Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Loci Selection
2.3. Sample Selection
2.4. SNP Genotyping and Data Borrowing
# | Region | Location | Pop. ID | Description | Date of Catch | Source | n | Ho(SD) | He(SD) | eMLG (SD) | LD p-Value | HWE p-Value | FIS | EW Pr (Fsim ≤ Fobs) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chukotka, Navarin region | Vaamochka Lake | Ch | Adult fish, tributary ecotype | 28 July 2004 | our data | 50 | 0.398(0.049) | 0.049(0.429) | 6.27 (0.88) | 0.6296 | 0.7676 | 0.073 | 0.043 * |
2 | Kamchatka peninsula, Olyutor region | Severnaya Lagoon | KSL | No data | 26 June 2002 | [29] | 98 | 0.328(0.034) | 0.034(0.31) | 4.52 (1) | 0.8598 | 0.0354 | −0.058 | 0.277 |
3 | Anana Lagoon | KAL | Adult fish, early and late run mixed | 24 June 2002 | [29] | 80 | 0.033(0.014) | 0.014(0.033) | 1.75 (0.73) | 0.0771 | 1 | −0.011 | 0.992 * | |
4 | Apuka River, Lake Vatit | KAvat | Adult fish, lake form | 7 August 2002 | [29] | 51 | 0.406(0.05) | 0.05(0.41) | 4.81 (0.83) | 0 * | 0.561 | 0.008 | 0.104 | |
5 | Apuka River, early run | KAerl | Adult fish, lake form | 24 June 2008–25 June 2008 | our data | 18 | 0.429(0.066) | 0.066(0.438) | 5.37 (0.9) | 0.0006 * | 1 | 0.023 | 0.052 | |
6 | Apuka River, late run | KAlt | Adult fish, river form | 24 June 2008–25 June 2008 | our data | 28 | 0.167(0.062) | 0.062(0.244) | 3.79 (0.41) | 0.003 * | 0.245 | 0.325 | 0.774 | |
7 | Pakhacha River | KPh | Adult fish, mixed sample | 17 June 2005–27 June 2005 | our data | 59 | 0.39(0.045) | 0.045(0.432) | 4.13 (0.79) | 0 * | 0.5232 | 0.098 | 0.045 * | |
8 | Pakhacha River, Lake Potat | KPhpot | Adult fish, lake form | 29 July 2001 | [29] | 50 | 0.459(0.05) | 0.05(0.438) | 4.51 (0.83) | 0 * | 0.9588 | −0.049 | 0.030 * | |
9 | Kamchatka peninsula, East Сoast | Kamchatka River, late run | KK-04 | Adult fish, mixed sample | 29 June 2004–09 July 2004 | our data | 82 | 0.029(0.013) | 0.013(0.273) | 3.03 (0.87) | 0.0046 * | 0 * | 0.893 | 0.367 |
10 | Kamchatka River, early run | KK-05 | Adult fish, mixed sample | 14 June 2005 | our data | 15 | 0.067(0.046) | 0.046(0.434) | 5 (0) | 0.2444 | 0.0001 * | 0.851 | 0.122 | |
11 | Azabachje Lake, Bushuyka River | KKa | Spawners, tributary ecotype | 3 July 2004–13 July 2004 | our data | 81 | 0.306(0.036) | 0.036(0.361) | 3.48 (0.75) | 0 * | 0.1817 | 0.152 | 0.407 | |
12 | Dvu ’Yurtochnaya River | KKd | No data | 1994, 1995 | [29] | 88 | 0.282(0.034) | 0.034(0.421) | 6.16 (1.03) | 0.0061 * | 0.0002 * | 0.332 | 0.073 | |
13 | Elovka River | KKe | No data | 1994, 1995 | [29] | 109 | 0.164(0.025) | 0.025(0.358) | 4.26 (0.88) | 0.0001 * | 0 * | 0.545 | 0.126 | |
14 | Avacha River | KAv | Adult fish, mixed sample | 2002 | [29] | 60 | 0.178(0.035) | 0.035(0.437) | 5.66 (1.04) | 0 * | 0 * | 0.595 | 0.131 | |
15 | Commander Islands | Bering Island, Sarannoye Lake | BS | Adult fish, lake form | July 2008 | our data | 43 | 0.558(0.054) | 0.054(0.474) | 5.78 (0.85) | 0.034 | 0.3525 | −0.18 | 0.015 * |
16 | Continental coast of the Sea of Okhotsk | Okhota River | Okh | Adult fish, mixed sample | 22 July 2004 | our data | 80 | 0.192(0.032) | 0.032(0.174) | 2.76 (0.45) | 0 * | 0.9017 | −0.108 | 0.473 |
17 | Kamchatka peninsula, North-West | Palana River | KP | Adult fish, mixed sample | 10 July 2003–21 July 2003 | our data | 79 | 0.316(0.037) | 0.037(0.298) | 4.02 (0.67) | 0.1197 | 0.9305 | −0.062 | 0.124 |
18 | Tigil River | KT | No data | 18 June 2002 | [29] | 107 | 0.44(0.035) | 0.035(0.481) | 6.1 (0.99) | 0 * | 0.4659 | 0.086 | 0.002 * | |
19 | Kamchatka peninsula, West coast | Bolshaya Vorovskaya River | KV | Adult fish, mixed sample | 17 July 2007–27 July 2007 | our data | 45 | 0.412(0.049) | 0.049(0.489) | 5.75 (0.76) | 0 * | 0.2587 | 0.159 | 0.003 * |
20 | Bolshaya River | KB-03 | Adult fish, mixed sample | 23 July 2003–30 July 2003 | our data | 91 | 0.44(0.039) | 0.039(0.473) | 6.61 (0.95) | 0.0919 | 0.6246 | 0.07 | 0.006 * | |
21 | Bolshaya River | KB-04 | Adult fish, mixed sample | 11 August 2004–20 August 004 | our data | 90 | 0.418(0.038) | 0.038(0.468) | 6.11 (0.9) | 0 * | 0.2576 | 0.109 | 0.003 * | |
22 | Bistraya River | KBb-04 | Smolts, fingerlings | 20 July 2004–12 August 2004 | our data | 33 | 0.484(0.062) | 0.062(0.474) | 6.62 (0.86) | 0.4177 | 1 | −0.022 | 0.014 * | |
23 | Bistraya River | KBb-98 | No data | 16 August 1998 | [29] | 56 | 0.5(0.049) | 0.049(0.476) | 6.07 (1.02) | 0.0193 * | 0.9682 | −0.052 | 0.005 * | |
24 | Plotnikova River | KBp | Smolts, fingerlings | 9 August 2004–12 August 2004 | our data | 39 | 0.321(0.053) | 0.053(0.504) | 6.59 (0.97) | 0.0047 * | 0.0014 * | 0.367 | 0.000 * | |
25 | Opala River | KOp | Adult fish, mixed sample | 17 July 2008–26 August 2008 | ourdata | 31 | 0.429(0.066) | 0.066(0.503) | 7.43 (0.89) | 0.5387 | 0.2473 | 0.151 | 0.001 * | |
26 | Ozernaya River | KO | Adult fish, mixed sample | 4 August 2003–07 August 2003 | our data | 95 | 0.45(0.037) | 0.037(0.453) | 6.22 (1) | 0.1058 | 0.8469 | 0.007 | 0.035 * | |
27 | North Kuril Islands | Shumshu Island, Bettobu Lake | NKS | Adult fish, tributary ecotype | 5 August 2008 | our data | 50 | 0.436(0.051) | 0.051(0.419) | 5.58 (0.56) | 0.8054 | 0.193 | −0.042 | 0.114 |
28 | Paramushir Island, Glukhoye Lake (Shumnaya Ryver) | NKP | Adult fish, mixed sample | 7 July 2008–13 July 2008 | our data | 48 | 0.17(0.039) | 0.039(0.225) | 2.51 (0.52) | 0 * | 0.0978 | 0.246 | 0.676 | |
29 | South Kuril Islands | Urup Island, Tokotan Lake | SKU | Adult fish, lake form | July 2008– August 2008 | our data | 35 | 0.5(0.052) | 0.052(0.472) | 4.7 (0.49) | 0 * | 0.7578 | −0.059 | 0.168 |
30 | Iturup Island, Krasivoye Lake | SKI | Adult fish, lake form | 1 October 2006 | our data | 50 | 0.403(0.058) | 0.058(0.382) | 4.72 (0.48) | 0.0102 * | 0.8901 | −0.056 | 0.013 * |
2.5. Statistical Analysis
3. Results
3.1. Tests on Linkage Disequilibrium (LD) and HWE
3.2. Genetic Diversity Distribution along the Okhotsk and Pacific Coasts
3.3. Population Differentiation
3.4. Clines of Alleles, Genotype Frequencies, and Neutrality Tests
3.5. Detecting Population Decline with Bottleneck Tests on Neutral Markers
4. Discussion
4.1. Demographic Factors Potentially Affecting the Clinal Character of Population Diversity Variation along the Asian Coast of the Pacific Ocean
4.2. Temperature and Pathogens as Factors Maintaining the Latitudinal Gradient of the Onne-DAB Gene Variability
4.3. Different Types of Selection Identified in Asian Populations
4.4. Parallelism in Patterns of Onne-DAB Gene Diversity Distribution and Post-Glacial Colonization on the Asian Part of the Sockeye Salmon Range
4.5. Island Populations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schtickzelle, N.; Quinn, T.P. A Metapopulation Perspective for Salmon and Other Anadromous Fish. Fish Fish. 2007, 8, 297–314. [Google Scholar] [CrossRef]
- Burgner, R.L. Life History of Sockeye Salmon (Oncorhynchus Nerka). In Pacific Salmon Life Histories; Groot, C., Margolis, L., Eds.; UBC Press: Vancouver, BC, Canada, 1991; pp. 3–117. [Google Scholar]
- Quinn, T.P. The Behavior and Ecology of Pacific Salmon and Trout; University of Washington Press: Seattle, WA, USA, 2005. [Google Scholar]
- Wood, C.C. Life History Variation and Population Structure in Sockeye Salmon. In Proceedings of the Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation. American Fisheries Society Symposium, Nanaimo, BC, Canada, 19–22 November 1995; Volume 17, pp. 195–216. [Google Scholar]
- Wood, C.C.; Bickham, J.W.; John Nelson, R.; Foote, C.J.; Patton, J.C. Recurrent Evolution of Life History Ecotypes in Sockeye Salmon: Implications for Conservation and Future Evolution. Evol. Appl. 2008, 1, 207–221. [Google Scholar] [CrossRef]
- Lin, J.; Quinn, T.P.; Hilborn, R.; Hauser, L. Fine-Scale Differentiation between Sockeye Salmon Ecotypes and the Effect of Phenotype on Straying. Heredity 2008, 101, 341–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, B.; van Erp, S.H.M.; Rodrigues, P.N.S.; Egberts, E.; Stet, R.J.M. Fish Major Histocompatibility Complex Genes: An Expansion. Dev. Comp. Immunol. 1995, 19, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Grimholt, Y.; Lie, O. The Major Histocompatibility Complex in Fish. OIE Rev. Sci. Tech. 1998, 17, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Dijkstra, J.M. Major Histocompatibility Complex (Mhc) Genes and Disease Resistance in Fish. Cells 2019, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Bernatchez, L.; Landry, C. MHC Studies in Nonmodel Vertebrates: What Have We Learned about Natural Selection in 15 Years? J. Evol. Biol. 2003, 16, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, P.W. Pathogen Resistance and Genetic Variation at MHC Loci. Evolution 2002, 56, 1902–1908. [Google Scholar] [CrossRef]
- Larson, W.A.; Seeb, J.E.; Dann, T.H.; Schindler, D.E.; Seeb, L.W. Signals of Heterogeneous Selection at an MHC Locus in Geographically Proximate Ecotypes of Sockeye Salmon. Mol. Ecol. 2014, 23, 5448–5461. [Google Scholar] [CrossRef]
- Hughes, A.L.; Yeager, M. Natural Selection at Major Histocompatibility Complex Loci of Vertebrates. Annu. Rev. Genet. 1998, 32, 415–435. [Google Scholar] [CrossRef] [Green Version]
- Olsén, K.H.; Grahn, M.; Lohm, J. Influence of MHC on Sibling Discrimination in Arctic Char, Salvelinus alpinus (L.). J. Chem. Ecol. 2002, 28, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Landry, C.; Garant, D.; Duchesne, P.; Bernatchez, L. “Good Genes as Heterozygosity”: The Major Histocompatibility Complex and Mate Choice in Atlantic Salmon (Salmo salar). Proc. R. Soc. B Biol. Sci. 2001, 268, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.T.; Elfstrom, C.M.; Seeb, L.W.; Seeb, J.E. Use of Sequence Data from Rainbow Trout and Atlantic Salmon for SNP Detection in Pacific Salmon. Mol. Ecol. 2005, 14, 4193–4203. [Google Scholar] [CrossRef]
- Ackerman, M.W.; Habicht, C.; Seeb, L.W. Single-Nucleotide Polymorphisms (SNPs) under Diversifying Selection Provide Increased Accuracy and Precision in Mixed-Stock Analyses of Sockeye Salmon from the Copper River, Alaska. Trans. Am. Fish. Soc. 2011, 140, 865–881. [Google Scholar] [CrossRef]
- Creelman, E.K.; Hauser, L.; Simmons, R.K.; Templin, W.D.; Seeb, L.W. Temporal and Geographic Genetic Divergence: Characterizing Sockeye Salmon Populations in the Chignik Watershed, Alaska, Using Single-Nucleotide Polymorphisms. Trans. Amer. Fish. Soc. 2011, 140, 749–762. [Google Scholar] [CrossRef]
- Gomez-Uchida, D.; Seeb, J.E.; Smith, M.J.; Habicht, C.; Quinn, T.P.; Seeb, L.W. Single Nucleotide Polymorphisms Unravel Hierarchical Divergence and Signatures of Selection among Alaskan Sockeye Salmon (Oncorhynchus nerka) Populations. BMC Evol. Biol. 2011, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Uchida, D.; Seeb, J.E.; Habicht, C.; Seeb, L.W. Allele Frequency Stability in Large, Wild Exploited Populations over Multiple Generations: Insights from Alaska Sockeye Salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 2012, 69, 916–929. [Google Scholar] [CrossRef] [Green Version]
- Habicht, C.; Seeb, L.W.; Myers, K.W.; Farley, E.V.; Seeb, J.E. Summer—Fall Distribution of Stocks of Immature Sockeye Salmon in the Bering Sea as Revealed by Single-Nucleotide Polymorphisms. Trans. Amer. Fish. Soc. 2010, 139, 1171–1191. [Google Scholar] [CrossRef]
- Miller, K.M.; Kaukinen, K.H.; Beacham, T.D.; Withler, R.E. Geographic Heterogeneity in Natural Selection on an MHC Locus in Sockeye Salmon. Genetica 2001, 111, 237–257. [Google Scholar] [CrossRef]
- Khrustaleva, A.M.; Volkov, A.A.; Stocklitskaya, D.S.; Mugue, N.S.; Zelenina, D.A. Comparative Analysis of STR and SNP Polymorphism in the Populations of Sockeye Salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka. Russ. J. Genet. 2010, 46, 1362–1372. [Google Scholar] [CrossRef]
- Khrustaleva, A.M.; Ponomareva, E.V.; Ponomareva, M.V.; Shubina, E.A.; Uglova, T.Y.; Klovach, N.V. Inferring Adaptive Nature of Major Histocompatibility Complex (MHC) Polymorphism from Single Nucleotide Substitutions in Asian Sockeye Salmon Populations: I. Different Forms of Selection Act in Sockeye Salmon Populations from the Ozernaya and Kamchatka Ri. Russ. J. Genet. 2018, 54, 1199–1209. [Google Scholar] [CrossRef]
- Khrustaleva, A.M. Inferring Adaptive Nature of Major Histocompatibility Complex (MHC) Polymorphism from Single Nucleotide Substitutions in Asian Sockeye Salmon Populations: II. Factors Determining Onne-DAB Gene Variability in the Kamchatka River Basin. Russ. J. Genet. 2018, 54, 1314–1324. [Google Scholar] [CrossRef]
- Bugaev, V.F. Asian Sockeye Salmon (Freshwater Period of Life, Biological Structure, Population Dynamics); Publishing House “Kamchatpress”: Petropavlovsk-Kamchatsky, Russia, 2011; ISBN 9785961001594. [Google Scholar]
- Seeb, J.E.; Pascal, C.E.; Ramakrishnan, R.; Seeb, L.W. SNP Genotyping by the 5′-Nuclease Reaction: Advances in High-Throughput Genotyping with Nonmodel Organisms. Methods Mol. Biol. 2009, 578, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Khrustaleva, A.M.; Klovach, N.V.; Seeb, J.E. Genetic Variability and Population Structure of Sockeye Salmon from the Asian Coast of Pacific Ocean. Russ. J. Genet. 2017, 53, 1126–1136. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Res. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Excoffier, L.; Slatkin, M. Maximum-Likelihood Estimation of Molecular Haplotype Frequencies in a Diploid Population. Mol. Biol. Evol. 1995, 12, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Sinnwell, D.J.; Schaid, J.P. Haplo Stats (Version 1.7.7) Statistical Methods for Haplotypes When Linkage Phase Is Ambiguous. Available online: https://cran.r-project.org/web/packages/haplo.stats/vignettes/haplostats.pdf (accessed on 10 July 2023).
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2014, e281. [Google Scholar] [CrossRef] [Green Version]
- Dray, S.; Dufour, A.B. The Ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5, 164–166. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S.; Statistics and Computing; Springer: New York, NY, USA, 2002; ISBN 978-1-4419-3008-8. [Google Scholar]
- Wickham, H. Ggplot2 Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Cristescu, R.; Sherwin, W.B.; Handasyde, K.; Cahill, V.; Cooper, D.W. Detecting Bottlenecks Using BOTTLENECK 1.2.02 in Wild Populations: The Importance of the Microsatellite Structure. Conserv. Genet. 2010, 11, 1043–1049. [Google Scholar] [CrossRef]
- Garza, J.C.; Williamson, E. Detecting the Reduction in Population Size Using Data from Microsatellite DNA. Mol. Ecol. 2001, 10, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Varnavskaya, N.V. Geneticheskaya Differentsiatsiya Populyatsii Tikhookeanskikh Lososei; Publishing House KamchatNIRO: Petropavlovsk-Kamchatsky, Russia, 2006. [Google Scholar]
- Bahr, A.; Wilson, A.B. The Evolution of MHC Diversity: Evidence of Intralocus Gene Conversion and Recombination in a Single-Locus System. Gene 2012, 497, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Schaschl, H.; Suchentrunk, F.; Hammer, S.; Goodman, S.J. Recombination and the Origin of Sequence Diversity in the DRB MHC Class II Locus in Chamois (Rupicapra spp.). Immunogenetics 2005, 57, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Reusch, T.B.H.; Langefors, Å. Inter- and Intralocus Recombination Drive MHC Class IIB Gene Diversification in a Teleost, the Three-Spined Stickleback Gasterosteus Aculeatus. J. Mol. Evol. 2005, 61, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Vucetich, J.A.; Waite, T.A. Spatial Patterns of Demography and Genetic Processes across the Species’ Range: Null Hypotheses for Landscape Conservation Genetics. Conserv. Genet. 2003, 4, 639–645. [Google Scholar] [CrossRef]
- Eckert, C.G.; Samis, K.E.; Lougheed, S.C. Genetic Variation across Species’ Geographical Ranges: The Central-Marginal Hypothesis and Beyond. Mol. Ecol. 2008, 17, 1170–1188. [Google Scholar] [CrossRef]
- Larson, W.A.; Lisi, P.J.; Seeb, J.E.; Seeb, L.W.; Schindler, D.E. Major Histocompatibility Complex Diversity Is Positively Associated with Stream Water Temperatures in Proximate Populations of Sockeye Salmon. J. Evol. Biol. 2016, 29, 1846–1859. [Google Scholar] [CrossRef] [PubMed]
- Dionne, M.; Miller, K.M.; Dodson, J.J.; Caron, F.; Bernatchez, L. Clinal Variation in MHC Diversity with Temperature: Evidence for the Role of Host-Pathogen Interaction on Local Adaptation in Atlantic Salmon. Evolution 2007, 61, 2154–2164. [Google Scholar] [CrossRef] [PubMed]
- McClelland, E.K.; Ming, T.J.; Tabata, A.; Kaukinen, K.H.; Beacham, T.D.; Withler, R.E.; Miller, K.M. Patterns of Selection and Allele Diversity of Class i and Class II Major Histocompatibility Loci across the Species Range of Sockeye Salmon (Oncorhynchus nerka). Mol. Ecol. 2013, 22, 4783–4800. [Google Scholar] [CrossRef]
- Sergeenko, N.V.; Gavruseva, T.V.; Ustimenko, E.A.; Bochkova, E.V.; Ovcharenko, L.V.; Rudakova, S.L.; Gritskih, E.A. Composition and Distribution Frequency of Pathogen Species in Sockeye Salmon in Spawning-Nursery Lakes of Kamchatka. Res. Aquat. Biol. Resour. Kamchatka North-West Part Pac. Ocean. 2013, 29, 137–147. [Google Scholar]
- Konovalov, S.M. Differentiation of Local Populations of Sockeye Salmon, Oncorhynchus nerka (Walbaum); College of Fisheries, University of Washington: Leningrad, Russia, 1975. [Google Scholar]
- Langefors, Å.; Lohm, J.; Grahn, M.; Andersen, Ø.; von Schantz, T. Association between Major Histocompatibility Complex Class IIB Alleles and Resistance to Aeromonas Salmonicida in Atlantic Salmon on JSTOR. Proc. Biol. Sci. 2001, 268, 479–485. [Google Scholar] [CrossRef]
- Miller, K.M.; Winton, J.R.; Schulze, A.D.; Purcell, M.K.; Ming, T.J. Major Histocompatibility Complex Loci Are Associated with Susceptibility of Atlantic Salmon to Infectious Hematopoietic Necrosis Virus. Environ. Biol. Fishes 2004, 69, 307–316. [Google Scholar] [CrossRef]
- Grimholt, U.; Larsen, S.; Nordmo, R.; Midtlyng, P.; Kjoeglum, S.; Storset, A.; Saebø, S.; Stet, R.J.M. MHC Polymorphism and Disease Resistance in Atlantic Salmon (Salmo salar); Facing Pathogens with Single Expressed Major Histocompatibility Class I and Class II Loci. Immunogenetics 2003, 55, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.L.; Neff, B.D. Major Histocompatibility Complex Heterozygote Advantage and Widespread Bacterial Infections in Populations of Chinook Salmon (Oncorhynchus tshawytscha). Mol. Ecol. 2009, 18, 4716–4729. [Google Scholar] [CrossRef]
- Dionne, M.; Miller, K.M.; Dodson, J.J.; Bernatchez, L. MHC Standing Genetic Variation and Pathogen Resistance in Wild Atlantic Salmon. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1555–1565. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, V.F. Asian Sockeye Salmon-2: (Biological Structure and Abundance Dynamics of Local Stocks in the Late XX—Early XXI Century); Publishing House “Kamchatpress”: Petropavlovsk-Kamchatsky, Russia, 2011. [Google Scholar]
- Bugaev, V.F.; Kirichenko, V.E. Rearing and Spawning Lakes for Asian Sockeye Salmon Stocks; Kamchatpress: Petropavlovsk-Kamchatskiy, Russia, 2008. [Google Scholar]
- Beacham, T.D.; Varnavskaya, N.V.; McIntosh, B.; MacConnachie, C. Population Structure of Sockeye Salmon from Russia Determined with Microsatellite DNA Variation. Trans. Am. Fish. Soc. 2006, 135, 97–109. [Google Scholar] [CrossRef]
- Khrustaleva, A.M.; Ponomareva, E.V.; Ponomareva, M.V.; Shubina, E.A.; Pilganchuk, O.A. Phylogeography of Asian Sockeye Salmon (Oncorhynchus nerka) Based on Analysis of MtDNA Control Region Polymorphism. J. Appl. Ichthyol. 2020, 36, 643–654. [Google Scholar] [CrossRef]
- Pil’ganchuk, O.A.; Shpigal’skaya, N.Y. Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka (Walbaum, 1792) Populations of Eastern Kamchatka. Russ. J. Mar. Biol. 2013, 39, 373–380. [Google Scholar] [CrossRef]
- Piertney, S.B.; Oliver, M.K. The Evolutionary Ecology of the Major Histocompatibility Complex. Heredity 2006, 96, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilganchuk, O.A.; Shpigalskaya, N.Y.; Denisenko, A.D. Genetic Characteristics of Sockeye Oncorhynchus Nerka (Walbaum) in Some Rearing and Spawning Lakes for Asian Part of the Area. In Proceedings of the Sokhranenie Bioraznoobraziya Kamchatki i Prilegayushchih Morej. Materialy Dokl. ХVII Mezhdunar. Nauch. Konf., Petropavlovsk-Kamchatskiy, Russia, 16–17 November 2016; pp. 103–106. [Google Scholar]
- Miller, H.C.; Allendorf, F.; Daugherty, C.H. Genetic Diversity and Differentiation at MHC Genes in Island Populations of Tuatara (Sphenodon spp.). Mol. Ecol. 2010, 19, 3894–3908. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrustaleva, A.M. Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range. Diversity 2023, 15, 853. https://doi.org/10.3390/d15070853
Khrustaleva AM. Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range. Diversity. 2023; 15(7):853. https://doi.org/10.3390/d15070853
Chicago/Turabian StyleKhrustaleva, Anastasia M. 2023. "Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range" Diversity 15, no. 7: 853. https://doi.org/10.3390/d15070853
APA StyleKhrustaleva, A. M. (2023). Adaptive and Neutral Polymorphisms of the Onne-DAB Gene from the Major Histocompatibility Complex (MHC) in Sockeye Salmon Populations on the Asian Range. Diversity, 15(7), 853. https://doi.org/10.3390/d15070853