Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Karlovitz number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4684 KB  
Article
Anisotropy of Reynolds Stresses and Their Dissipation Rates in Lean H2-Air Premixed Flames in Different Combustion Regimes
by Nilanjan Chakraborty, Sanjeev Kumar Ghai and Hong G. Im
Energies 2024, 17(21), 5325; https://doi.org/10.3390/en17215325 - 25 Oct 2024
Viewed by 869
Abstract
The interrelation between Reynolds stresses and their dissipation rate tensors for different Karlovitz number values was analysed using a direct numerical simulation (DNS) database of turbulent statistically planar premixed H2-air flames with an equivalence ratio of 0.7. It was found that [...] Read more.
The interrelation between Reynolds stresses and their dissipation rate tensors for different Karlovitz number values was analysed using a direct numerical simulation (DNS) database of turbulent statistically planar premixed H2-air flames with an equivalence ratio of 0.7. It was found that a significant enhancement of Reynolds stresses and dissipation rates takes place as a result of turbulence generation due to thermal expansion for small and moderate Karlovitz number values. However, both Reynolds stresses and dissipation rates decrease monotonically within the flame brush for large Karlovitz number values, as the flame-generated turbulence becomes overridden by the strong isotropic turbulence. Although there are similarities between the anisotropies of Reynolds stress and its dissipation rate tensors within the flame brush, the anisotropy tensors of these quantities are found to be non-linearly related. The predictions of three different models for the dissipation rate tensor were compared to the results computed from DNS data. It was found that the model relying upon isotropy and a linear dependence between the Reynolds stress and its dissipation rates does not correctly capture the turbulence characteristics within the flame brush for small and moderate Karlovitz number values. In contrast, the models that incorporate the dependence of the invariants of the anisotropy tensor of Reynolds stresses were found to capture the components of dissipation rate tensor for all Karlovitz number conditions. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

19 pages, 4266 KB  
Article
Timescales Associated with the Evolution of Reactive Scalar Gradient in Premixed Turbulent Combustion: A Direct Numerical Simulation Analysis
by Nilanjan Chakraborty and Cesar Dopazo
Fire 2024, 7(3), 73; https://doi.org/10.3390/fire7030073 - 29 Feb 2024
Cited by 1 | Viewed by 1741
Abstract
The fractional change in the reaction progress variable gradient depends on the flow normal straining within the flame and also upon the corresponding normal gradients of the reaction rate and its molecular diffusion transport. The statistical behaviours of the normal strain rate and [...] Read more.
The fractional change in the reaction progress variable gradient depends on the flow normal straining within the flame and also upon the corresponding normal gradients of the reaction rate and its molecular diffusion transport. The statistical behaviours of the normal strain rate and the contributions arising from the normal gradients of the reaction rate and molecular diffusion rate within the flame were analysed by means of a Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames ranging from the wrinkled/corrugated flamelets regime to the thin reaction zones regime. The interaction of flame-normal straining with the flame-normal gradient of molecular diffusion rate was found to govern the reactive scalar gradient transport in the preheat zone, where comparable timescales for turbulent straining and molecular diffusion are obtained for small values of Karlovitz numbers. However, the molecular diffusion timescale turns out to be smaller than the turbulent straining timescale for high values of Karlovitz numbers. By contrast, the reaction and hot product zones of the flame remain mostly unaffected by turbulence, and the reactive scalar gradient transport in this zone is determined by the interaction between the flame-normal gradients of molecular diffusion and chemical reaction rates. Full article
(This article belongs to the Special Issue Combustion and Fire I)
Show Figures

Figure 1

18 pages, 4141 KB  
Review
Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames
by Andrei N. Lipatnikov and Vladimir A. Sabelnikov
Energies 2022, 15(16), 5840; https://doi.org/10.3390/en15165840 - 11 Aug 2022
Cited by 9 | Viewed by 2877
Abstract
The structure of premixed turbulent flames and governing physical mechanisms of the influence of turbulence on premixed burning are often discussed by invoking combustion regime diagrams. In the majority of such diagrams, boundaries of three combustion regimes associated with (i) flame preheat zones [...] Read more.
The structure of premixed turbulent flames and governing physical mechanisms of the influence of turbulence on premixed burning are often discussed by invoking combustion regime diagrams. In the majority of such diagrams, boundaries of three combustion regimes associated with (i) flame preheat zones broadened locally by turbulent eddies, (ii) reaction zones broadened locally by turbulent eddies, and (iii) local extinction are based on a Karlovitz number Ka, with differently defined Ka being used to demarcate different combustion regimes. The present paper aims to overview different definitions of Ka, comparing them, and suggesting the most appropriate choice of Ka for each combustion regime boundary. Moreover, since certain Karlovitz numbers involve a laminar flame thickness, the influence of complex combustion chemistry on the thickness and, hence, on various Ka and relations between them is explored based on results of complex-chemistry simulations of unperturbed (stationary, planar, and one-dimensional) laminar premixed flames, obtained for various fuels, equivalence ratios, pressures, and unburned gas temperatures. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

16 pages, 4056 KB  
Article
DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content
by Nithin Mukundakumar and Rob Bastiaans
Energies 2022, 15(13), 4749; https://doi.org/10.3390/en15134749 - 28 Jun 2022
Cited by 7 | Viewed by 2495
Abstract
In this study, 3D premixed turbulent ammonia-hydrogen flames in air were studied using DNS. Mixtures with 75%, 50% and 25% ammonia (by mole fraction in the fuel mixture) and equivalence ratios of 0.8, 1.0 and 1.2 were studied. The studies were conducted in [...] Read more.
In this study, 3D premixed turbulent ammonia-hydrogen flames in air were studied using DNS. Mixtures with 75%, 50% and 25% ammonia (by mole fraction in the fuel mixture) and equivalence ratios of 0.8, 1.0 and 1.2 were studied. The studies were conducted in a decaying turbulence field with an initial Karlovitz number of 10. The flame structure and the influence of ammonia and the equivalence ratio were first studied. It was observed that the increase in equivalence ratio smoothened out the small scale wrinkles while leading to strongly curved leading edges. Increasing the amount of hydrogen in the fuel mixtures also led to increasingly distorted flames. These effects are attributed to local increases in the equivalence ratio due to the preferential diffusion effects of hydrogen. The effects of curvature on the flame chemistry were studied by looking at fuel consumption rates and key reactions. It was observed that the highly mobile H2 and H species were responsible for differential rates of fuel consumption in the positively curved and negatively curved regions of the flame. The indication of a critical amount of hydrogen in the fuel mixture was observed, after which the trends of reactions involving H radical reactions were flipped with respect to the sign of the curvature. This also has implications on NO formation. Finally, the spatial profiles of heat release and temperature for 50% hydrogen were studied, which showed that the flame brush of the lean case increases in width and that the flame propagation is slow for stoichiometric and rich cases attributed to suppression of flame chemistry due to preferential diffusion effects. Full article
Show Figures

Figure 1

14 pages, 2629 KB  
Article
Fire Safety Evaluation of High-Pressure Ammonia Storage Systems
by Yong Ho Chung, Won-Ju Lee, Jun Kang and Sung Hwan Yoon
Energies 2022, 15(2), 520; https://doi.org/10.3390/en15020520 - 12 Jan 2022
Cited by 8 | Viewed by 4475
Abstract
Ammonia combustion is a promising energy source as a carbon free fuel without greenhouse gas emissions. However, since the auto-ignition temperature is 651 degrees Celsius and the range of flammability limit is not wide compared to other fuels, fundamental studies on ammonia fires [...] Read more.
Ammonia combustion is a promising energy source as a carbon free fuel without greenhouse gas emissions. However, since the auto-ignition temperature is 651 degrees Celsius and the range of flammability limit is not wide compared to other fuels, fundamental studies on ammonia fires have rarely been conducted so far. Therefore, this study aims to numerically estimate fire spread characteristics when ammonia fuel in a high-pressure state leaks to the outside, especially focusing on the flammability limit according to oxygen concentration. Three kinds of reaction mechanism for numerical analysis were adopted to compare the flame structure, flammability limit, and combustion characteristics. Plank-mean absorption coefficients of nitrogen species were taken for the radiation model, in addition to the optically thin model. The effect of radiation heat loss could be identified from the maximum flame temperature trend at a low strain rate. It was confirmed that the pyrolysis of ammonia in the preheated zone results in hydrogen production, and the generated hydrogen contributes to heat release rate in the flame zone. It is found that the contribution of hydrogen would be an important role in the flammability limit of ammonia combustion. Finally, Karlovitz and Peclet numbers showed well the extinction behaviors of ammonia combustion as a result of LOC (Limit Oxygen Concentration) analysis as a function of global strain rate. Full article
Show Figures

Figure 1

12 pages, 2302 KB  
Article
Scaling of Second-Order Structure Functions in Turbulent Premixed Flames in the Flamelet Combustion Regime
by Peter Brearley, Umair Ahmed, Nilanjan Chakraborty and Markus Klein
Fluids 2020, 5(2), 89; https://doi.org/10.3390/fluids5020089 - 2 Jun 2020
Cited by 6 | Viewed by 3638
Abstract
The second-order velocity structure function statistics have been analysed using a DNS database of statistically planar turbulent premixed flames subjected to unburned gas forcing. The flames considered here represent combustion for moderate values of Karlovitz number from the wrinkled flamelets to the thin [...] Read more.
The second-order velocity structure function statistics have been analysed using a DNS database of statistically planar turbulent premixed flames subjected to unburned gas forcing. The flames considered here represent combustion for moderate values of Karlovitz number from the wrinkled flamelets to the thin reaction zones regimes of turbulent premixed combustion. It has been found that the second-order structure functions exhibit the theoretical asymptotic scalings in the dissipative and (relatively short) inertial ranges. However, the constant of proportionality for the theoretical asymptotic variation for the inertial range changes from one case to another, and this value also changes with structure function orientation. The variation of the structure functions for small length scale separation remains proportional to the square of the separation distance. However, the constant of proportionality for the limiting behaviour according to the separation distance square remains significantly different from the theoretical value obtained in isotropic turbulence. The disagreement increases with increasing turbulence intensity. It has been found that turbulent velocity fluctuations within the flame brush remain anisotropic for all cases considered here and this tendency strengthens towards the trailing edge of the flame brush. It indicates that the turbulence models derived based on the assumptions of homogeneous isotropic turbulence may not be fully valid for turbulent premixed flames. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers)
Show Figures

Figure 1

12 pages, 10620 KB  
Article
Numerical Assessment on Rotation Effect of the Stagnation Surface on Nanoparticle Deposition in Flame Synthesis
by Lilin Hu, Zhu Miao, Yang Zhang, Hai Zhang and Hairui Yang
Materials 2019, 12(9), 1361; https://doi.org/10.3390/ma12091361 - 26 Apr 2019
Cited by 3 | Viewed by 2808
Abstract
The effect of rotation of the stagnation surface on the nanoparticle deposition in the flame stabilizing on a rotating surface (FSRS) configuration was numerically assessed using CFD method. The deposition properties including particle trajectories, deposition time, temperature and surrounding O2 concentration between [...] Read more.
The effect of rotation of the stagnation surface on the nanoparticle deposition in the flame stabilizing on a rotating surface (FSRS) configuration was numerically assessed using CFD method. The deposition properties including particle trajectories, deposition time, temperature and surrounding O2 concentration between the flame and stagnation surface were examined. The results revealed that although flame position is insensitive to the surface rotation, the temperature and velocity fields are remarkably affected, and the deposition properties become asymmetric along the burner centerline when the surface rotates at a fast speed (rotational speed ω ≥ 300 rpm). Particles moving on the windward side have similar deposition properties when the surface rotates slowly, but the off-center particles on the leeward side have remarkable longer deposition time, lower deposition temperature, and lower surrounding O2 concentration, and they even never deposit on the surface when the surface rotates at a high speed. The rotation effect of the stagnation surface can be quantitatively described by an analogous Karlovitz number (Ka’), which is defined as the ratio of characteristic residence time of moving surface to the aerodynamics time induced by flame stretch. For high quality semiconducting metal oxide (SMO) films, it is suggested that Ka’ ≥ 1 should be kept. Full article
(This article belongs to the Special Issue Micro/Nano Materials for Clean Energy and Environment)
Show Figures

Graphical abstract

Back to TopTop