Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,934)

Search Parameters:
Keywords = Hsp90-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6985 KB  
Article
Investigation of the Role of miR-1236-3p in Heat Tolerance of American Shad (Alosa sapidissima) by Targeted Regulation of hsp90b1
by Mingkun Luo, Ying Liu, Wenbin Zhu, Bingbing Feng, Wei Xu and Zaijie Dong
Int. J. Mol. Sci. 2025, 26(20), 9908; https://doi.org/10.3390/ijms26209908 (registering DOI) - 11 Oct 2025
Abstract
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating [...] Read more.
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating the regulatory role of miR-1236-3p and its target gene hsp90b1. The results indicate that the full-length cDNA of the hsp90b1 gene is 2023 bp and comprises a 5’ end of 58 bp, a 3’ end of 84 bp, and a coding region of 1881 bp, encoding 626 amino acids. Sequence alignment and phylogenetic tree analysis reveal that the hsp90b1 sequence is highly conserved across species. In situ hybridization showed that hsp90b1 is mainly localized in the cytoplasm. Software prediction identified a potential binding site between miR-1236-3p and hsp90b1. Through the construction of wild-type and mutant 3’UTR hsp90b1 dual luciferase reporter plasmids, the targeted relationship between the two was confirmed. In addition, the spatiotemporal expression levels of the hsp90b1 was found to be highest in the multicellular stage and liver tissue at a cultivation temperature of 27 °C; miR-1236-3P was highly expressed in the hatching stage and heart tissue at 30 °C. These findings provide a theoretical foundation for further investigating the regulatory role of non-coding RNA in A. sapidissima heat stress and offer data for subsequent molecular breeding studies. Full article
Show Figures

Figure 1

44 pages, 2405 KB  
Review
Plasma Membrane Epichaperome–Lipid Interface: Regulating Dynamics and Trafficking
by Haneef Ahmed Amissah, Ruslana Likhomanova, Gabriel Opoku, Tawfeek Ahmed Amissah, Zsolt Balogi, Zsolt Török, László Vigh, Stephanie E. Combs and Maxim Shevtsov
Cells 2025, 14(20), 1582; https://doi.org/10.3390/cells14201582 (registering DOI) - 11 Oct 2025
Abstract
The plasma membrane (PM) of eukaryotic cells plays a key role in the response to stress, acting as the first line of defense against environmental changes and protecting cells against intracellular perturbations. In this work, we explore how membrane-bound chaperones and membrane lipid [...] Read more.
The plasma membrane (PM) of eukaryotic cells plays a key role in the response to stress, acting as the first line of defense against environmental changes and protecting cells against intracellular perturbations. In this work, we explore how membrane-bound chaperones and membrane lipid domains work together to shape plasma membrane properties—a partnership we refer to as the “epichaperome–plasma membrane lipid axis.” This axis influences membrane fluidity, curvature, and domain organization, which in turn shapes the spatial and temporal modulation of signaling platforms and pathways essential for maintaining cellular integrity and homeostasis. Changes in PM fluidity can modulate the activity of ion channels, such as transient receptor potential (TRP) channels. These changes also affect processes such as endocytosis and mechanical signal transduction. The PM proteome undergoes rapid changes in response to membrane perturbations. Among these changes, the expression of heat shock proteins (HSPs) and their accumulation at the PM are essential mediators in regulating the physical state and functional properties of the membrane. Because of the pivotal role in stress adaptation, HSPs influence a wide range of cellular processes, which we grouped into three main categories: (i) mechanistic insights, differentiating in vitro (liposome, reconstituted membrane systems) and in vivo evidence for HSP-PM recruitment; (ii) functional outputs, spanning how ion channels are affected, changes in membrane fluidity, transcytosis, and the process of endocytosis and exosome release; and (iii) pathological effects, focusing on how rewired lipid–chaperone crosstalk in cancer drives resistance to drugs through altered membrane composition and signaling. Finally, we highlight Membrane Lipid Therapy (MLT) strategies, such as nanocarriers targeting specific PM compartments or small molecules that inhibit HSP recruitment, as promising approaches to modulate the functional stability of epichaperome assembly and membrane functionality, with profound implications for tumorigenesis. Full article
Show Figures

Figure 1

23 pages, 2884 KB  
Article
The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation
by Jie Yang, Xiaochuan Zheng, Qunlan Zhou, Changyou Song, Hongyan Tian, Aimin Wang, Xiangfei Li, Bo Liu and Cunxin Sun
Antioxidants 2025, 14(10), 1223; https://doi.org/10.3390/antiox14101223 (registering DOI) - 11 Oct 2025
Abstract
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF [...] Read more.
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF (OFO), OF + ago (OFO and miR-144 agomir), and OF + anta (OFO and miR-144 antagomir). Histological results showed that OFO significantly reduced myofiber density (from 758.00 ± 13.69 to 636.57 ± 13.44 N/mm2) and decreased the percentage of myofibers with diameters > 50 μm (from 53.45% to 38.52%). OFO intake significantly increased the content of malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), and 3-nitrotyrosine (3-NT), and significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in muscle. OFO treatment significantly up-regulated the expression of inflammatory factors (NF-κB, TNF-α, HO-1, and IL-6), significantly down-regulated NQO1. Moreover, OFO reduced muscle differentiation and maturation by down-regulating the expression of MyoG, MYHC1, and protein synthesis genes (AKT3, TOR, and S6K1), and up-regulating the expression of protein hydrolysis genes (FoxO3a, MuRF1, HSP70, Beclin-1, P62, and ATG8). Moreover, miR-144 agomir exacerbated OFO-induced muscle damage by suppressing Nrf2, whereas miR-144 antagomir mitigated these effects. Silencing miR-144 re-activates Nrf2, alleviating oxidative damage, enhancing protein deposition, and improving muscle quality. These findings suggest that targeting the miR-144/Nrf2 axis could counteract OFO-induced muscle deterioration. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
10 pages, 2626 KB  
Case Report
A Novel Frameshift Variant in the SPAST Gene Causing Hereditary Spastic Paraplegia in a Bulgarian–Turkish Family
by Mariya Levkova, Mihael Tsalta-Mladenov and Ara Kaprelyan
Neurol. Int. 2025, 17(10), 167; https://doi.org/10.3390/neurolint17100167 (registering DOI) - 11 Oct 2025
Abstract
Background: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive lower-limb spasticity and weakness. SPAST mutations are the most common cause of autosomal dominant HSP (SPG4). However, many pathogenic SPAST variants are unique and genetic [...] Read more.
Background: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive lower-limb spasticity and weakness. SPAST mutations are the most common cause of autosomal dominant HSP (SPG4). However, many pathogenic SPAST variants are unique and genetic data from underrepresented communities remain limited. Methods: Whole-exome sequencing (WES) was performed on the index patient with HSP. Variant annotation tools included Ensembl VEP, LOFTEE, CADD, SIFT, PolyPhen-2, MutationTaster, and SpliceAI. Variant interpretation followed ACMG/AMP guidelines. Clinical evaluation and family history supported phenotypic correlation and segregation. Results: A novel heterozygous frameshift variant in SPAST (c.339delG; p.Glu114Serfs*47) was identified. The variant was predicted to cause nonsense-mediated decay, resulting in loss of the microtubule-interacting and AAA ATPase domains of spastin. It was absent from population databases (gnomAD, TOPMed, 1000 Genomes) and public variant repositories (ClinVar, HGMD). The variant segregated with disease in two affected siblings and could be classified as likely pathogenic. Conclusions: This novel SPAST frameshift variant expands the mutational spectrum of SPG4-HSP and highlights the importance of including isolated or minority communities in genomic research to improve variant interpretation. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

45 pages, 4909 KB  
Review
Building Trust in Autonomous Aerial Systems: A Review of Hardware-Rooted Trust Mechanisms
by Sagir Muhammad Ahmad, Mohammad Samie and Barmak Honarvar Shakibaei Asli
Future Internet 2025, 17(10), 466; https://doi.org/10.3390/fi17100466 - 10 Oct 2025
Abstract
Unmanned aerial vehicles (UAVs) are redefining both civilian and defense operations, with swarm-based architectures unlocking unprecedented scalability and autonomy. However, these advancements introduce critical security challenges, particularly in location verification and authentication. This review provides a comprehensive synthesis of hardware security primitives (HSPs)—including [...] Read more.
Unmanned aerial vehicles (UAVs) are redefining both civilian and defense operations, with swarm-based architectures unlocking unprecedented scalability and autonomy. However, these advancements introduce critical security challenges, particularly in location verification and authentication. This review provides a comprehensive synthesis of hardware security primitives (HSPs)—including Physical Unclonable Functions (PUFs), Trusted Platform Modules (TPMs), and blockchain-integrated frameworks—as foundational enablers of trust in UAV ecosystems. We systematically analyze communication architectures, cybersecurity vulnerabilities, and deployment constraints, followed by a comparative evaluation of HSP-based techniques in terms of energy efficiency, scalability, and operational resilience. The review further identifies unresolved research gaps and highlights transformative trends such as AI-augmented environmental PUFs, post-quantum secure primitives, and RISC-V-based secure control systems. By bridging current limitations with emerging innovations, this work underscores the pivotal role of hardware-rooted security in shaping the next generation of autonomous aerial networks. Full article
(This article belongs to the Special Issue Security and Privacy Issues in the Internet of Cloud—2nd Edition)
Show Figures

Figure 1

25 pages, 6767 KB  
Article
Cholinergic Transmission Dysregulation and Neurodegeneration Induced by Thyroid Signaling Disruption Following Butylparaben Single and Repeated Treatment
by Paula Moyano, Andrea Flores, Javier Sanjuan, Jose Carlos Plaza, Lucía Guerra-Menéndez, Luisa Abascal, Olga Mateo and Javier del Pino
Biology 2025, 14(10), 1380; https://doi.org/10.3390/biology14101380 - 9 Oct 2025
Viewed by 78
Abstract
Butylparaben (BP), a widely used preservative, was implicated in cognitive impairment, though its neurotoxic mechanisms remain elusive. Basal forebrain cholinergic neurons (BFCN) are selectively lost in dementias, contributing to cognitive decline. To explore different mechanisms related with BFCN loss, we employed BF SN56 [...] Read more.
Butylparaben (BP), a widely used preservative, was implicated in cognitive impairment, though its neurotoxic mechanisms remain elusive. Basal forebrain cholinergic neurons (BFCN) are selectively lost in dementias, contributing to cognitive decline. To explore different mechanisms related with BFCN loss, we employed BF SN56 cholinergic wild-type or silenced cells for Tau, amyloid-beta precursor protein (βApp), acetylcholinesterase (AChE), or glycogen synthase kinase-3 beta (GSK3β) genes, exposing them to BP (0.1–80 µM) for 1 or 14 days alongside triiodothyronine (T3; 15 nM), N-acetylcysteine (NAC; 1 mM), or recombinant heat shock protein 70 (rHSP70; 30 µM). BP disrupted cholinergic transmission by AChE inhibition and provoked cell death through thyroid hormones (THs) pathway disruption, Aβ/p-Tau protein accumulation, AChE-S overexpression, and oxidative stress (OS). Aβ/p-Tau accumulation was correlated with HSP70 downregulation, OS exacerbation, and GSK3β hyperactivation (for p-Tau). BP-induced OS was mediated by reactive oxygen species (ROS) overproduction and nuclear factor erythroid 2-related factor 2 (NRF2) pathway disruption. All observed effects were contingent upon TH signaling impairment. These findings uncover novel mechanistic links between BP exposure and BFCN neurodegeneration, providing a framework for therapeutic strategies. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

17 pages, 3452 KB  
Article
CAP-LAMP2b–Modified Stem Cells’ Extracellular Vesicles Hybrid with CRISPR-Cas9 Targeting ADAMTS4 to Reverse IL-1β–Induced Aggrecan Loss in Chondrocytes
by Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang and Dah-Ching Ding
Int. J. Mol. Sci. 2025, 26(19), 9812; https://doi.org/10.3390/ijms26199812 - 9 Oct 2025
Viewed by 135
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity [...] Read more.
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and ADAMTS4 gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 4228 KB  
Article
The GR-LEDGF/p75-HSP27 Axis Contributes to Cross-Resistance Between Enzalutamide and Docetaxel in Prostate Cancer
by Pedro T. Ochoa, Evelyn S. Sanchez-Hernandez, Alfonso M. Duran, Kai Wen Cheng, Joel Philip, Tise Suzuki, Julia J. Unternaehrer, Julie Dutil, Bhaskar Das, Rituparna Ganguly, Yasmine Baca, David de Semir, Charles Wang, Isaac Kremsky and Carlos A. Casiano
Cells 2025, 14(19), 1566; https://doi.org/10.3390/cells14191566 - 9 Oct 2025
Viewed by 199
Abstract
An emerging challenge in prostate cancer (PCa) treatment is the development of drug cross-resistance, wherein resistance to enzalutamide (ENZ), an androgen receptor signaling inhibitor (ARSI), also confers resistance to subsequent ARSI and docetaxel (DTX) treatments. The mechanisms underlying this drug cross-resistance remain unclear. [...] Read more.
An emerging challenge in prostate cancer (PCa) treatment is the development of drug cross-resistance, wherein resistance to enzalutamide (ENZ), an androgen receptor signaling inhibitor (ARSI), also confers resistance to subsequent ARSI and docetaxel (DTX) treatments. The mechanisms underlying this drug cross-resistance remain unclear. Through RNA sequencing, we identified 93 overlapping differentially expressed genes (DEGs) in ENZ- and DTX-resistant PCa cells. Among the DEGs, HSPB1, which encodes heat shock protein 27 (HSP27), emerged as a key gene of interest. HSP27 is a known target of lens epithelium-derived growth factor p75 (LEDGF/p75), a transcription coactivator regulated by glucocorticoid receptor (GR). Both GR and LEDGF/p75 are overexpressed in advanced PCa and promote drug resistance. HSP27 was overexpressed in ENZ and DTX cross-resistant PCa cell lines and its expression was decreased upon GR or LEDGF/p75 silencing. ChIP sequencing confirmed GR binding at the HSPB1 promoter. Pharmacological targeting of HSP27 in drug-resistant cells reduced proliferation, clonogenicity, and tumorsphere formation, and restored sensitivity to ENZ and DTX. Notably, high transcript expression of a GR-LEDGF/p75-HSP27 gene panel correlated with worse overall survival in PCa patients (n = 4259). These findings identified this axis as a driver of PCa drug cross-resistance and promising therapeutic target for overcoming treatment failure. Full article
Show Figures

Figure 1

13 pages, 2436 KB  
Article
4-Phenylbutyric Acid Improves Gait Ability of UBAP1-Related Spastic Paraplegia Mouse Model: Therapeutic Potential for SPG80
by Keisuke Shimozono, Yeon-Jeong Kim, Takanori Hata, Haitian Nan, Kozo Saito, Yasunori Mori, Yuji Ueno, Fujio Isono, Masaru Iwasaki, Schuichi Koizumi, Toshihisa Ohtsuka and Yoshihisa Takiyama
Int. J. Mol. Sci. 2025, 26(19), 9779; https://doi.org/10.3390/ijms26199779 - 8 Oct 2025
Viewed by 225
Abstract
Spastic paraplegia 80 (SPG80), caused by mutations in ubiquitin-associated protein 1 (UBAP1), is a pure form of juvenile-onset hereditary spastic paraplegia (HSP) and leads to progressive motor dysfunction. Despite recent advances in the molecular analyses of HSP, disease-modifying therapy has not been [...] Read more.
Spastic paraplegia 80 (SPG80), caused by mutations in ubiquitin-associated protein 1 (UBAP1), is a pure form of juvenile-onset hereditary spastic paraplegia (HSP) and leads to progressive motor dysfunction. Despite recent advances in the molecular analyses of HSP, disease-modifying therapy has not been established for HSP including SPG80. In the present study, we evaluated the therapeutic potential of 4-phenylbutyric acid (4-PBA), a chemical chaperone and histone deacetylase inhibitor, in Ubap1 knock-in (KI) mice expressing a disease-associated truncated UBAP1 variant. We found that 4-PBA administration significantly improved the motor performance of KI mice in the rotarod and beam walk tests, with maximal benefits achieved when given during pre- or early-symptomatic stages. Partial efficacy was also observed when treatment began after symptom onset in KI mice. Furthermore, 4-PBA attenuated spinal microglial activation and partially restored microglial morphology, although astrocytic reactivity remained unchanged. These findings support 4-PBA as a candidate therapeutic compound for SPG80 and highlight the potential of proteostasis-targeted interventions in HSPs. Full article
Show Figures

Figure 1

14 pages, 1851 KB  
Article
Engineering CO2-Fixing Carboxysome into Saccharomyces cerevisiae to Improve Ethanol Production
by Mengqi Li, Simin Zeng, Yunling Guo, Jie Ji, Qiuling Fan and Deqiang Duanmu
Int. J. Mol. Sci. 2025, 26(19), 9759; https://doi.org/10.3390/ijms26199759 - 7 Oct 2025
Viewed by 195
Abstract
Bacterial microcompartments (BMCs) are intracellular structures for compartmentalizing specific metabolic pathways in bacteria. As a unique type of BMCs, carboxysomes utilize protein shells to sequester ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase for efficient carbon dioxide (CO2) fixation. This study aims to [...] Read more.
Bacterial microcompartments (BMCs) are intracellular structures for compartmentalizing specific metabolic pathways in bacteria. As a unique type of BMCs, carboxysomes utilize protein shells to sequester ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase for efficient carbon dioxide (CO2) fixation. This study aims to reconstruct an α-carboxysome in Saccharomyces cerevisiae and investigate its metabolic effects. Here, genes of the cso operon from Halothiobacillus neapolitanus, Calvin cycle-related enzyme phosphoribulokinase (PRK) from Spinacia oleracea, and two S. cerevisiae chaperone genes, HSP60 and HSP10, were introduced into S. cerevisiae. The engineered yeast strain demonstrated assembled and enzymatically active Rubisco, significant increase in ethanol production and reduction in the byproduct glycerol. Formation of the α-carboxysome structures was observed after purification by sucrose density gradient centrifugation. The engineered yeast strain harboring functional α-carboxysome has the potential for enhancing bioethanol production. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 3680 KB  
Article
Hsp70 Peptides Induce TREM-1-Dependent and TREM-1-Independent Activation of Cytotoxic Lymphocytes
by Daria M. Yurkina, Elena A. Romanova, Aleksandr S. Chernov, Irina S. Gogleva, Anna V. Tvorogova, Alexey V. Feoktistov, Rustam H. Ziganshin, Denis V. Yashin and Lidia P. Sashchenko
Int. J. Mol. Sci. 2025, 26(19), 9750; https://doi.org/10.3390/ijms26199750 - 7 Oct 2025
Viewed by 145
Abstract
The novel data show that the Hsp70 protein is a potent activator of the immune system. Using limited trypsinolisis, we have identified the epitopes of Hsp70 responsible for TREM-1-dependent and TREM-1-independent cytotoxicity. The 11aa N9 peptide (AMTKDNNLLGR) contains nine amino acids that correspond [...] Read more.
The novel data show that the Hsp70 protein is a potent activator of the immune system. Using limited trypsinolisis, we have identified the epitopes of Hsp70 responsible for TREM-1-dependent and TREM-1-independent cytotoxicity. The 11aa N9 peptide (AMTKDNNLLGR) contains nine amino acids that correspond to the amino acid sequence of the known TKD peptide. Also, like TKD, this peptide does not interact with the TREM-1 receptor but activates CD94+ NK cells that kill tumor cells by secreting granzymes and inducing apoptosis. The 16aa peptide N7 (SDNQPGVLIQVYEGEK) interacts with the TREM-1 receptor and induces the activation of NK cells and cytotoxic T lymphocytes at different time points. T-lymphocytes activated by this peptide induce two alternative processes of cell death in HLA-negative tumor cells, apoptosis and necroptosis, through the interaction of the FasL lymphocyte with the Fas receptor of the tumor cell. A shortened fragment of this peptide, N7.1 (SDNQPGVL), has been identified that inhibits the interaction of TREM-1 with its ligands. This peptide has shown protective effects in the development of sepsis in mice. The results obtained can be used in antitumor and anti-inflammation therapy. Full article
Show Figures

Graphical abstract

29 pages, 4696 KB  
Article
Exploring the Role of Heat Shock Proteins in Neuroimmune Modulation in Rheumatoid Arthritis: Insights from a Rat Model
by Malak Fouani, Federica Scalia, Giuseppe Donato Mangano, Francesca Rappa, Wassim Abou-Kheir, Angelo Leone, Nada Lawand and Rosario Barone
Int. J. Mol. Sci. 2025, 26(19), 9743; https://doi.org/10.3390/ijms26199743 - 7 Oct 2025
Viewed by 233
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting the joints, with neurogenic inflammation involving the nervous system being a hallmark of the condition. Treatments include medications such as disease-modifying antirheumatic drugs (DMARDs), corticosteroids, and biologics targeting inflammatory pathways. Yet, these treatments [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting the joints, with neurogenic inflammation involving the nervous system being a hallmark of the condition. Treatments include medications such as disease-modifying antirheumatic drugs (DMARDs), corticosteroids, and biologics targeting inflammatory pathways. Yet, these treatments are not curative for RA. Heat Shock Proteins (HSPs) are molecular chaperones with immunoregulatory properties; however, their role is not yet fully understood, as these molecules may play a dual, pro- and anti-inflammatory role. In this study, we evaluated the protein expression levels of HSPs 27, 60, 70, and 90 in the synovial membrane and spinal cord of the RA rats’ model to determine their roles during the disease course, both on the neurological and immunological levels. Furthermore, HSP levels have been evaluated in the spinal cord of control and RA rats’ model after high and low doses of ketamine injection. Significant changes in Hsp60, 70, and 90 expression levels were observed only in the spinal cord of RA rats. We demonstrated that blocking N-methyl-D-aspartate receptors with ketamine can modulate spinal cord HSPs expression in RA rats and subsequently impact neurogenic inflammation and adult neurogenesis. This suggests that HSPs may be a promising target for RA treatment due to their complex immunomodulatory effects and potential interactions with the nervous system. Further research is needed to explore their therapeutic potential and develop effective interventions for RA. Full article
Show Figures

Graphical abstract

59 pages, 1977 KB  
Review
Heterogeneity of Cellular Senescence, Senotyping, and Targeting by Senolytics and Senomorphics in Lung Diseases
by Said Ali Ozdemir, Md Imam Faizan, Gagandeep Kaur, Sadiya Bi Shaikh, Khursheed Ul Islam and Irfan Rahman
Int. J. Mol. Sci. 2025, 26(19), 9687; https://doi.org/10.3390/ijms26199687 - 4 Oct 2025
Viewed by 350
Abstract
Cellular senescence, a state of stable cell cycle arrest accompanied by a complex senescence-associated secretory phenotype (SASP), is a fundamental biological process implicated as a key driver of lung aging and lung age-related diseases (LARDs). This review provides a comprehensive overview of the [...] Read more.
Cellular senescence, a state of stable cell cycle arrest accompanied by a complex senescence-associated secretory phenotype (SASP), is a fundamental biological process implicated as a key driver of lung aging and lung age-related diseases (LARDs). This review provides a comprehensive overview of the rapidly evolving field of senotyping based on cellular heterogeneity in lung development and aging in health and disease. It also delves into the molecular mechanisms driving senescence and SASP production, highlighting pathways such as p53/p21, p16INK4a/RB, mTOR, and p38 MAPK as therapeutic targets. The involvement of various novel SASP proteins, such as GDP15, cytokines/chemokines, growth factors, and DNA damage response proteins. We further highlight the effectiveness of senotherapeutics in mitigating the detrimental effects of senescent cell (SnC) accumulation within the lungs. It also outlines two main therapeutic approaches: senolytics, which selectively trigger apoptosis in SnCs, and senomorphics (also known as senostatics), which mitigate the detrimental effects of the SASP without necessarily removing the senescent cells. Various classes of senolytic and senomorphic drugs are currently in clinical trials including natural products (e.g., quercetin, fisetin, resveratrol) and repurposed drugs (e.g., dasatinib, navitoclax, metformin, rapamycin) that has demonstrated therapeutic promise in improving tissue function, alleviating LARDs, and extending health span. We discuss the future of these strategies in lung research and further elaborate upon the usability of novel approaches including HSP90 inhibitors, senolytic CAR-T cells, Antibody drug conjugate and galactose-modified prodrugs in influencing the field of personalized medicine in future. Overall, this comprehensive review highlights the progress made so far and the challenges faced in the field of cellular senescence including SnC heterogeneity, states of senescence, senotyping, immunosenescence, drug delivery, target specificity, long-term safety, and the need for robust cell-based biomarkers. Future perspectives, such as advanced delivery systems, and combination therapies, are considered critical for translating the potential of senotherapeutics into effective clinical applications for age-related pulmonary diseases/conditions. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Graphical abstract

13 pages, 1102 KB  
Article
Children with Genetically Confirmed Hereditary Spastic Paraplegia: A Single-Center Experience
by Seyda Besen, Yasemin Özkale, Murat Özkale, Sevcan Tuğ Bozdoğan, Özlem Alkan, Serdar Ceylaner and İlknur Erol
Children 2025, 12(10), 1332; https://doi.org/10.3390/children12101332 - 4 Oct 2025
Viewed by 271
Abstract
Objective: The classification of hereditary spastic paraplegia (HSP) is based on genetics, and the number of genetic loci continues to increase with new genetic descriptions. Additionally, the number of new variants in known mutations continues to increase. In this paper, we aim to [...] Read more.
Objective: The classification of hereditary spastic paraplegia (HSP) is based on genetics, and the number of genetic loci continues to increase with new genetic descriptions. Additionally, the number of new variants in known mutations continues to increase. In this paper, we aim to report our experience with genetically confirmed HSPs. Methods: We retrospectively evaluated 10 consecutive children with genetically confirmed HSPs. Results: In this study, we identified six novel mutations, including spastic paraplegia 11 (SPG11), glucosylceramidase beta 2 (GBA2), chromosome 19 open reading frame 12 (C19orf12), 1 in each of the Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) genes, and two different mutations in the intropomyosin-receptor kinase fused gene (TFG) gene. We also identified different clinical phenotypes associated with known mutations. Conclusions: Heterozygous mutations with GBA2 and SPG11 mutation-related HSP are reported for the first time, expanding the known inheritance patterns. We report a novel homozygous chromosome 19 open reading frame 12 (C19orf12) mutation resulting in iron accumulation in the brain, broadening the genetic variants and clinical findings. We determine the first Turkish patients with carnitine palmitoyltransferase IC (CPT1C) and TFG gene mutation-related pure HSP. A pure form of HSP with two novel TFG gene mutations is also identified for the first time. We report the first Turkish patient with kinase D-interacting substrate of 220 kDa (KIDINS220) gene, broadening the clinical spectrum of KIDINS220 variant-related disorders to encompass certain HSPs. Moreover, a novel variant in the oxysterol7-hydroxylase (CYP7B1) gene is reported, expanding the genetic variants and clinical findings relating to SPG5. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

25 pages, 15131 KB  
Article
Mechanistic Elucidation of the Anti-Ageing Effects of Dendrobium officinale via Network Pharmacology and Experimental Validation
by Zhilin Chen, Zhoujie Yang, Shanshan Liang, Weiwei Ze, Zhou Lin, Yuexin Cai, Lixin Yang and Tingting Feng
Foods 2025, 14(19), 3418; https://doi.org/10.3390/foods14193418 - 3 Oct 2025
Viewed by 408
Abstract
Dendrobium officinale (Orchidaceae) is a commonly used medicinal and edible herb. Although its anti-ageing properties have been demonstrated, the underlying mechanisms remain unclear. We employed network pharmacology and molecular biology techniques to systematically explore its anti-ageing mechanisms. An ageing model was established using [...] Read more.
Dendrobium officinale (Orchidaceae) is a commonly used medicinal and edible herb. Although its anti-ageing properties have been demonstrated, the underlying mechanisms remain unclear. We employed network pharmacology and molecular biology techniques to systematically explore its anti-ageing mechanisms. An ageing model was established using D-galactose-induced Kunming mice. D. officinale significantly ameliorated ageing-related symptoms, including behavioural impairment and organ index reduction. It enhanced antioxidant capacity by increasing serum T-AOC levels and restoring renal activities of key antioxidant enzymes (SOD, GSH-Px, CAT) while reducing MDA; it suppressed serum TNF-α levels, indicating anti-inflammatory effects. Histopathological examination revealed that D. officinale alleviated D-galactose-induced renal damage, including tubular cell swelling and glomerular capsule widening. Network pharmacology identified 8 core active compounds (e.g., 5,7-dihydroxyflavone, naringenin) and 10 key targets (e.g., HSP90AA1, EGFR, MAPK3). KEGG analysis highlighted pathways including neuroactive ligand–receptor interaction, cAMP signalling, and calcium signalling. Molecular docking confirmed strong binding affinities between core compounds and key targets. Western blotting and immunohistochemistry validated that D. officinale upregulated EGFR, HSP90AA1, ERK, and GAPDH expression in renal tissues. In summary, D. officinale exerts anti-ageing effects by modulating oxidative stress, suppressing inflammation, and regulating multiple signalling pathways. Our findings provide a scientific rationale for its application in anti-ageing interventions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

Back to TopTop