Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Kamchatka Peninsula

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4848 KB  
Article
Characterization and Mapping of Conservation Hotspots for the Climate-Vulnerable Conifers Abies nephrolepis and Picea jezoensis in Northeast Asia
by Seung-Jae Lee, Dong-Bin Shin, Jun-Gi Byeon, Sang-Hyun Lee, Dong-Hyoung Lee, Sang Hoon Che, Kwan Ho Bae and Seung-Hwan Oh
Forests 2025, 16(7), 1183; https://doi.org/10.3390/f16071183 - 18 Jul 2025
Viewed by 465
Abstract
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and [...] Read more.
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and human disturbances, necessitating accurate habitat identification for effective conservation. While protected areas (PAs) are essential, merely expanding existing ones often fail to protect populations under human pressure and climate change. Using species distribution models with current and projected climate data, we mapped potential habitats across Northeast Asia. Spatial clustering analyses integrated with PA and land cover data helped identify optimal sites and priorities for new conservation areas. Ensemble species distribution models indicated extensive suitable habitats, especially in southern Sikhote-Alin, influenced by maritime-continental climates. Specific climate variables strongly affected habitat suitability for both species. The Kamchatka peninsula consistently emerged as an optimal habitat under future climate scenarios. Our study highlights essential environmental characteristics shaping the habitats of these species, reinforcing the importance of strategically enhancing existing PAs, and establishing new ones. These insights inform proactive conservation strategies for current and future challenges, by focusing on climate refugia and future habitat stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

26 pages, 27571 KB  
Article
Nutrient Fluxes from the Kamchatka and Penzhina Rivers and Their Impact on Coastal Ecosystems on Both Sides of the Kamchatka Peninsula
by Pavel Semkin, Galina Pavlova, Vyacheslav Lobanov, Kirill Baigubekov, Yuri Barabanshchikov, Sergey Gorin, Maria Shvetsova, Elena Shkirnikova, Olga Ulanova, Anna Ryumina, Ekaterina Lepskaya, Yuliya Fedorets, Yi Xu and Jing Zhang
J. Mar. Sci. Eng. 2025, 13(3), 569; https://doi.org/10.3390/jmse13030569 - 14 Mar 2025
Viewed by 947
Abstract
Catchment areas on volcanic territories in different regions are of great interest since they are enriched with nutrients that contribute significantly to coastal ecosystems. The Kamchatka Peninsula is one of the most active volcanic regions of the world; however, to date, the chemistry [...] Read more.
Catchment areas on volcanic territories in different regions are of great interest since they are enriched with nutrients that contribute significantly to coastal ecosystems. The Kamchatka Peninsula is one of the most active volcanic regions of the world; however, to date, the chemistry of its river waters and the state of its coastal ecosystems remain understudied in connection with volcanism. The two rivers under study are the largest in this region. The Kamchatka River, unlike the Penzhina River, drains volcanic territories, including the areas of the most active volcanoes of the Klyuchevskaya group of volcanoes and the Shiveluch Volcano. The mouth of the Kamchatka River has been shown to have DIP and DIN concentrations of 2.79–3.87 and 10.0–23.8 µM, respectively, during different seasons, which are comparable to rivers in urbanized areas with sewerage and agricultural sources of nutrients. It has been established that volcanoes form high concentrations of nutrients in the catchment area of the Kamchatka River. The Penzhina River has had very low DIP and DIN concentrations of 0.2–0.8 and 0.17–0.35 µM, respectively, near the mouth during different seasons, but high concentrations of DOC, at 5.9 mg/L in spring, which may be due to seasonal thawing of permafrost. During the period of increasing river discharge, seasonal phytoplankton blooms occur in spring and summer in bays of the same name, as shown using satellite data. The biomass of zooplankton in Penzhina Bay is at a level of 100 mg/L, while in Kamchatka Gulf, it exceeds 2000 mg/L. Thus, the biomass of zooplankton in the receiving basin, which is influenced by the runoff of the Kamchatka River with a volcanic catchment area in eastern Kamchatka, is 20 times higher than in the basin, which has a small nutrient flux with the river runoff in northwestern Kamchatka. This study demonstrates the connection between nutrient fluxes from a catchment area and the formation of seasonal phytoplankton blooms and high zooplankton biomass in the coastal area. We also study seasonal, year-to-year, and climatic variability of water discharges and hydrometeorological conditions to understand how nutrient fluxes can change in the foreseeable future and influence coastal ecosystems. Full article
(This article belongs to the Special Issue Coastal Water Quality Observation and Numerical Modeling)
Show Figures

Figure 1

30 pages, 4298 KB  
Article
A Verification of Seismo-Hydrogeodynamic Effect Typifications Recorded in Wells on the Kamchatka Peninsula: The 3 April 2023 Earthquake, Mw = 6.6, as an Example
by Galina Kopylova and Svetlana Boldina
Water 2025, 17(5), 634; https://doi.org/10.3390/w17050634 - 21 Feb 2025
Viewed by 652
Abstract
Long-term observations in wells make it possible to study changes in groundwater pressure/level during individual earthquakes (seismo-hydrogeodynamic effects—SHGEs) over a wide range of periods of their manifestation. Information on the morphological features and durations of the SHGEs together with data on earthquake parameters [...] Read more.
Long-term observations in wells make it possible to study changes in groundwater pressure/level during individual earthquakes (seismo-hydrogeodynamic effects—SHGEs) over a wide range of periods of their manifestation. Information on the morphological features and durations of the SHGEs together with data on earthquake parameters form the basis for creating the unique typifications of SHGEs for individual observation wells. With reliable verification, such SHGE typifications provide the practical use of well observation data to predict strong earthquakes and assess their impact on groundwater. During long-term (1996–2022) precision observations of pressure/water level variations in wells of the Petropavlovsk–Kamchatsky test site (Kamchatka Peninsula, northwest Pacific seismic belt), SHGE typifications describing the manifestations of various types of SHGEs at the earthquakes in ranges of magnitudes Mw = 5.0–9.1 and epicentral distances de = 80–14,600 km were developed. At the same time, the issue of verifying created SHGE typifications for individual wells in relation to the strongest and closest earthquakes, accompanied by noticeable tremors in the observation area, is relevant. On 3 April 2023, an earthquake, Mw = 6.6 (EQ), occurred at an epicentral distance de = 67–77 km from observation wells. Various changes in the groundwater pressure/level were recorded in the wells: oscillations and other short-term and long-term effects of seismic waves, coseismic jumps in water pressure caused by a change in the static stress state of water-bearing rocks during the formation of rupture in the earthquake source, and supposed hydrogeodynamic precursors. The EQ was used to verify the SHGE typifications for wells YuZ-5 and E-1 with the longest observation series of more than 25 years. In these wells, the seismo-hydrogeodynamic effects recorded during the EQ corresponded to the previously observed SHGE during the two strongest earthquakes with Mw = 7.2, de = 80 km and Mw = 7.8, de = 200 km. This correspondence is considered an example of the experimental verification of previously created SHGE typifications in individual wells in relation to the most powerful earthquakes in the wells’ area. Updated SHGE typifications for wells E-1 and YuZ-5 are presented, showing the patterns of water level/pressure changes in these wells depending on earthquake parameters and thereby increasing the practical significance of well observations for assessing earthquake consequences for groundwater, searching for hydrogeodynamic precursors and forecasting strong earthquakes. The features of the hydrogeodynamic precursor manifesting in the water level/pressure lowering with increased rates in well E-1 before earthquakes with Mw ≥ 5.0 at epicentral distances of up to 360 km are considered. A retrospective statistical analysis of the prognostic significance of this precursor showed that its use for earthquake forecasting increases the efficiency of predicting earthquakes with Mw ≥ 5.0 by 1.55 times and efficiency of predicting earthquakes with Mw ≥ 5.8 by 2.34 times compared to random guessing. This precursor was recorded during the 92 days before the EQ and was identified in real time with the issuance of an early prognostic conclusion on the possibility of a strong earthquake to the Kamchatka branch of the Russian Expert Council for Earthquake Forecasting. Full article
(This article belongs to the Special Issue How Earthquakes Affect Groundwater)
Show Figures

Figure 1

20 pages, 8013 KB  
Review
Symbionts of Red King Crab from the Sea of Okhotsk: A Review of Russian Studies
by Alexander G. Dvoretsky and Vladimir G. Dvoretsky
Biology 2025, 14(2), 148; https://doi.org/10.3390/biology14020148 - 31 Jan 2025
Viewed by 991
Abstract
The red king crab, Paralithodes camtscaticus, is a commercially significant crustacean that supports lucrative fisheries in Russia, the USA, and Norway. The western Kamchatka shelf, located in the Sea of Okhotsk, is home to one of the most important populations of the [...] Read more.
The red king crab, Paralithodes camtscaticus, is a commercially significant crustacean that supports lucrative fisheries in Russia, the USA, and Norway. The western Kamchatka shelf, located in the Sea of Okhotsk, is home to one of the most important populations of the red king crab. In this study, we have conducted a review of the symbionts associated with P. camtscaticus in the waters off the Kamchatka Peninsula. A total of 42 symbiotic species belonging to 14 different phyla were identified in association with the red king crab. Out of these, 14 species were found to be parasitic to the red king crab, while the remaining 28 were either commensal or epibiont in nature. The taxa with the highest number of associated species included ciliates (11), crustaceans (8), and acanthocephalans (4). Our study found that red king crabs suffering from shell disease exhibited a more diverse symbiotic fauna and higher infestation indices as compared to healthy crabs, which were found to be free from parasites. Dangerous symbionts, such as dinoflagellates Hematodinium sp. and rhizocephalan barnacles Briarosaccus callosus, had low incidence rates, indicating that the red king crab population in the Sea of Okhotsk is in good condition with respect to population abundance, health, and recruitment and is not being adversely impacted by symbiotic organisms. Full article
(This article belongs to the Special Issue Epibiosis in Aquatic Environments)
Show Figures

Figure 1

20 pages, 4957 KB  
Article
Spatiotemporal Variability of Anthropogenic Film Pollution in Avacha Gulf near the Kamchatka Peninsula Based on Synthetic-Aperture Radar Imagery
by Valery Bondur, Vasilisa Chernikova, Olga Chvertkova and Viktor Zamshin
J. Mar. Sci. Eng. 2024, 12(12), 2357; https://doi.org/10.3390/jmse12122357 - 21 Dec 2024
Cited by 1 | Viewed by 909
Abstract
The paper addresses the spatiotemporal variability of anthropogenic film pollution (AFP) in Avacha Gulf near the Kamchatka Peninsula based on satellite synthetic-aperture radar (SAR) imagery. Coastal waters of the study area are subject to significant anthropogenic impacts associated with intensive marine traffic, as [...] Read more.
The paper addresses the spatiotemporal variability of anthropogenic film pollution (AFP) in Avacha Gulf near the Kamchatka Peninsula based on satellite synthetic-aperture radar (SAR) imagery. Coastal waters of the study area are subject to significant anthropogenic impacts associated with intensive marine traffic, as well as the flow of household and industrial wastewater from factories located on the coast. A quantitative approach to the registration and quantitative analysis of spatiotemporal AFP distributions was applied. This approach is based on the processing of long-term time series of SAR imagery, taking into account inhomogeneous observation coverage and changing hydrometeorological conditions of different regions of water areas in various time periods. In total, 318 cases of AFP were detected in 2014–2023 in Avacha Gulf, covering 332 km2 of the total area (~3% of the water area) based on the 1134 processed radar Sentinel-1A/B scenes. The average value of AFP exposure, e, was about 93 ppm, evidencing the high level of AFP in the studied water area (comparable to areas of the Black Sea with intensive marine traffic, for which e was previously determined to be between ~90 and ~130 ppm). An interannual positive trend was revealed, indicating that over the 10-year period under study, the exposure of the waters of Avacha Bay (the most polluted part of Avacha Gulf) to AFP increased ~3-fold. An analysis of AFP spatial distributions and marine traffic maps indicates that this type of activity is a significant source of anthropogenic film pollution in Avacha Gulf (including Avacha Bay). It was shown that the generated quantitative information products using the introduced AFP exposure concept can be interpreted and used, for example, for making management decisions. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

58 pages, 67772 KB  
Article
Diatom Diversity from Watercourses of North-Eastern Kamchatka with Description of One New Species
by Elena M. Kezlya, Anton M. Glushchenko and Maxim S. Kulikovskiy
Diversity 2024, 16(9), 592; https://doi.org/10.3390/d16090592 - 23 Sep 2024
Cited by 1 | Viewed by 2512
Abstract
A study of diatoms in eight watercourses (four spawning rivers and four streams) in the area of the Ozernovsky Mining and Metallurgical Complex (MMC) on the Kamchatka Peninsula was carried out for the first time. A total of 174 taxa were identified, and [...] Read more.
A study of diatoms in eight watercourses (four spawning rivers and four streams) in the area of the Ozernovsky Mining and Metallurgical Complex (MMC) on the Kamchatka Peninsula was carried out for the first time. A total of 174 taxa were identified, and a comparative analysis of periphyton species diversity at the sampling stations was carried out. A new species for science was proposed: Gomphonema anissimovae Glushchenko, Kezlya & Kulikovskiy sp. nov. The composition and quantitative characteristics of plankton were analysed only in samples collected from rivers. It was shown that all rivers are oligotrophic in terms of phytoplankton biomass. The work includes lists of taxa with indication of their abundance, as well as illustrative material of found diatom taxa, which will provide an opportunity to monitor changes in planktonic and periphyton microalgae communities in the studied watercourses in the context of potentially high anthropogenic load from industry. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

29 pages, 26294 KB  
Article
Minerals of the Au-Cu-Ag System in Grains from the Placers of the Olkhovaya-1 River (Eastern Kamchatka, Russia)
by Galina A. Palyanova, Tatiana V. Beliaeva, Dmitry P. Savelyev and Yurii V. Seryotkin
Minerals 2024, 14(5), 448; https://doi.org/10.3390/min14050448 - 24 Apr 2024
Cited by 4 | Viewed by 1752
Abstract
Heterogeneous grains in the heavy fractions of the placers of the Olkhovaya-1 river (Kamchatka Cape Peninsula, Eastern Kamchatka, Russia) containing Au-Ag, Au-Cu, and Au-Ag-Cu particles were analyzed using scanning electron microscopy, electron-probe microanalysis, and X-ray powder diffractometry. The analyses showed that auricupride dominates [...] Read more.
Heterogeneous grains in the heavy fractions of the placers of the Olkhovaya-1 river (Kamchatka Cape Peninsula, Eastern Kamchatka, Russia) containing Au-Ag, Au-Cu, and Au-Ag-Cu particles were analyzed using scanning electron microscopy, electron-probe microanalysis, and X-ray powder diffractometry. The analyses showed that auricupride dominates in some grains, whereas in others, the main phases are tetra-auricupride or Ag-rich and (or) Au-rich alloys. It was revealed that in the central parts of some grains of exsolution structures, auricupride Cu3.04–2.74Au0.96–1.26 (Ag < 1 wt.%) occurs in intergrowths with low-fineness Ag0.86–0.67Au0.09–0.33Cu<0.05 solid solutions (160‰–480‰), and tetra-auricupride Cu1.12–0.87Au0.88–1.11Ag<0.02 (Ag < 2 wt.%) occurs with higher-fineness Au0.73–0.62Ag0.2–0.38Cu<0.07 solid solutions (520‰–850‰). We also observed, mainly in the peripheral parts of the grains, insignificant amounts of secondary phases that were compositionally similar to Cu2Au, Cu3Au2, Au3Cu2, Au2Cu, Au3Cu, high-fineness gold with impurities of Cu and occasionally Ag (>850‰), and pure gold. In intergrowths with auricupride and tetra-auricupride, we also observed earlier-formed silicates (garnet, pyroxene, chlorite, epidote, titanite), syngenetic sulfides (pyrrhotite, bornite, galena), and later minerals (chalcocite, covellite, anilite, cuprite, goethite, etc.). The XRD analysis of the peripheral parts of some grains showed the presence of auricupride (Cu3Au), tetra-auricupride CuAu (I) and Cu(Au0.92Ag0.08) (II), and gold. The profiles show the absence of peaks of the Au3Cu phase and other Au-Ag-Cu phases identified by the EMPA, which is likely due to their low concentrations in the samples or their structural similarity to gold. It is assumed that the probable source of Au-Ag-Cu mineralization in the Olkhovaya-1 river placers is located in the upper reaches of watercourses that erode the ultrabasic massif of Mounts Soldatskaya and Golaya (Kamchatka Cape Peninsula). Full article
Show Figures

Figure 1

23 pages, 4752 KB  
Article
Studying Conditions of Intense Harmful Algal Blooms Based on Long-Term Satellite Data
by Valery Bondur, Olga Chvertkova and Viktor Zamshin
Remote Sens. 2023, 15(22), 5308; https://doi.org/10.3390/rs15225308 - 9 Nov 2023
Viewed by 2007
Abstract
Harmful algal blooms (HABs) adversely impact aquatic organisms, human health, and the marine economy. The need to understand the origins and mechanisms of HAB occurrence and development determines the relevance of the study of these phenomena, including using remote sensing methods and assets. [...] Read more.
Harmful algal blooms (HABs) adversely impact aquatic organisms, human health, and the marine economy. The need to understand the origins and mechanisms of HAB occurrence and development determines the relevance of the study of these phenomena, including using remote sensing methods and assets. Here we present the results of a comprehensive study of conditions and precursors of some intense HABs detected in the water areas near the island of Chiloe (Chile, 2016), near the Kamchatka Peninsula (Russia, 2020), near the island of Hokkaido (Japan, 2021), among others. The study involves statistical analysis of long-term satellite and model data arrays on significant parameters of the marine environment and near-surface atmosphere, as well as empirical modeling of HAB risks. Information products on the following environmental parameters were used: sea surface temperature (SST, NOAA OISST, since 1981), the level of photosynthetically active radiation (PAR) and chlorophyll-a concentration (MODIS Ocean Color SMI, since 2000), sea surface salinity and height (HYCOM, since 1993), and near-surface wind speed and direction (NCEP CFSv2, since 1979). Quantitative assessments of the dynamics of informative criteria were applied. The key criterion is the ratio (Δσ) of the absolute deviation of the studied parameter from the expected norm to the RMS deviation of its values. Intense HABs were often preceded by excessive SST (up to Δσ ~1.99) and PAR (up to Δσ ~2.25) values, as well as low near-surface wind speed (up to Δσ ~−1.83). These environmental parameters considerably contribute to HAB generation and intensification. An approach and empirical function were proposed that allow us to assess the risk of HAB phenomena and reveal their precursors. Using the proposed approach and empirical function, the precursors of ten HABs were identified, nine of which were confirmed by in situ data. The results can be used as a tool for forecasting and studying the conditions for the occurrence of HABs, representing one of the promising directions for monitoring these dangerous phenomena. Full article
Show Figures

Graphical abstract

32 pages, 3091 KB  
Article
Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing
by Olga Girina, Alexander Manevich, Evgeny Loupian, Ivan Uvarov, Sergey Korolev, Aleksei Sorokin, Iraida Romanova, Lubov Kramareva and Mikhail Burtsev
Remote Sens. 2023, 15(19), 4775; https://doi.org/10.3390/rs15194775 - 30 Sep 2023
Cited by 8 | Viewed by 2932
Abstract
The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of [...] Read more.
The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of volcanoes and predict their danger to the population. The Kamchatka Peninsula in Russia, with its 30 active volcanoes, is one of the most volcanically active regions in the world. The article considers the thermal activity in 2015–2022 of the Klyuchevskoy, Sheveluch, Bezymianny, and Karymsky volcanoes, whose rock composition varies from basaltic andesite to dacite. This study is based on the analysis of the Value of Temperature Difference between the thermal Anomaly and the Background (the VTDAB), obtained by manual processing of the AVHRR, MODIS, VIIRS, and MSU-MR satellite data in the VolSatView information system. Based on the VTDAB data, the following “background activity of the volcanoes” was determined: 20 °C for Sheveluch and Bezymianny, 12 °C for Klyuchevskoy, and 13–15 °C for Karymsky. This study showed that the highest temperature of the thermal anomaly corresponds to the juvenile magmatic material that arrived on the earth’s surface. The highest VTDAB is different for each volcano; it depends on the composition of the eruptive products produced by the volcano and on the character of an eruption. A joint analysis of the dynamics of the eruption of each volcano and changes in its thermal activity made it possible to determine the range of the VTDAB for different phases of a volcanic eruption. Full article
(This article belongs to the Special Issue Volcano Thermal Activity Monitoring Using Remote Sensing)
Show Figures

Graphical abstract

24 pages, 9247 KB  
Article
Mineralogy of Agates with Amethyst from the Tevinskoye Deposit (Northern Kamchatka, Russia)
by Evgeniya N. Svetova, Galina A. Palyanova, Andrey A. Borovikov, Viktor F. Posokhov and Tatyana N. Moroz
Minerals 2023, 13(8), 1051; https://doi.org/10.3390/min13081051 - 9 Aug 2023
Cited by 7 | Viewed by 3480
Abstract
The Tevinskoye agate deposit is located in the North of the Kamchatka peninsula (Russia) and represented by agate-bearing Eocene basaltic and andesitic rocks of the Kinkilsk complex. Agate mineralization occurs in lavas and tuffs as amygdales, geodes, lenses and veins, which are the [...] Read more.
The Tevinskoye agate deposit is located in the North of the Kamchatka peninsula (Russia) and represented by agate-bearing Eocene basaltic and andesitic rocks of the Kinkilsk complex. Agate mineralization occurs in lavas and tuffs as amygdales, geodes, lenses and veins, which are the main sources of the resupply of coastal agate placers. The present study aimed to perform a comprehensive mineralogical, geochemical, and O-isotope investigation of amethyst-bearing agates, and to evaluate data concerning the origin of mineralization and the conditions for amethyst formation. Agates exhibit spectacular textures, with variation in the sequence of silica filling of amygdales and geodes. The mineral composition of the agates is mainly represented by micro- and macro-crystalline quartz, amethyst, length-fast and zebraic chalcedony, moganite, goethite, and clinoptilolite. Carbonate forms individual bands in the outer zones of some agates. The presence of small amounts of native copper, covellite, chalcopyrite and pyrite is a feature of these agates. Copper and iron mineralization are probably typomorphic features related to the host rock composition. The measured values of crystallite size (525–560 Å) and the high moganite content (up to 50%) of agate with amethyst are evidenced by the young age (~45 Ma) of agate-hosting rocks. Agate formation temperatures (21–229 °C) were calculated from the O-isotope composition of chalcedony (+19.6 to +25.5‰), quartz (+18.1 to +22.3‰), and amethyst (+18.2 to +21.5‰). The cold-water monophase fluid inclusions revealed in amethyst crystals suggest that the mineralizing fluids have low temperatures (<100 °C) and low salinity. Magnetite grains in host rock, together with goethite inclusions identified within the amethyst crystals, point to a change in redox conditions and the presence of iron in the agate-forming fluids, which entered the quartz lattice during crystallization and influenced the formation of the violet color. Full article
(This article belongs to the Special Issue Gem Characterisation)
Show Figures

Figure 1

18 pages, 3998 KB  
Article
Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range
by Anastasia M. Khrustaleva
Diversity 2023, 15(7), 853; https://doi.org/10.3390/d15070853 - 14 Jul 2023
Cited by 3 | Viewed by 1855
Abstract
The variability of an MHC complex gene in sockeye salmon populations throughout the Asian range was studied to identify “footprints” indicative of pathogen-mediated selection and neutral demographic processes that have influenced these populations in both the recent and distant past. Genotype frequencies of [...] Read more.
The variability of an MHC complex gene in sockeye salmon populations throughout the Asian range was studied to identify “footprints” indicative of pathogen-mediated selection and neutral demographic processes that have influenced these populations in both the recent and distant past. Genotype frequencies of a haplotype block consisting of two SNP loci (One_MHC2_109 and One_MHC2_190v2) in the Onne-DAB gene encoding the β-chain of the MHC class II molecule as well as allelic frequencies of 29 putative neutral SNPs have been traced in 27 sockeye salmon populations in the Asian Pacific coast. Differently directed clines of genetic diversity at the MHC2 loci were observed in sockeye salmon populations inhabiting the Sea of Okhotsk and Pacific coasts of the Kamchatka Peninsula. The formation of these clines can be attributed to a combination of historical processes associated with the colonization of the Asian range and the latitudinal gradient of abiotic and biotic factors influencing the variability of the Onne-DAB gene. In continental populations of sockeye salmon, balancing selection was not intense enough to conceal the impacts of demographic and historical processes associated with the fragmentation of the area in the late Pleistocene. In contrast, in island populations, balancing selection effectively maintained the diversity of the Onne-DAB gene despite a significant decrease in polymorphism observed in neutral regions of the genome. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

18 pages, 3227 KB  
Article
Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka
by Pavel Semkin, Galina Pavlova, Vyacheslav Lobanov, Yuri Barabanshchikov, Sergey Kukla, Sergey Sagalaev, Maria Shvetsova, Elena Shkirnikova, Petr Tishchenko, Evgenia Tibenko, Olga Ulanova and Pavel Tishchenko
J. Mar. Sci. Eng. 2023, 11(7), 1299; https://doi.org/10.3390/jmse11071299 - 26 Jun 2023
Cited by 3 | Viewed by 1826
Abstract
Nutrient fluxes with river runoff can largely determine the state of coastal water ecosystems. The Vilyuchinskaya and Avachinskaya Bays of Kamchatka Peninsula were surveyed on 4–5 July 2022, just after the peak of the spring–summer flood of the Vilyucha and Avacha Rivers associated [...] Read more.
Nutrient fluxes with river runoff can largely determine the state of coastal water ecosystems. The Vilyuchinskaya and Avachinskaya Bays of Kamchatka Peninsula were surveyed on 4–5 July 2022, just after the peak of the spring–summer flood of the Vilyucha and Avacha Rivers associated with the snow melting in volcanic areas. Additionally, water sampling was performed in river water in December 2022, in the period of winter low water. A general undersaturation of CO2 of surface waters was observed in the Vilyuchinskaya and Avachinskaya Bays. Strong supersaturation of CO2 of the near-bottom waters was observed, due to microbial destruction of organic matter, especially in Avachinskaya Bay. This organic matter was formed as a result of photosynthesis in the water column, which subsequently gravitated to the bottom and concentrated in specific bottom depressions in the studied bays. In these depressions, black sediments were found, in which sulfate reduction occurred. The porewater of sediments had a very high concentration of organic carbon, dissolved and organic nitrogen, and phosphates, as well as CO2 partial pressure. The source of nutrients for the studied bays is tephra (volcanic suspended particles), which covers all the watersheds, including the soil and snow, as a result of volcanic activity in the study region. Based on the calculated nutrient fluxes in river runoff for the summer and winter seasons and the DIN/DIP ratios in river, sea, and pore waters, the causes of phytoplankton blooms, including the occurrence of red tides, are discussed. The maximum flux of nutrients and, accordingly, phytoplankton blooms should be expected in the years with the highest volcanic activity and high summer air temperatures, since the melting of nutrient-rich snow and ice will be maximum. This will determine the flux of nutrients in the river runoff of the Kamchatka Peninsula and contribute to phytoplankton blooms. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

32 pages, 12845 KB  
Article
Seismo-Hydrogeodynamic Effects in Groundwater Pressure Changes: A Case Study of the YuZ-5 Well on the Kamchatka Peninsula
by Galina Kopylova and Svetlana Boldina
Water 2023, 15(12), 2174; https://doi.org/10.3390/w15122174 - 8 Jun 2023
Cited by 3 | Viewed by 2173
Abstract
Seismo-hydrogeodynamic effects (SHGEs) in groundwater level (pressure) variations in a range of periods from minutes to hours and days during local and teleseismic earthquakes were considered based on the data of precision observations in a deep piezometric well located in a seismically active [...] Read more.
Seismo-hydrogeodynamic effects (SHGEs) in groundwater level (pressure) variations in a range of periods from minutes to hours and days during local and teleseismic earthquakes were considered based on the data of precision observations in a deep piezometric well located in a seismically active region. With the use of the tidal analysis and frequency dependence of the barometric response of the water level, a static confined response of groundwater pressure in a range of periods from hours to the first tens of days was established. The annual water level trend was characterized by the seasonal function of a hydrostatic head change in the well. In the groundwater pressure, changes were detected due to several types of seismo-hydrogeodynamic effects: 1—the coseismic fluctuations during the first tens of seconds and minutes after the arrival of seismic waves from the earthquakes with magnitudes of 5.3–9.1 at epicentral distances of 80–700 km; 2—the supposed hydrogeodynamic precursors of the two strongest events; 3—the four types of variations under the vibration impact of seismic waves from Mw = 6.8–9.1 earthquakes at epicentral distances of 80–14,600 km. The dependence of the distinguished types of SHGEs on the earthquake parameters, the intensity of the seismic impact in the well area and the amplitude-frequency composition of seismic waves were considered. Full article
(This article belongs to the Special Issue How Earthquakes Affect Groundwater)
Show Figures

Figure 1

14 pages, 1969 KB  
Article
Ecotonic Communities of Diatoms in the Southeastern Part of the Kamchatka Peninsula
by Alfiya I. Fazlutdinova, Rezeda Z. Allaguvatova and Lira A. Gaysina
Earth 2023, 4(2), 209-222; https://doi.org/10.3390/earth4020011 - 30 Mar 2023
Cited by 3 | Viewed by 2339
Abstract
Data about the ecotonic diatom communities of the Kamchatka Peninsula, a unique territory with strong volcanic activity, are very limited. We aimed to investigate diatom algae of the ecotones in the southeastern part of Kamchatka, including the Paratunka river valley, at the foot [...] Read more.
Data about the ecotonic diatom communities of the Kamchatka Peninsula, a unique territory with strong volcanic activity, are very limited. We aimed to investigate diatom algae of the ecotones in the southeastern part of Kamchatka, including the Paratunka river valley, at the foot of the Vachkazhets volcano, and the bank of the Bystraya river. In total, 55 taxa were identified. The most diverse were the flora of the Paratunka river, with 31 taxa. Near the Bystraya river, 26 taxa were identified. Near the Vachkazhets volcano, 18 taxa were identified. Fragilariforma virescens, Planothidium lanceolatum, Pinnularia cf. subcapitata, Halamphora normanii, Nitzschia palea, and Eunotia exigua were the dominant species in the studied ecosystems, with the maximum abundance score. Pinnularia cf. subcapitata and Planothidium lanceolatum were found in all ecotones. In the studied habitats, small indifferent alkaliphilic cosmopolitan species prevailed. Our study revealed that the diatom species composition of the Kamchatka ecotones reflects their adaptability to survive in the extreme conditions of volcanic substrates. The results contribute to our knowledge of the ecology and biogeography of a number of diatom taxa. Full article
Show Figures

Figure 1

20 pages, 18699 KB  
Article
Au-Ag-Se-Te-S Mineralization in the Maletoyvayam High-Sulfidation Epithermal Deposit, Kamchatka Peninsula
by Nadezhda Tolstykh, Maria Shapovalova and Maksim Podlipsky
Minerals 2023, 13(3), 420; https://doi.org/10.3390/min13030420 - 16 Mar 2023
Cited by 9 | Viewed by 2282
Abstract
The Maletoyvayam high-sulfidation (HS) epithermal Au-Ag deposit is one of the numerous hydrothermal deposits of the Kamchatka volcanogenic belt, consisting of two main associations: Au-rich (Ag-free) and Ag-bearing. The first one derived from acidic solutions, whereas the second assemblage crystallized from moderately dilute [...] Read more.
The Maletoyvayam high-sulfidation (HS) epithermal Au-Ag deposit is one of the numerous hydrothermal deposits of the Kamchatka volcanogenic belt, consisting of two main associations: Au-rich (Ag-free) and Ag-bearing. The first one derived from acidic solutions, whereas the second assemblage crystallized from moderately dilute solutions, with both occurring at high oxygen fugacity. The Au-rich association contains the most atypical gold chalcogenides of the Au-Se-Te-S system, which are characterized by Se-S and Te-Se substitutions, e.g., a complete series from maletoyvayamite to tolstykhite Au3(Se,S)4Te6; a series of auroselenide Au(Se1.00–0.64S0.36–0.00); a combined series of gachingite Au(Te,Se) and unnamed Au(Se,Te): Au(Te0.80–0.40Se0.20–0.60). Meanwhile, in the second Ag-bearing assemblage, sulfides of the Au-Ag type prevails, e.g., petrovskaite AuAgS, miargyrite (Ag,Au)(Sb,As)S2, uytenbogaardtite Ag3AuS2, fischesserite Ag3AuSe2 with Au-Ag substitution, and tolstykhite. The Se/S ratio, of the second association, decreases while increasing the Ag concentration in the ore-forming system, including Au-Ag substitutions. The Au content in miargyrite (Au,Ag)SbS3 reaches up to 0.48 apfu, suggesting the existence of a new mineral phase of composition AgAuSb2S6. Au oxide complexes, in both associations, are represented by either a mixture of redeposited gold and Fe-Sb oxide or a homogeneous (Au,Sb,Fe)2O3 composition. These oxides are formed by replacement of calaverite. The ore mineralization of this HS deposit is considered unique due to the special conditions of the ore-forming environment, such as acidic solutions, high oxygen fugacity, and log fSe2 above −5.7; all contributed to the formation of AuSe phases. Full article
(This article belongs to the Special Issue Precious Metals vs. Base Metals: Nature and Experiment)
Show Figures

Figure 1

Back to TopTop