Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = InGaN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1855 KB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 464
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

2 pages, 138 KB  
Retraction
RETRACTED: Martínez-Revuelta et al. Numerical Study of a Solar Cell to Achieve the Highest InGaN Power Conversion Efficiency for the Whole In-Content Range. Micromachines 2022, 13, 1828
by Rubén Martínez-Revuelta, Horacio I. Solís-Cisneros, Raúl Trejo-Hernández, Madaín Pérez-Patricio, Martha L. Paniagua-Chávez, Rubén Grajales-Coutiño, Jorge L. Camas-Anzueto and Carlos A. Hernández-Gutiérrez
Micromachines 2025, 16(8), 874; https://doi.org/10.3390/mi16080874 - 29 Jul 2025
Viewed by 664
Abstract
The journal retracts the article titled “Numerical Study of a Solar Cell to Achieve the Highest InGaN Power Conversion Efficiency for the Whole In-Content Range” [...] Full article
10 pages, 895 KB  
Article
Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region
by Yifan Song, Wei Liu, Junjie Gao, Di Wang, Chengrui Yan, Bohan Shi, Linyuan Zhang, Xinnan Zhao and Zeyu Liu
Micromachines 2025, 16(7), 833; https://doi.org/10.3390/mi16070833 - 21 Jul 2025
Viewed by 311
Abstract
InGaN-based photovoltaic devices have attracted great attention due to their remarkable theoretical potential for high efficiency. In this paper, the influence of different distributions of step-gradient indium content within the intrinsic region on the photovoltaic performance of P-I-N type InGaN/GaN solar cells is [...] Read more.
InGaN-based photovoltaic devices have attracted great attention due to their remarkable theoretical potential for high efficiency. In this paper, the influence of different distributions of step-gradient indium content within the intrinsic region on the photovoltaic performance of P-I-N type InGaN/GaN solar cells is numerically investigated. Through the comprehensive analysis of carrier dynamics, it is found that for the device with the indium content decreasing stepwise from 50% at the top to 10% at the bottom in intrinsic region, the photovoltaic conversion efficiency is increased to 10.29%, which can be attributed to joint influence of enhanced photon absorption, reduced recombination rate, and optimized carrier transport process. Full article
Show Figures

Figure 1

16 pages, 1918 KB  
Article
Optimization of InxGa1−xN P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
by Hassan Abboudi, Walid Belaid, Redouane En-nadir, Ilyass Ez-zejjari, Mohammed Zouini, Ahmed Sali and Haddou El Ghazi
Crystals 2025, 15(7), 633; https://doi.org/10.3390/cryst15070633 - 9 Jul 2025
Viewed by 457
Abstract
This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type In0.6Ga0.4N layer, an intrinsic i-type [...] Read more.
This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type In0.6Ga0.4N layer, an intrinsic i-type In0.52Ga0.48N layer, and an n-type In0.48Ga0.52N layer. A systematic parametric optimization methodology was employed, involving a sequential investigation of doping concentrations, layer thicknesses, and indium composition to identify the optimal device configuration. Initial optimization of doping levels established optimal concentrations of Nd=1×1016 cm3 for the p-layer and Na=8×1017 cm3 for the n-layer. Subsequently, structural parameters were optimized through systematic variation of layer thicknesses while maintaining optimal doping concentrations. The comprehensive optimization culminated in the identification of an optimal device architecture featuring a p-type layer thickness of 0.2 μm, an intrinsic layer thickness of 0.4 μm, an n-type layer thickness of 0.06 μm, and an indium composition of x = 0.59 in the intrinsic layer. This fully optimized configuration achieved a maximum conversion efficiency (η) of 21.40%, a short-circuit current density (Jsc) of 28.2 mA/cm2, and an open-circuit voltage (Voc) of 0.874 V. The systematic optimization approach demonstrates the critical importance of simultaneous parameter optimization in achieving superior photovoltaic performance, with the final device configuration representing a 30.01% efficiency improvement compared to the baseline structure. These findings provide critical insights for improving the design and performance of InGaN-based solar cells, serving as a valuable reference for future experimental research. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

9 pages, 1553 KB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 226
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

22 pages, 11419 KB  
Article
A Modified Model Dielectric Function for Analyzing Optical Spectra of InGaN Nanofilms on Sapphire Substrates
by Devki N. Talwar, Hao-Hsiung Lin and Jason T. Haraldsen
Nanomaterials 2025, 15(7), 485; https://doi.org/10.3390/nano15070485 - 24 Mar 2025
Viewed by 486
Abstract
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable [...] Read more.
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable in the development of low-dimensional heterostructure-based photonic devices. Adjusting the composition x and thickness d in epitaxially grown films has offered many possibilities of light emission across a wide spectral range, from ultraviolet through visible into near-infrared regions. Optical properties have played important roles in making semiconductor materials useful in electro-optic applications. Despite the efforts to grow InxGa1xN/Sapphire samples, no x- and d-dependent optical studies exist for ultrathin films. Many researchers have used computationally intensive methods to study the electronic band structures Ejk, and subsequently derive optical properties. By including inter-band transitions at critical points from Ejk, we have developed a semiempirical approach to comprehend the optical characteristics of InN, GaN and InxGa1xN. Refractive indices of InxGa1xN and sapphire substrate are meticulously integrated into a transfer matrix method to simulate d- and x-dependent reflectivity RE  and transmission TE spectra of nanostructured InxGa1xN/Sapphire epifilms. Analyses of RE and TE have offered accurate x-dependent shifts of energy gaps for InxGa1xN (x = 0.5, 0.7) in excellent agreement with the experimental data. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 2741 KB  
Article
Quantum-Well-Embedded InGaN Quantum Dot Vertical-Cavity Surface-Emitting Laser and Its Photoelectric Performance
by Zinan Hua, Hailiang Dong, Zhigang Jia, Wei Jia, Lin Shang and Bingshe Xu
Photonics 2025, 12(3), 276; https://doi.org/10.3390/photonics12030276 - 17 Mar 2025
Viewed by 954
Abstract
An electrically injected vertical-cavity surface-emitting laser (VCSEL) with quantum-well-embedded InGaN quantum dots (QDs) as the active region was designed. The InGaN QD size and cavity length were optimized using PICS3D simulation software to achieve a high-performance InGaN QD-embedded VCSEL. A comparative analysis between [...] Read more.
An electrically injected vertical-cavity surface-emitting laser (VCSEL) with quantum-well-embedded InGaN quantum dots (QDs) as the active region was designed. The InGaN QD size and cavity length were optimized using PICS3D simulation software to achieve a high-performance InGaN QD-embedded VCSEL. A comparative analysis between the InGaN QD VCSEL and the traditional InGaN quantum well VCSEL was conducted, and the results demonstrated that the InGaN QD VCSEL achieved higher stimulated recombination radiation and internal quantum efficiency. The threshold current was reduced to 4 mA, corresponding to a threshold current density of 5.1 kA/cm², and the output power reached 4.4 mW at an injection current of 20 mA. A stable single-longitudinal-mode output was also achieved with an output wavelength of 436 nm. The proposed novel quantum-well-embedded QD active-region VCSEL was validated through theoretical simulations, confirming its feasibility. This study provides theoretical guidance and key epitaxial structural parameters for preparing high-performance VCSEL epitaxial materials. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 8753 KB  
Article
Dielectric Passivation Treatment of InGaN MESA on Si Substrates for Red Micro-LED Application
by Hongyu Qin, Shuhan Zhang, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(3), 267; https://doi.org/10.3390/cryst15030267 - 13 Mar 2025
Viewed by 1230
Abstract
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN [...] Read more.
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN caused by hydrogen species generated from SiH4 decomposition during SiO2 passivation layer growth, which degrades device performance. This study systematically investigates the use of high-density metal-oxide dielectric passivation layers deposited by atomic layer deposition (ALD), specifically Al2O3 and HfO2, to mitigate these effects and enhance device reliability. The passivation layers effectively suppress hydrogen diffusion and preserve p-GaN activation, ensuring improved ohmic contact formation and reduced forward voltage, which is measured by the probe station. The properties of the epitaxial layer and the cross-section morphology of the dielectric layer were characterized by photoluminescence (PL) and scanning electron microscopy (SEM), respectively. Experimental results reveal that Al2O3 exhibits superior thermal stability and lower current leakage under high-temperature annealing, while HfO2 achieves higher light-output power (LOP) and efficiency under increased current densities. Electroluminescence (EL) measurements confirm that the passivation strategy maintains the intrinsic optical properties of the epitaxial wafer with minimal impact on Wp and FWHM across varying process conditions. The findings demonstrate the efficacy of metal-oxide dielectric passivation in addressing critical challenges in InGaN red micro-LED on silicon substrate fabrication, contributing to accelerating scalable and efficient next-generation display technologies. Full article
Show Figures

Figure 1

9 pages, 1421 KB  
Article
Electromagnetic Nanocoils Based on InGaN Nanorings
by Ziwen Yan, Peng Chen, Xianfei Zhang, Zili Xie, Xiangqian Xiu, Dunjun Chen, Hong Zhao, Yi Shi, Rong Zhang and Youdou Zheng
Nanomaterials 2025, 15(3), 245; https://doi.org/10.3390/nano15030245 - 5 Feb 2025
Viewed by 2728
Abstract
Energy issues, including energy generation, conversion, transmission and detection, are fundamental factors in all systems. In micro- and nanosystems, dealing with these energy issues requires novel nanostructures and precise technology. However, both concept and setup are not well established yet in the microsystems, [...] Read more.
Energy issues, including energy generation, conversion, transmission and detection, are fundamental factors in all systems. In micro- and nanosystems, dealing with these energy issues requires novel nanostructures and precise technology. However, both concept and setup are not well established yet in the microsystems, especially for those at the nanometer scale. Here, we demonstrate electromagnetic nanocoils with 100 nm diameters based on uniform and periodic InGaN nanoring arrays grown on patterned GaN surfaces using nanoscale selective area epitaxy (NSAE). We observed stronger photoluminescence from the periodic InGaN nanoring arrays compared to the non-uniform InGaN nanorings, which indicates good crystal quality of the InGaN nanostructure with the NSAE. Based on this kind of nanostructure, electromagnetic induction from the nanorings is detected through the rebound movement of high-energy electron diffraction patterns that are influenced by a modulated external magnetic field. Our results clearly show the generation of an inductive current and internal magnetic field in the nanorings. We anticipate this kind of nanostructure to be a potential key element for energy conversion, transfer and detection in nanosystems. For example, it could be used to fabricate microtransformers and micro- and nanosensors for electromagnetic signals. Full article
Show Figures

Figure 1

21 pages, 7804 KB  
Article
In Situ X-Ray Study During Thermal Cycle Treatment Combined with Complementary Ex Situ Investigation of InGaN Quantum Wells
by Ewa Grzanka, Sondes Bauer, Artur Lachowski, Szymon Grzanka, Robert Czernecki, Byeongchan So, Tilo Baumbach and Mike Leszczyński
Nanomaterials 2025, 15(2), 140; https://doi.org/10.3390/nano15020140 - 17 Jan 2025
Viewed by 1206
Abstract
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal–organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial [...] Read more.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal–organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1. QW, bottom, 2. QW, middle, and 3. QW, upper). During the heating process, we found that the homogenization of the QWs occurred in the temperature range of 850 °C to 920 °C, manifesting in a reduction in ICDs in the QWs. Furthermore, there is a critical temperature (T = 940 °C) at which the mean value of the indium concentration starts to decrease below 15% in 1. QW, indicating the initiation of decomposition in 1. QW. Moreover, further heating up to 1000 °C results in extended diffuse scattering along the angular direction of the diffraction spot, confirming the propagation of the decomposition and the formation of trapezoidal objects, which contain voids and amorphous materials (In-Ga). Heating InGaN QWs up to T = 1000 °C led to a simultaneous decrease in the indium content and ICDs. During the cooling phase, there was no significant variation in the indium concentrations in the different QWs but rather an increase in the defect area, which contributes to the amplification of diffuse scattering. A comparison of ex situ complementary high-resolution transmission microscopy (Ex-HRTEM) measurements performed at room temperature before and after the thermal cycle treatment provides proof of the formation of four different types of defects in the QWs, which result from the decomposition of 1. QW during the heating phase. This, in turn, has strongly influenced the intensity of the photoluminescence emission spectra without any detectable shift in the emission wavelength λMQWs. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

10 pages, 7216 KB  
Article
Photoluminescence and Photocurrent from InGaN/GaN Diodes with Quantum Wells of Different Widths and Polarities
by Artem Bercha, Mikołaj Chlipała, Mateusz Hajdel, Grzegorz Muzioł, Marcin Siekacz, Henryk Turski and Witold Trzeciakowski
Nanomaterials 2025, 15(2), 112; https://doi.org/10.3390/nano15020112 - 14 Jan 2025
Viewed by 1064
Abstract
We compare the optical properties of four pin diode samples differing by built-in field direction and width of the In0.17Ga0.83N quantum well in the active layer: two diodes with standard nip layer sequences and 2.6 and 15 nm well [...] Read more.
We compare the optical properties of four pin diode samples differing by built-in field direction and width of the In0.17Ga0.83N quantum well in the active layer: two diodes with standard nip layer sequences and 2.6 and 15 nm well widths and two diodes with inverted pin layer ordering (due to the tunnel junction grown before the pin structure) also with 2.6 and 15 nm widths. We study photoluminescence and photocurrent in those samples (as a function of excitation power and applied voltage), revealing very different properties due to the interplay of built-in fields and screening by injected carriers. Out of the four types of diodes, the highest photocurrent efficiency was obtained (at reverse voltage) for the wide-well, inverted polarity diode. This diode also showed the highest PL intensity (at positive voltages) of our four samples. Diodes with wide wells have stable emission wavelengths (almost independent of bias and excitation power). Full article
(This article belongs to the Special Issue III-Nitride Nanomaterials and Devices)
Show Figures

Figure 1

9 pages, 3305 KB  
Communication
Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage
by Bonghwan Kim and Seung-Hwan Park
Materials 2024, 17(22), 5560; https://doi.org/10.3390/ma17225560 - 14 Nov 2024
Viewed by 790
Abstract
This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through [...] Read more.
This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through simulation analysis. Both structures demonstrate increased drain current and transconductance with increasing Al content in the barrier layer. However, HEMTs with a CdZnO layer exhibit higher drain current compared to those with an InGaN layer at the same Al content. The breakdown voltage decreases rapidly with increasing Al content, attributed to changes in electric field distribution. HEMTs with a CdZnO/GaN channel exhibit a slightly higher breakdown voltage (~795 V) compared to those with an InGaN/GaN channel (~768 V) at a lower Al content of x = 0.10. These results suggest that CdZnO-based HEMTs have significant potential for high-power, high-frequency applications. Full article
Show Figures

Figure 1

9 pages, 3349 KB  
Communication
Optimization Conditions for High-Power AlGaN/InGaN/GaN/AlGaN High-Electron-Mobility Transistor Grown on SiC Substrate
by Bonghwan Kim and Seung-Hwan Park
Materials 2024, 17(22), 5515; https://doi.org/10.3390/ma17225515 - 12 Nov 2024
Cited by 2 | Viewed by 1320
Abstract
In this study, we aimed to propose an optimal structure for an AlGaN/InGaN/GaN/AlGaN/SiC HEMT by investigating how the breakdown voltage varies with the thickness and composition of the InGaN layer. The breakdown voltage was shown to be highly dependent on the In composition. [...] Read more.
In this study, we aimed to propose an optimal structure for an AlGaN/InGaN/GaN/AlGaN/SiC HEMT by investigating how the breakdown voltage varies with the thickness and composition of the InGaN layer. The breakdown voltage was shown to be highly dependent on the In composition. Specifically, as the In composition increased, the breakdown voltage rapidly increased, but it exhibited saturation when the In composition exceeded 0.06. Therefore, it is desirable to maintain the In composition at or above 0.06. The variation in breakdown voltage due to thickness was relatively small compared to the variation caused by In composition. While the breakdown voltage remained nearly constant with increasing thickness, it began to decrease when the thickness exceeded 10 nm. Hence, the thickness should be kept below 10 nm. Additionally, as the In composition increased, the subthreshold swing (SS) also increased, but the drain current value was shown to increase. On the other hand, it was observed that the SS value in the transfer characteristics and the current–voltage characteristics were almost unaffected by the thickness of the InGaN layer. Full article
Show Figures

Figure 1

13 pages, 5289 KB  
Article
Structure Design of UVA VCSEL for High Wall Plug Efficiency and Low Threshold Current
by Bing An, Yukun Wang, Yachao Wang, Zhijie Zou, Yang Mei, Hao Long, Zhiwei Zheng and Baoping Zhang
Photonics 2024, 11(11), 1012; https://doi.org/10.3390/photonics11111012 - 27 Oct 2024
Cited by 1 | Viewed by 2116
Abstract
Vertical-cavity surface emitting lasers in UVA band (UVA VCSELs) operating at a central wavelength of 395 nm are designed by employing PICS3D(2021) software. The simulation results indicate that the thickness of the InGaN quantum well and GaN barrier layers affect the emission efficiency [...] Read more.
Vertical-cavity surface emitting lasers in UVA band (UVA VCSELs) operating at a central wavelength of 395 nm are designed by employing PICS3D(2021) software. The simulation results indicate that the thickness of the InGaN quantum well and GaN barrier layers affect the emission efficiency of UVA VCSELs greatly, suggesting an optimal thicknesses of 2.2 nm for the well layer and 2.7 nm for the barrier layer. Additionally, an overall consideration of threshold current, series resistance, photoelectric conversion efficiency, and optical output power results in the optimized thickness of the ITO current spreading layer, ~20 nm. Furthermore, by employing a five-pair Al0.15Ga0.85N/GaN multi-quantum barrier electron blocking layer (EBL) instead of a single Al0.2Ga0.8N EBL, the device shows a ~51% enhancement in the optical output power and a ~48% reduction in the threshold current. The number of distributed Bragg reflector (DBR) pairs also plays crucial roles in the device’s photoelectric performance. The device designed in this study demonstrates a minimum lasing threshold of 1.16 mA and achieves a maximum wall plug efficiency of approximately 5%, outperforming other similar studies. Full article
(This article belongs to the Special Issue Next-Generation Vertical-Cavity Surface-Emitting Lasers)
Show Figures

Figure 1

18 pages, 59323 KB  
Article
Method for Augmenting Side-Scan Sonar Seafloor Sediment Image Dataset Based on BCEL1-CBAM-INGAN
by Haixing Xia, Yang Cui, Shaohua Jin, Gang Bian, Wei Zhang and Chengyang Peng
J. Imaging 2024, 10(9), 233; https://doi.org/10.3390/jimaging10090233 - 20 Sep 2024
Cited by 1 | Viewed by 1081
Abstract
In this paper, a method for augmenting samples of side-scan sonar seafloor sediment images based on CBAM-BCEL1-INGAN is proposed, aiming to address the difficulties in acquiring and labeling datasets, as well as the insufficient diversity and quantity of data samples. Firstly, a Convolutional [...] Read more.
In this paper, a method for augmenting samples of side-scan sonar seafloor sediment images based on CBAM-BCEL1-INGAN is proposed, aiming to address the difficulties in acquiring and labeling datasets, as well as the insufficient diversity and quantity of data samples. Firstly, a Convolutional Block Attention Module (CBAM) is integrated into the residual blocks of the INGAN generator to enhance the learning of specific attributes and improve the quality of the generated images. Secondly, a BCEL1 loss function (combining binary cross-entropy and L1 loss functions) is introduced into the discriminator, enabling it to focus on both global image consistency and finer distinctions for better generation results. Finally, augmented samples are input into an AlexNet classifier to verify their authenticity. Experimental results demonstrate the excellent performance of the method in generating images of coarse sand, gravel, and bedrock, as evidenced by significant improvements in the Frechet Inception Distance (FID) and Inception Score (IS). The introduction of the CBAM and BCEL1 loss function notably enhances the quality and details of the generated images. Moreover, classification experiments using the AlexNet classifier show an increase in the recognition rate from 90.5% using only INGAN-generated images of bedrock to 97.3% using images augmented using our method, marking a 6.8% improvement. Additionally, the classification accuracy of bedrock-type matrices is improved by 5.2% when images enhanced using the method presented in this paper are added to the training set, which is 2.7% higher than that of the simple method amplification. This validates the effectiveness of our method in the task of generating seafloor sediment images, partially alleviating the scarcity of side-scan sonar seafloor sediment image data. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

Back to TopTop