23, 422.14, and 381.15, respectively, compared to the HHO. Furthermore, the results of the multi-purpose guaranteed output scenario highlight the superior detection and exploitation capabilities of this algorithm. These findings highlight the great potential of the proposed method for practical engineering applications, providing a reliable tool for optimizing water resources management while maintaining ecological balance. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 1961 KB  
Article
Malicious URL Detection with Advanced Machine Learning and Optimization-Supported Deep Learning Models
by Fuat Türk and Mahmut Kılıçaslan
Appl. Sci. 2025, 15(18), 10090; https://doi.org/10.3390/app151810090 - 15 Sep 2025
Viewed by 1321
Abstract
This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk [...] Read more.
This study presents a comprehensive comparative analysis of machine learning, deep learning, and optimization-based hybrid methods for malicious URL detection on the Malicious Phish dataset. For feature selection and model hyperparameter tuning, the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Harris Hawk Optimizer (HHO) were employed. Both multiclass and binary classification tasks were addressed using classic machine learning algorithms such as LightGBM, XGBoost, and Random Forest, as well as deep learning models including LSTM, CNN, and hybrid CNN+LSTM architectures, with optimization support also integrated into these models. The experimental results reveal that the ELECTRA-based deep learning model achieved outstanding accuracy and F1-scores of up to 99% in both multiclass and binary scenarios. Although optimization-supported hybrid models also improved performance, the language-model-based ELECTRA architecture demonstrated a significant superiority over classical and optimized approaches. The findings indicate that optimization algorithms are effective in feature selection and enhancing model performance, yet next-generation language models clearly set a new benchmark in malicious URL detection. Full article
Show Figures

Figure 1

24 pages, 5448 KB  
Article
GlioSurvQNet: A DuelContextAttn DQN Framework for Brain Tumor Prognosis with Metaheuristic Optimization
by M. Renugadevi, Venkateswarlu Gonuguntla, Ihssan S. Masad, G. Venkat Babu and K. Narasimhan
Diagnostics 2025, 15(18), 2304; https://doi.org/10.3390/diagnostics15182304 - 11 Sep 2025
Viewed by 488
Abstract
Background/Objectives: Accurate classification of brain tumors and reliable prediction of patient survival are essential in neuro-oncology, guiding clinical decisions and enabling precision treatment planning. However, conventional machine learning and deep learning methods often struggle with challenges such as data scarcity, class imbalance, limited [...] Read more.
Background/Objectives: Accurate classification of brain tumors and reliable prediction of patient survival are essential in neuro-oncology, guiding clinical decisions and enabling precision treatment planning. However, conventional machine learning and deep learning methods often struggle with challenges such as data scarcity, class imbalance, limited model interpretability, and poor generalization across diverse clinical settings. This study presents GlioSurvQNet, a novel reinforcement learning-based framework designed to address these limitations for both glioma grading and survival prediction. Methods: GlioSurvQNet is built upon a DuelContextAttn Deep Q-Network (DQN) architecture, tailored for binary classification of low-grade vs. high-grade gliomas and multi-class survival prediction (short-, medium-, and long-term categories). Radiomics features were extracted from multimodal MRI scans, including FLAIR, T1CE, and T2 sequences. Feature optimization was performed using a hybrid ensemble of metaheuristic algorithms, including Harris Hawks Optimization (HHO), Modified Gorilla Troops Optimization (mGTO), and Zebra Optimization Algorithm (ZOA). Subsequently, SHAP-based feature selection was applied to enhance model interpretability and robustness. Results: The classification module achieved the highest accuracy of 99.27% using the FLAIR + T1CE modality pair, while the survival prediction model attained an accuracy of 93.82% with the FLAIR + T2 + T1CE fusion. Comparative evaluations against established machine learning and deep learning models demonstrated that GlioSurvQNet consistently outperformed existing approaches in both tasks. Conclusions: GlioSurvQNet offers a powerful and interpretable AI-driven solution for brain tumor analysis. Its high accuracy and robustness make it a promising tool for clinical decision support in glioma diagnosis and prognosis. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

19 pages, 2909 KB  
Article
HHO-Based Cable Tension Control of Tethered UAV with Unknown Input Time Delay
by Nanyu Liang, Jinxin Bai and Zhongjie Meng
Drones 2025, 9(9), 617; https://doi.org/10.3390/drones9090617 - 2 Sep 2025
Viewed by 553
Abstract
A tethered Unmanned Aerial Vehicle (UAV) is a special type of UAV that is powered continuously through a cable, ensuring long-duration flight. However, the pulling interference of the cable significantly affects the UAV’s stability control, limiting its application and development. This paper addresses [...] Read more.
A tethered Unmanned Aerial Vehicle (UAV) is a special type of UAV that is powered continuously through a cable, ensuring long-duration flight. However, the pulling interference of the cable significantly affects the UAV’s stability control, limiting its application and development. This paper addresses this issue by first analyzing the effect of cable tension on the UAV’s wind resistance capability and demonstrates the possibility of using cable tension to assist in wind resistance control. Building on this, a robust time-delay compensator is designed to address the problem of unknown external disturbance and unknown time delay in the cable control input. Sufficient conditions for system boundedness are provided using the Lyapunov–Krasovskii functional. Subsequently, to deal with the strong nonlinearity and strong coupling issues of the sufficient conditions, the Harris Hawks Optimization (HHO) algorithm is employed for intelligent optimization of the controller parameters. Simulation results indicate that the HHO-based robust time-delay compensator exhibits excellent robustness and fast response. Full article
Show Figures

Figure 1

50 pages, 8041 KB  
Article
A Sequence-Aware Surrogate-Assisted Optimization Framework for Precision Gyroscope Assembly Based on AB-BiLSTM and SEG-HHO
by Donghuang Lin, Yongbo Jian and Haigen Yang
Electronics 2025, 14(17), 3470; https://doi.org/10.3390/electronics14173470 - 29 Aug 2025
Viewed by 559
Abstract
High-precision assembly plays a central role in aerospace, defense, and precision instrumentation, where errors in bolt preload or tightening sequences can directly degrade product reliability and lead to costly rework. Traditional finite element analysis (FEA) offers accuracy but is too computationally expensive for [...] Read more.
High-precision assembly plays a central role in aerospace, defense, and precision instrumentation, where errors in bolt preload or tightening sequences can directly degrade product reliability and lead to costly rework. Traditional finite element analysis (FEA) offers accuracy but is too computationally expensive for iterative or real-time optimization. Surrogate models are a promising alternative, yet conventional machine learning methods often neglect the sequential and constraint-aware nature of multi-bolt assembly. To overcome these limitations, this paper introduces an integrated framework that combines an Attention-based Bidirectional Long Short-Term Memory (AB-BiLSTM) surrogate with a stratified version of the Harris Hawks Optimizer (SEG-HHO). The AB-BiLSTM captures temporal dependencies in preload evolution while providing interpretability through attention–weight visualization, linking model focus to physical assembly dynamics. SEG-HHO employs an encoding–decoding mechanism to embed engineering constraints, enabling efficient search in complex and constrained design spaces. Validation on a gyroscope assembly task demonstrates that the framework achieves high predictive accuracy (Mean Absolute Error of 3.59 × 10−5), reduces optimization cost by orders of magnitude compared with FEA, and reveals physically meaningful patterns in bolt interactions. These results indicate a scalable and interpretable solution for precision assembly optimization. Full article
Show Figures

Figure 1

32 pages, 2613 KB  
Article
Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy
by Abd Alrzak Aldaliee, Nurulafiqah Nadzirah Mansor, Hazlie Mokhlis, Agileswari K. Ramasamy and Lilik Jamilatul Awalin
Sustainability 2025, 17(16), 7364; https://doi.org/10.3390/su17167364 - 14 Aug 2025
Viewed by 749
Abstract
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for [...] Read more.
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for a household in Riyadh, Saudi Arabia. The framework aims to minimize the Cost of Energy (COE) and Loss of Power Supply Probability (LPSP) while maximizing the Renewable Energy Fraction (REF). Additionally, GHG emissions are evaluated as a result of these objectives. The EV operates in Vehicle-to-Home (V2H) mode, enhancing system flexibility and energy management. The optimization process employs two advanced metaheuristic techniques, Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Harris Hawks Optimization (MOHHO), to identify Pareto front solutions. Fuzzy logic is then applied to determine a balanced compromise among the economically optimal (minimum COE), renewable energy-oriented (maximum REF), and environmentally optimal (minimum GHG emissions) solutions. Simulation results show that the proposed system achieves a COE of USD 0.0554/kWh, a LPSP of 1.96%, and an REF of 92.55%. Although the COE is slightly higher than that of the grid, the system provides significant environmental and renewable energy benefits. This study highlights the potential of integrating dynamic EV management and advanced optimization techniques to enhance the performance of grid-connected systems. The findings demonstrate the effectiveness of combining Pareto-based optimization with fuzzy logic to achieve balanced solutions addressing economic, environmental, and renewable energy objectives, paving the way for sustainable energy systems in urban households. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 4171 KB  
Article
Arithmetic Harris Hawks-Based Effective Battery Charging from Variable Sources and Energy Recovery Through Regenerative Braking in Electric Vehicles, Implying Fractional Order PID Controller
by Dola Sinha, Saibal Majumder, Chandan Bandyopadhyay and Haresh Kumar Sharma
Fractal Fract. 2025, 9(8), 525; https://doi.org/10.3390/fractalfract9080525 - 13 Aug 2025
Viewed by 599
Abstract
A significant application of the proportional–integral (PI) controller in the automotive sector is in electric motors, particularly brushless direct current (BLDC) motors utilized in electric vehicles (EVs). This paper presents a high-performance boost converter regulated by a fractional-order proportional–integral (FoPI) controller to ensure [...] Read more.
A significant application of the proportional–integral (PI) controller in the automotive sector is in electric motors, particularly brushless direct current (BLDC) motors utilized in electric vehicles (EVs). This paper presents a high-performance boost converter regulated by a fractional-order proportional–integral (FoPI) controller to ensure stable output voltage and power delivery to effectively charge the battery under fluctuating input conditions. The FoPI controller parameters, including gains and fractional order, are optimized using an Arithmetic Harris Hawks Optimization (AHHO) algorithm with an integral absolute error (IAE) as the objective function. The primary objective is to enhance the system’s robustness against input voltage fluctuation while charging from renewable sources. Conversely, regenerative braking is crucial for energy recovery during vehicle operation. This study implements a fractional-order PI controller (FOPI) for the smooth and exact regulation of speed and energy recuperation during regenerative braking. The proposed scheme underwent extensive simulations in the Simulink environment using the FOMCON toolbox version 2023b. The results were validated with the traditional Ziegler–Nichols method. The simulation findings demonstrate smooth and precise speed control and effective energy recovery during regenerative braking and a constant voltage output of 375 V, with fewer ripples and rapid transient responses during charging of batteries from variable input supply. Full article
Show Figures

Figure 1

32 pages, 2702 KB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 - 2 Aug 2025
Cited by 1 | Viewed by 682
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

24 pages, 6378 KB  
Article
Comparative Analysis of Ensemble Machine Learning Methods for Alumina Concentration Prediction
by Xiang Xia, Xiangquan Li, Yanhong Wang and Jianheng Li
Processes 2025, 13(8), 2365; https://doi.org/10.3390/pr13082365 - 25 Jul 2025
Viewed by 837
Abstract
In the aluminum electrolysis production process, the traditional cell control method based on cell voltage and series current can no longer meet the goals of energy conservation, consumption reduction, and digital-intelligent transformation. Therefore, a new digital cell control technology that is centrally dependent [...] Read more.
In the aluminum electrolysis production process, the traditional cell control method based on cell voltage and series current can no longer meet the goals of energy conservation, consumption reduction, and digital-intelligent transformation. Therefore, a new digital cell control technology that is centrally dependent on various process parameters has become an urgent demand in the aluminum electrolysis industry. Among them, the real-time online measurement of alumina concentration is one of the key data points for implementing such technology. However, due to the harsh production environment and limitations of current sensor technologies, hardware-based detection of alumina concentration is difficult to achieve. To address this issue, this study proposes a soft-sensing model for alumina concentration based on a long short-term memory (LSTM) neural network optimized by a weighted average algorithm (WAA). The proposed method outperforms BiLSTM, CNN-LSTM, CNN-BiLSTM, CNN-LSTM-Attention, and CNN-BiLSTM-Attention models in terms of predictive accuracy. In comparison to LSTM models optimized using the Grey Wolf Optimizer (GWO), Harris Hawks Optimization (HHO), Optuna, Tornado Optimization Algorithm (TOC), and Whale Migration Algorithm (WMA), the WAA-enhanced LSTM model consistently achieves significantly better performance. This superiority is evidenced by lower MAE and RMSE values, along with higher R2 and accuracy scores. The WAA-LSTM model remains stable throughout the training process and achieves the lowest final loss, further confirming the accuracy and superiority of the proposed approach. Full article
Show Figures

Figure 1

23 pages, 2233 KB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Cited by 1 | Viewed by 547
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

Back to TopTop