Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = LHCP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 40307 KB  
Article
A Reconfigurable Metasurface for Linear-to-Circular Polarization Conversion Using Mechanical Rotation
by Gregorio J. Molina-Cuberos, Ángel J. García-Collado, Ismael Barba and José Margineda
Electronics 2025, 14(18), 3639; https://doi.org/10.3390/electronics14183639 - 14 Sep 2025
Viewed by 400
Abstract
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a [...] Read more.
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a low-permittivity substrate. Operating in transmission mode, the linear-to-circular (LTC) converter does not require any active electronic components. The geometry is optimized by using full-wave simulations to maximize the conversion up to 26% relative bandwidth with polarization conversion efficiency up to 65%, and insertion loss below 1.3 dB. Power balance analysis confirms low-loss, impedance-matched behavior. A scaled prototype fabricated from AWG-25 steel wires validates the model: experimental measurements closely reproduce the simulated bandwidth and demonstrate robust handedness switching. Because the resonance frequency depends primarily on resonator length and unit-cell pitch and thickness, the design can be retuned across the microwave spectrum through straightforward geometrical scaling. These results suggest that mechanical rotation could provide a simple and reliable alternative to electronic tuning in reconfigurable circular polarizers. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 5264 KB  
Article
Compact Circularly Polarized Cavity-Backed Crossed-Dipole Antenna with Ultra-Wide Bandwidth for Integrated GNSS–SatCom Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Rui Fang, Qiushou Liu and Zhengde Li
Electronics 2025, 14(16), 3193; https://doi.org/10.3390/electronics14163193 - 11 Aug 2025
Viewed by 434
Abstract
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional [...] Read more.
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional crossed-dipole antennas rarely exceeds 100%. This paper presents a compact left-hand circularly polarized (LHCP) crossed-dipole antenna that combines a cavity-backed ground, ground-slot perturbations, and parasitic patches to simultaneously broaden the impedance and axial-ratio bandwidths. The fabricated prototype achieves an impedance bandwidth (IMBW) of 0.71–3.89 GHz (138%) and a 3 dB axial-ratio bandwidth (ARBW) of 0.98–3.27 GHz (108%), while maintaining gains above 3.5 dBic across most of the frequency range. The good agreement validates the multi-technique co-design and shows that the compact architecture (0.302 λ × 0.302 λ × 0.129 λ) breaks classical crossed-dipole limits. The antenna provides a scalable building block for wideband conformal arrays in next-generation integrated GNSS–SatCom systems. Full article
Show Figures

Figure 1

16 pages, 3616 KB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Cited by 1 | Viewed by 405
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 3042 KB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 719
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

22 pages, 4331 KB  
Article
Simulation-Based Design of a Low-Cost Broadband Wide-Beamwidth Crossed-Dipole Antenna for Multi-Global Navigational Satellite System Positioning
by Songyuan Xu, Jiwon Heo, Won Seok Choi, Seong-Gon Choi and Bierng-Chearl Ahn
Sensors 2025, 25(15), 4665; https://doi.org/10.3390/s25154665 - 28 Jul 2025
Viewed by 514
Abstract
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio [...] Read more.
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio beamwidth. The design is carried out using CST Studio Suite for a single dipole antenna followed by a crossed-dipole antenna, a feed network, and the entire antenna structure. The designed multi-GNSS antenna shows, at 1.16–1.61 GHz, a reflection coefficient of less than −17 dB, a zenith gain of 3.9–5.8 dBic, a horizontal gain of −3.3 to −0.2 dBic, a zenith axial ratio of 0.6–1.0 dB, and horizontal axial ratio of 0.4–5.9 dB. The proposed antenna has a dimension of 0.48 × 0.48 × 0.25 λ at the center frequency of 1.39 GHz. The proposed antenna can also operate as an LHCP antenna for L-band satellite phone communication at 1.525–1.661 GHz. Full article
Show Figures

Figure 1

21 pages, 12474 KB  
Article
Drone Height from Ground Determination Using GNSS-R Based on Dual-Frequency GPS/BDS Signals
by Li Zhang, Weiwei Qin, Fan Gao, Weijie Kang and Yue Zhu
Remote Sens. 2025, 17(10), 1722; https://doi.org/10.3390/rs17101722 - 14 May 2025
Viewed by 748
Abstract
Conventional techniques to measure drone heights from the ground, including global navigation satellite systems (GNSSs), barometers, acoustic sensors, and LiDAR, are limited by their measurement ranges, an inability to directly obtain the height from the ground, or poor concealment. To overcome these shortcomings, [...] Read more.
Conventional techniques to measure drone heights from the ground, including global navigation satellite systems (GNSSs), barometers, acoustic sensors, and LiDAR, are limited by their measurement ranges, an inability to directly obtain the height from the ground, or poor concealment. To overcome these shortcomings, we propose the use of GNSS reflectometry (GNSS-R) to determine a drone’s height from the ground. We conducted experiments over farmland and an urban road using a drone that carried an upward-looking right-hand circularly polarized (RHCP) antenna, a downward-looking left-hand circularly polarized (LHCP) antenna, and an intermediate frequency (IF) data collector to test the performance. Three flights were conducted in a bare soil scenario, a sparse apple orchard scenario, and an urban road scenario. A software-defined receiver was used to process the IF signal data to compute the one-dimensional time-delay-dependent power peak positions of the direct and reflected GNSS signals. Based on these peak positions, the path delay measurements between the direct and reflected signals were derived per second based on the BDS B1C and B2a, GPS C/A, and L5 signals. The drone heights were then retrieved. The results showed that the drone height retrieval accuracy could reach approximately 0.5–2 m. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

11 pages, 6274 KB  
Article
A Low-Cost, Wide-Band, High-Gain Mechanically Reconfigurable Multi-Polarization Antenna Based on a 3-D Printed Polarizer
by Wenjie Ding, Guoda Xie, Yang Hong, Hang Yu, Chao Wang, Siliang Wang and Zhixiang Huang
Electronics 2025, 14(6), 1224; https://doi.org/10.3390/electronics14061224 - 20 Mar 2025
Viewed by 579
Abstract
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to [...] Read more.
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to circular polarization (CP) over a wide frequency range. Furthermore, the polarizer exhibits subwavelength characteristics. For a given duty cycle, its phase response depends only on the height and is independent of the aperture size. This property enables miniaturized and customized designs of the polarizer’s aperture size. Subsequently, the polarizer is placed above a Ku band waveguide and standard horn antennas. The results show that by rotating the dielectric polarizer and adjusting the positions of the antennas, right-handed CP (RHCP), left-handed CP (LHCP), and dual LP radiation switching can be achieved in the 12.4–18.0 GHz band, verifying the quad-polarization reconfigurability. Additionally, the polarizer significantly enhances the gain of the waveguide antenna by approximately 9.5 dB. Furthermore, due to the low-cost 3D printing material, the manufacturing cost of the polarizer is exceptionally low, making it suitable for applications such as anechoic chamber measurements and wireless communications. Finally, the measurement results further validate the accuracy of the simulations. Full article
Show Figures

Figure 1

12 pages, 989 KB  
Article
Circularly Polarized Reconfigurable MIMO Antenna for WLAN Applications
by Tu Le-Tuan, Thai Dinh Nguyen, Nguyen Viet-Duc Tran, Hung Tran and Dat Nguyen-Tien
Sensors 2025, 25(4), 1257; https://doi.org/10.3390/s25041257 - 19 Feb 2025
Cited by 2 | Viewed by 829
Abstract
This paper presents a simple design of a two-element antenna with circularly polarized (CP) reconfigurability for multiple-input multiple-output wireless local-area network (WLAN) applications. A MIMO element consists of a reconfigurable feeding network, a CP source, and a 2 × 2 unit-cell metasurface (MS). [...] Read more.
This paper presents a simple design of a two-element antenna with circularly polarized (CP) reconfigurability for multiple-input multiple-output wireless local-area network (WLAN) applications. A MIMO element consists of a reconfigurable feeding network, a CP source, and a 2 × 2 unit-cell metasurface (MS). By controlling the ON/OFF state of PIN diodes, the proposed MIMO system can operate in either right-hand CP (RHCP) or left-hand CP (LHCP) for all ports, or either RHCP or LHCP for each port. For all operating modes, the proposed antenna exhibits good performance with a matching performance of less than –10 dB, an axial ratio of lower than 3 dB, as well as an inter-port isolation of better than 24 dB at 2.45 GHz. Additionally, the MIMO diversity performance is also satisfied by the proposed antenna. Compared to related works, the proposed antenna has advantages of high gain and compact size, as well as a simple switching mechanism with a small number of PIN diodes. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 2848 KB  
Article
A 3D-Printed Enclosed Twist Dielectric Resonator Antenna with Circular Polarization
by Andrea Ávila-Saavedra, Marcos Diaz and Francisco Pizarro
Appl. Sci. 2025, 15(2), 992; https://doi.org/10.3390/app15020992 - 20 Jan 2025
Cited by 1 | Viewed by 1340
Abstract
This article presents a circular polarized enclosed dielectric resonator antenna (DRA), operating at 5.8 GHz. The design consists of a twist DRA, which is enclosed in a box to give stability to the structure. The circular polarization of the antenna depends on the [...] Read more.
This article presents a circular polarized enclosed dielectric resonator antenna (DRA), operating at 5.8 GHz. The design consists of a twist DRA, which is enclosed in a box to give stability to the structure. The circular polarization of the antenna depends on the sense of twisting the top with respect to its base to achieve Left Hand Circular Polarization (LHCP) or Right Hand Circular Polarization (RHCP). The antenna was manufactured using 3D printing and low-loss dielectric filament. The measurement results show the two resonance frequencies and an axial ratio below 3 dB at the operational frequency, while exhibiting a bandwidth and gain compatible for unmanned aerial vehicle (UAV) applications. Full article
Show Figures

Figure 1

26 pages, 4669 KB  
Review
GNSS Reflectometry-Based Ocean Altimetry: State of the Art and Future Trends
by Tianhe Xu, Nazi Wang, Yunqiao He, Yunwei Li, Xinyue Meng, Fan Gao and Ernesto Lopez-Baeza
Remote Sens. 2024, 16(10), 1754; https://doi.org/10.3390/rs16101754 - 15 May 2024
Cited by 4 | Viewed by 4085
Abstract
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s [...] Read more.
For the past 20 years, Global Navigation Satellite System reflectometry (GNSS-R) technology has successfully shown its potential for remote sensing of the Earth’s surface, including ocean and land surfaces. It is a multistatic radar that uses the GNSS signals reflected from the Earth’s surface to extract land and ocean characteristics. Because of its numerous advantages such as low cost, multiple signal sources, and all-day/weather and high-spatiotemporal-resolution observations, this new technology has attracted the attention of many researchers. One of its most promising applications is GNSS-R ocean altimetry, which can complement existing techniques such as tide gauging and radar satellite altimetry. Since this technology for ocean altimetry was first proposed in 1993, increasing progress has been made including diverse methods for processing reflected signals (such as GNSS interferometric reflectometry, conventional GNSS-R, and interferometric GNSS-R), different instruments (such as an RHCP antenna with one geodetic receiver, a linearly polarized antenna, and a system of simultaneously used RHCP and LHCP antennas with a dedicated receiver), and different platform applications (such as ground-based, air-borne, or space-borne). The development of multi-mode and multi-frequency GNSS, especially for constructing the Chinese BeiDou Global Navigation Satellite System (BDS-3), has enabled more free signals to be used to further promote GNSS-R applications. The GNSS has evolved from its initial use of GPS L1 and L2 signals to include other GNSS bands and multi-GNSS signals. Using more advanced, multi-frequency, and multi-mode signals will bring new opportunities to develop GNSS-R technology. In this paper, studies of GNSS-R altimetry are reviewed from four perspectives: (1) classifications according to different data processing methods, (2) different platforms, (3) development of different receivers, and (4) our work. We overview the current status of GNSS-R altimetry and describe its fundamental principles, experiments, recent applications to ocean altimetry, and future directions. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Graphical abstract

17 pages, 22277 KB  
Article
A Whole W-Band Multi-Polarization Horn Antenna Based on Boifot-Type OMT
by Yun Zhao, Bo Zhu, Jiangqiao Ding and Sheng Li
Micromachines 2024, 15(3), 385; https://doi.org/10.3390/mi15030385 - 13 Mar 2024
Cited by 1 | Viewed by 1806
Abstract
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as [...] Read more.
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as single-port excitation and left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP) when as dual-port excitation, owing to the characteristic of the OMT with the transmitting of orthogonally polarized waves. A CNC-layered fabrication approach is proposed, which means that the antenna prototype integrating with a Boifot-type OMT, turning waveguide, twisting waveguide and phase shifter is divided into three layers along the vertical direction to be fabricated based on computerized numerical control (CNC) technology. In the design, the turning waveguide and twisting waveguide are employed to achieve plane consistency of the antenna branch ports. Furthermore, a phase shifter is designed to compensate the orthogonally polarized waves, which can keep the phase of the orthogonally polarized waves consistent in a wideband frequency range from 75 GHz to 110 GHz. A prototype is fabricated and measured to verify the performance of the proposed multi-polarization antenna, and the measured results agree well with the simulation ones. In the whole W-band, the value of return loss is better than 10 dB of all polarization modes, and the value of AR of the LHCP and RHCP is below 3.5 dB. The maximum gain of the antenna reaches up to 18.8 dBi at 110 GHz. In addition, regarding the layered structure, the possible layered assembly error analysis is discussed, which verifies the feasibility of the layered machining for this antenna. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

19 pages, 3280 KB  
Article
Deciphering the Enhancing Impact of Exogenous Brassinolide on Physiological Indices of Melon Plants under Downy Mildew-Induced Stress
by Tai Liu, Huichun Xu, Sikandar Amanullah, Zhiqiang Du, Xixi Hu, Ye Che, Ling Zhang, Zeyu Jiang, Lei Zhu and Di Wang
Plants 2024, 13(6), 779; https://doi.org/10.3390/plants13060779 - 9 Mar 2024
Cited by 4 | Viewed by 1865
Abstract
Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used [...] Read more.
Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L−1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L−1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L−1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L−1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L−1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress. Full article
(This article belongs to the Special Issue Genetics of Disease Resistance in Horticultural Crops)
Show Figures

Figure 1

14 pages, 8482 KB  
Article
A Multiband and Multifunctional Metasurface for Linear and Circular Polarization Conversion in Reflection Modes
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Wang Yun and Muhammad Ishfaq
Crystals 2024, 14(3), 266; https://doi.org/10.3390/cryst14030266 - 8 Mar 2024
Cited by 4 | Viewed by 2288
Abstract
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains [...] Read more.
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains crucial. This paper proposes a multiband and multifunctional dual reflective polarization converter surface capable of converting a linearly polarized (LP) wave into a circularly polarized (CP) wave, in frequency bands of 12.29–12.63 GHz, 16.08–24.16 GHz, 27.82–32.21 GHz, 33.75–38.74 GHz, and 39.70–39.79 GHz, with 3 dB axial ratio bandwidths of 2.7%, 40.15%, 14.6%, 13.76%, and 0.2%, respectively. Moreover, the converter is capable of achieving CPC with a polarization conversion ratio (PCR) that exceeds 95%, within the frequency ranges of 13.10–14.72 GHz, 25.43–26.00, 32.46–32.56 GHz, and 39.14–39.59 GHz. In addition, to identify the fundamental cause of the CPC and LP–CP conversion, a comprehensive theoretical investigation is provided. Furthermore, the surface current distribution patterns at different frequencies are investigated to analyze the conversion phenomena. A sample prototype consisting of 20 × 20 unit cells was fabricated and measured, verifying our design and the simulated results. The proposed structure has potential applications in satellite communications, radar, stealth technologies, and reflector antennas. Full article
(This article belongs to the Special Issue Anisotropic Acoustic Metamaterials)
Show Figures

Figure 1

21 pages, 6568 KB  
Article
Cost-Effective Design of Polarization and Bandwidth Reconfigurable Millimeter-Wave Loop Antenna
by Rawad Asfour, Salam K. Khamas and Edward A. Ball
Sensors 2023, 23(24), 9628; https://doi.org/10.3390/s23249628 - 5 Dec 2023
Cited by 4 | Viewed by 1935
Abstract
A singly fed reconfigurable circular loop antenna is proposed for millimeter-wave (mmWave) communication systems. This antenna’s distinctive feature lies in its capacity to adjust both polarization and bandwidth characteristics, a capability made possible by the strategic integration of two PIN diodes. These diodes [...] Read more.
A singly fed reconfigurable circular loop antenna is proposed for millimeter-wave (mmWave) communication systems. This antenna’s distinctive feature lies in its capacity to adjust both polarization and bandwidth characteristics, a capability made possible by the strategic integration of two PIN diodes. These diodes are engineered to function in various modes, allowing for three distinct polarization states and accommodating two distinct bandwidths. A meticulous alignment of these PIN diodes enables the utilization of a single DC bias network as a highly effective RF choke, which simplifies the design and reduces the associated losses. Additionally, a planar biasing network that consists of coplanar strip-lines (CPS) has been employed eliminating the need for lumped elements. The simple and totally planar configuration offers a choice of right-hand circularly polarized (RHCP) radiation or left-hand circularly polarized (LHCP) radiation at 28 GHz. This is accompanied by impedance matching and axial ratio (AR) bandwidths of 12.9% and 8%, respectively, over the same frequency range with a gain of 7.5 dBic. Moreover, when the PIN diodes are unbiased, the antenna offers linear polarization (LP) over two narrow bandwidths at 27 GHz and 29 GHz featuring a maximum gain of 7.2 dBic. Therefore, the proposed configuration offers three operating modes: wide-band RHCP, wide-band-LHCP, and LP over dual narrow bands. Significantly, simulated results closely align with the measured outcomes, affirming the robustness and accuracy of this design. Full article
Show Figures

Figure 1

13 pages, 3094 KB  
Article
OsALB3 Is Required for Chloroplast Development by Promoting the Accumulation of Light-Harvesting Chlorophyll-Binding Proteins in Rice
by Chao Zhang, Xinchen Mao, Xiaoxiao Feng, Yali Sun, Zirui Wang, Jiaqi Tang and Hengxiu Yu
Plants 2023, 12(23), 4003; https://doi.org/10.3390/plants12234003 - 28 Nov 2023
Cited by 5 | Viewed by 1716
Abstract
ALBINO3 (ALB3) protein functions in the insertion and assembly of thylakoid membrane protein complexes and plays a critical role for chloroplast development in Arabidopsis. However, the biological function of ALB3 homologs in rice, OsALB3, remains elusive. Here, we identified a rice mutant, [...] Read more.
ALBINO3 (ALB3) protein functions in the insertion and assembly of thylakoid membrane protein complexes and plays a critical role for chloroplast development in Arabidopsis. However, the biological function of ALB3 homologs in rice, OsALB3, remains elusive. Here, we identified a rice mutant, yellow leaf and lethal1 (yll1), that displayed yellow leaves and died at the seedling stage. The content of chlorophyll in yll1, compared with wild type, was significantly decreased. Transmission electron microscopy observation shows that the chloroplast of yll1 lacks thylakoid membranes. The causal mutation, which is located in OsALB3, was isolated by Mutmap+ combined with a simple mutation filtering process. Knockout of OsALB3 leads to yellow leaves and seedling lethality, mimicking the phenotype of yll1. OsALB3 is widely expressed and OsALB3 is chloroplast-localized. Moreover, the content of light-harvesting chlorophyll-binding proteins in yll1 is reduced. Together, our study demonstrated the essential role of OsALB3 in chloroplast development and provided clues to the possible conserved molecular function of ALB3 in rice. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Cereals)
Show Figures

Figure 1

Back to TopTop