Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Jameson cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3370 KB  
Article
Reprocessing of Sulphide Flotation Tailings for Copper Recovery: Characterisation
by Richel Annan Dadzie, Massimiliano Zanin, William Skinner, Jonas Addai-Mensah, Richmond Asamoah and George Blankson Abaka-Wood
Minerals 2025, 15(6), 649; https://doi.org/10.3390/min15060649 - 16 Jun 2025
Viewed by 1279
Abstract
This study characterises low-grade copper ore tailings from a conventional flotation circuit to evaluate their feasibility for further processing. A suite of advanced analytical techniques, such as X-ray fluorescence (XRF), inductively coupled plasma (ICP), X-ray diffraction (XRD), and the quantitative evaluation of minerals [...] Read more.
This study characterises low-grade copper ore tailings from a conventional flotation circuit to evaluate their feasibility for further processing. A suite of advanced analytical techniques, such as X-ray fluorescence (XRF), inductively coupled plasma (ICP), X-ray diffraction (XRD), and the quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN), was employed to assess the elemental, chemical, and mineralogical composition of the tailings. Chalcopyrite was identified as the dominant copper-bearing mineral phase, predominantly locked within iron oxides and silicate gangue minerals. The QEMSCAN results showed that chalcopyrite was only partially liberated, which highlights the complex mineral intergrowths that hinder efficient recovery. Based on the mineralogical characteristics, the applicability of various processing techniques, including conventional froth flotation, advanced flotation methods [including HydrofloatTM, Jameson, and the Reflux Flotation Cell (RFC)], magnetic separation, and gravity separation, was evaluated. Overall, this study indicates that incorporating HydroFloat™, the Jameson Cell, and the RFC into the flotation circuit could greatly improve copper recovery from tailings. This study also identified rare earth elements (REEs) as potential by-products of copper recovery, so it is an additional opportunity for resource recovery. This paper contributes to sustainable mining practices and resource optimization by highlighting the characteristics and recovery of valuable minerals from tailings. Full article
Show Figures

Figure 1

10 pages, 1227 KB  
Article
Using Intensified Flotation Cells to Improve Cleaning Circuit Performance
by Paulina Vallejos, Juan Yianatos, Marcelo Rodríguez and Jorge Cortínez
Minerals 2025, 15(5), 453; https://doi.org/10.3390/min15050453 - 27 Apr 2025
Viewed by 646
Abstract
The cleaning circuit of the collective Cu-Mo flotation plant at Collahuasi (north of Chile) consisted of two parallel flotation rows, each one of three first cleaner cells in series with six cleaner–scavenger cells. The second cleaner consisted of 10 parallel columns (6 rectangular [...] Read more.
The cleaning circuit of the collective Cu-Mo flotation plant at Collahuasi (north of Chile) consisted of two parallel flotation rows, each one of three first cleaner cells in series with six cleaner–scavenger cells. The second cleaner consisted of 10 parallel columns (6 rectangular and 4 circular), whose tailings were directly recycled to the first cleaner. Recently, a project was developed to upgrade the cleaning circuit by decreasing the large Mo circulating load and improving the cleaning circuit performance. For this purpose, a testing strategy was set up at a pilot scale to evaluate the use of intensified flotation (Jameson cells), mainly for collecting the fine Mo particles accumulated in the circulating load, which contributes to the Mo losses from the scavenger stage into the final tailings. The preliminary results regarding kinetics at the pilot scale showed good potential to improve the metallurgical performance of Mo and Cu, and a sensitivity study was carried out to evaluate the application of this technology in the industrial cleaning circuit. Then, two parallel Jameson cells were selected to re-treat the whole column tailings stream. This operation allowed for the generation of a direct final Cu-Mo concentrate (that joins the columns concentrate) while recycling their tailings to the first cleaner. After commissioning, three sampling campaigns were performed on the whole flotation plant, particularly on the overall cleaning circuit, to evaluate the impact of the new flotation cells. Results showed that the Jameson cells effectively decreased the minerals circulating loads in the cleaning stage, mainly for Mo (in 49%). The Jameson cells directly contribute 48% of Mo and 25% Cu of the minerals in the final concentrate and allow for increasing the Mo final grade (0.45% Mo vs. 0.29% from columns). These results were in good agreement with predictions from the pilot testing. Full article
(This article belongs to the Special Issue Kinetic Characterization and Its Applications in Mineral Processing)
Show Figures

Figure 1

16 pages, 4226 KB  
Article
Characterization of a Nickel Sulfide Concentrate and Its Implications on Pentlandite Beneficiation
by Linda D. Ayedzi, Massimiliano Zanin, William Skinner and George B. Abaka-Wood
Minerals 2024, 14(4), 414; https://doi.org/10.3390/min14040414 - 18 Apr 2024
Cited by 2 | Viewed by 3068
Abstract
In anticipation of future demands, a comprehensive understanding of the chemical and mineralogical characteristics of nickel-bearing minerals is a prerequisite to devising effective nickel beneficiation methods. Of particular importance are markers in the mineralogy of the flotation concentrate that inform beneficiation strategies to [...] Read more.
In anticipation of future demands, a comprehensive understanding of the chemical and mineralogical characteristics of nickel-bearing minerals is a prerequisite to devising effective nickel beneficiation methods. Of particular importance are markers in the mineralogy of the flotation concentrate that inform beneficiation strategies to improve concentrate grades, increasing both the marketability and cost of refining. In this work, a detailed characterization of a complex nickel sulfide flotation concentrate from a Western Australian deposit was carried out to determine the mode of occurrence and distribution of nickel and the associated gangue minerals, with the view of identifying prudent beneficiation strategies to improve concentrate grades. The concentrate was characterized via particle, chemical, and mineralogical techniques. Particle size analysis of the concentrate showed that it consisted predominantly of fine and ultra-fine particles (<20 μm), with the nickel value concentrated in the finer size fractions. Nickel mineralization in the ore (by quantitative X-ray diffraction) was found to be within pentlandite, violarite, millerite, and gersdorffite. The sulfide gangue was predominantly pyrrhotite, pyrite, chalcopyrite, sphalerite, arsenopyrite, and galena. Quantitative evaluation of minerals by scanning microscopy (QEMSCAN) analysis revealed that nickel minerals are at least 91% liberated, and the remaining portion (around 7%) is locked within binary iron (Fe) sulfides and 2% within complex minerals. Based on these findings, potential processing options, such as magnetic separation, gravity separation, and froth flotation, for recovering and upgrading nickel from this concentrate are discussed. Notably, with the significant presence of ultrafine/fine pyrrhotite content, averaging around 52% in the minus 38 µm fraction, novel flotation cells, including the Jameson cell, column flotation cells, and Reflux flotation cell (RFC), have been identified as potential candidates for fine/ultrafine pentlandite recovery. Overall, the characterization study conducted suggests that acquiring knowledge about the mineralogical characteristics of existing mineral concentrates can serve as a pathway to improving future concentrate grades. Full article
Show Figures

Figure 1

26 pages, 3018 KB  
Review
A Review on Froth Washing in Flotation
by Tawona Martin Jera and Clayton Bhondayi
Minerals 2022, 12(11), 1462; https://doi.org/10.3390/min12111462 - 19 Nov 2022
Cited by 11 | Viewed by 6197
Abstract
In the attempt to process lower-grade ores, mineral flotation has taken centre stage as the preferred recovery route. However, in many instances, the froth product does not have a high grade due to the entrainment of gangue minerals. Industry has solved this challenge [...] Read more.
In the attempt to process lower-grade ores, mineral flotation has taken centre stage as the preferred recovery route. However, in many instances, the froth product does not have a high grade due to the entrainment of gangue minerals. Industry has solved this challenge by introducing froth washing mechanisms. Clean wash water is introduced into or on top of the froth to reduce the amount of entrained gangue in the final concentrate. This article reviews froth-washing systems in detail and highlights the advantages and disadvantages of each wash-water delivery mechanism. Comments on industrial uptake are provided. The indications are that froth washing improves the grade of the concentrate and influences froth stability and mobility. Other researchers have reported an improvement in recovery—especially of coarse particles—with wash water being added, while others have reported a reduction in recovery, especially with composite particles. Froth washing is generally applied in mechanical flotation cells by washing at the lip. In column flotation cells and Jameson cells, wash water is added to the entire froth surface. The literature also indicates that the wash-water rate, wash-water quality, type of wash-water delivery/ distribution mechanism and the area covered by wash water are critical parameters that dictate the efficacy of the washing system. Further research is necessary on the impact of wash-water quality on the froth phase sub-processes including froth rheology. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 2342 KB  
Article
Multidimensional Optimization of the Copper Flotation in a Jameson Cell by Means of Taxonomic Methods
by Tomasz Niedoba, Paulina Pięta, Agnieszka Surowiak and Oktay Şahbaz
Minerals 2021, 11(4), 385; https://doi.org/10.3390/min11040385 - 3 Apr 2021
Cited by 6 | Viewed by 3818
Abstract
Three factors were measured in the flotation process of copper ore: the copper grade in a concentrate (β), the copper grade in tailings (ϑ), and the recovery of copper in a concentrate (ε). The experiment was conducted by means of a Jameson cell. [...] Read more.
Three factors were measured in the flotation process of copper ore: the copper grade in a concentrate (β), the copper grade in tailings (ϑ), and the recovery of copper in a concentrate (ε). The experiment was conducted by means of a Jameson cell. The factors influencing the quality of the process were the particle size (d), the flotation time (t), the type of collector (k), and the dosage of the collector (s). The considered vector function is then (β(d, t, k, s), ϑ(d, t, k, s), ε(d, t, k, s)). In this work, the optimization was based on determining the values of the adjustable factors (d, t, k, s). The goal was to obtain the possibly highest values of the functions β and ε (maximum) with the possibly lowest values of the function ϑ (minimum). To this end, taxonomic methods were applied. Thanks to the applied method, the optimum—with the adopted assumptions—was found. The presented methodology can be successfully applied in the search for the optima in a variety of technological processes. Full article
Show Figures

Figure 1

14 pages, 2714 KB  
Article
Bubble Size Distribution Characteristics of a Jet-Stirring Coupling Flotation Device
by Youli Han, Jinbo Zhu, Liang Shen, Wei Zhou, Yunjia Ling, Xinyue Yang, Shuo Wang and Qiao Dong
Minerals 2019, 9(6), 369; https://doi.org/10.3390/min9060369 - 20 Jun 2019
Cited by 19 | Viewed by 4499
Abstract
In this study, a new jet-stirring coupling flotation device that incorporates the advantages of three conventional flotation machines (specifically, Jameson cell, mechanical flotation cell, flotation column) was designed based on jet suction. The suction capacity of a double cosine self-aspirated nozzle utilized by [...] Read more.
In this study, a new jet-stirring coupling flotation device that incorporates the advantages of three conventional flotation machines (specifically, Jameson cell, mechanical flotation cell, flotation column) was designed based on jet suction. The suction capacity of a double cosine self-aspirated nozzle utilized by the device was analyzed under different feeding pressures, and the effects of frother concentration, feeding pressure, suction capacity, and height of sampling location on the bubble size distribution (BSD) were investigated using a high-speed video system. It was found that a large amount of air was sucked into the flotation cell by the self-aspirated nozzle arranged in a non-submerged manner, which met the requirements of flotation in terms of the suction amount of air. The suction capacity showed a positive linear correlation with negative pressure inside the nozzle. When the Methyl isobutyl carbinol (MIBC) concentration reached the critical coalescence concentration (CCC), the bubble size stabilized at approximately 0.31 mm, which was smaller than the bubble size produced by the conventional flotation machine. This indicated that bubbles suitable for flotation were generated. D32 linearly decreased with increasing of feeding pressures and conversely increased with increasing suction capacities and sampling location heights, independent of the frother concentration. Full article
Show Figures

Graphical abstract

Back to TopTop