Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = LID layout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7566 KB  
Article
Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale
by Zexin Lei, Lijun Li, Yanrou Wei, Wenzheng Zhang, Junjie Luo and Xuqiang Zhao
Land 2025, 14(7), 1434; https://doi.org/10.3390/land14071434 - 8 Jul 2025
Viewed by 561
Abstract
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), [...] Read more.
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), NSGA-II genetic algorithm, and Analytic Hierarchy Process (AHP) at Taiyuan University of Technology in Shanxi Province, China. Based on site constraints, each LID type was pre-assigned to suitable subareas, and optimization focused on determining proportional allocations within these areas. SWMM simulations revealed that permeable paving achieved the highest runoff reduction (up to 19.4% at 65% coverage) and strong cost-effectiveness (0.013 USD per % reduction). NSGA-II was used to generate a set of optimal solutions by minimizing construction costs and maximizing runoff and pollutant reductions. AHP then ranked these solutions according to their environmental, economic, and social benefits. In this case, the ideal mix—subject to site-specific constraints and model assumptions—includes 28.58% green roofs, 19.37% sunken green spaces, 48.68% permeable paving, and 3.37% rain gardens. The study proposes a sponge campus renewal strategy, offering theoretical and practical insights for sustainable urban development and precise environmental management. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

22 pages, 6532 KB  
Article
Spatial Layout Strategy for Stormwater Management Measures in Mountainous Cities Based on the “Source-Sink” Theory
by Yuchang Shang, Jie Liu, Hong Wu and Lun Chen
Water 2025, 17(11), 1591; https://doi.org/10.3390/w17111591 - 24 May 2025
Viewed by 596
Abstract
Mountainous cities are especially vulnerable to flooding and water quality degradation due to surrounding steep terrain, variable precipitation, and fragile ecosystems. Existing studies often rely on small-scale scenario simulations or computationally intensive optimization algorithms, limiting their practical application. This study proposes a spatial [...] Read more.
Mountainous cities are especially vulnerable to flooding and water quality degradation due to surrounding steep terrain, variable precipitation, and fragile ecosystems. Existing studies often rely on small-scale scenario simulations or computationally intensive optimization algorithms, limiting their practical application. This study proposes a spatial layout strategy for stormwater management tailored to mountainous environments, using the Xining sponge city pilot area as a case study. Based on the “source–sink” theory, flood risk was assessed at the district scale, and the Storm Water Management Model (SWMM) was applied to evaluate four Low-Impact Development (LID) deployment schemes. A novel indicator—the source–sink coupling optimization degree (SSCOD)—was introduced to quantify LID spatial coordination between source and sink zones and identify optimal configuration thresholds. Results show that the four LID allocations significantly reduce runoff and improve water quality compared to the no-LID baseline. Analyses also reveal diminishing returns: optimal LID performance occurs when SSCOD ranges from 0.345 to 0.423, with 24.24–24.41% of LID facilities placed in high-risk zones. Beyond this range, effectiveness plateaus or declines, leading to potential resource waste. The proposed framework provides a technical basis and practical strategy for guiding stormwater infrastructure planning in mountainous cities, balancing effectiveness with resource efficiency. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

26 pages, 20258 KB  
Article
Toward Urban Micro-Renewal: Integrating “BMP-Plan” and “LID-Design” for Enhanced Stormwater Control—A Case Study
by Zhenxing Huang, Yiyuan Sun, Yanting Fan, Ruofei Guan, Hao Zhang, Lianhai Zhao and Bin Zhang
Water 2025, 17(7), 992; https://doi.org/10.3390/w17070992 - 28 Mar 2025
Viewed by 585
Abstract
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to [...] Read more.
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to a case study of a small-scale urban public space in Chang’an District, Shijiazhuang City, Hebei Province, covering an area of about 2.15 hectares in North China. The framework combines Best Management Practices Planning (BMP-P) with Low Impact Development Design (LID-D). The framework optimizes sub-catchment delineation, strategically locates drainage outlets, and configures network layouts to reduce runoff path lengths, thereby reducing total runoff volume, enhancing drainage capacity, and alleviating surface water accumulation, which, in turn, informs the parametric design of LID facilities. In the BMP-P phase, four source-control measures were developed based on runoff control and stormwater retention: adjusting terrain slopes, adding or removing curbs and facilities, redistributing infiltration areas, and adjusting drainage outlet and piping layouts. By shortening runoff paths and reducing potential waterlogging areas, these measures effectively reduced total runoff volume (Trv) by 31.5% to 35.7% and peak runoff volume (Prv) by 19.4% to 32.4%. Moreover, by remodeling the stormwater network with a different layout, larger pipe diameters, and substantially increased network capacity, the total discharge (Tdv) increased by 1.8% to 50.2%, and the peak discharge rate (Pdr) increased by 100% to 550%, thus minimizing surface flooding. In the LID-D phase, we developed a Grasshopper-based parametric design program for the layout and design of LID facilities. This approach significantly reduces interdisciplinary communication costs and enhances urban planning efficiency. By integrating BMP and LID strategies, the proposed framework offers a flexible, rapid, and efficient solution for achieving resilient stormwater management in the context of urban micro-renewal. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

28 pages, 12767 KB  
Article
Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm
by Yuzhou Huang, Debiao Li, Qiusha Li, Kai-Qin Xu, Jiankun Xie, Wei Qiang, Dangshi Zheng, Shengzheng Chen and Gongduan Fan
Water 2025, 17(6), 840; https://doi.org/10.3390/w17060840 - 14 Mar 2025
Cited by 1 | Viewed by 891
Abstract
In recent years, the urgent need to mitigate stormwater runoff and address urban waterlogging has garnered significant attention. Low Impact Development (LID) has emerged as a promising strategy for managing urban runoff sustainably. However, the vast array of potential LID layout combinations presents [...] Read more.
In recent years, the urgent need to mitigate stormwater runoff and address urban waterlogging has garnered significant attention. Low Impact Development (LID) has emerged as a promising strategy for managing urban runoff sustainably. However, the vast array of potential LID layout combinations presents challenges in quantifying their effectiveness and often results in high construction costs. To address these issues, this study proposes a simulation-optimization framework that integrates the Storm Water Management Model (SWMM) with advanced optimization techniques to minimize both runoff volume and costs. The framework incorporates random variations in rainfall intensity within the basin, ensuring robustness under diverse climatic conditions. By leveraging a multi-objective scatter search algorithm, this research optimizes LID layouts to achieve effective stormwater management. The algorithm is further enhanced by two local search techniques—namely, the ‘cost–benefit’ local search and path-relinking local search—which significantly improve computational efficiency. Comparative analysis reveals that the proposed algorithm outperforms the widely used NSGA-II (Non-dominated Sorting Genetic Algorithm II), reducing computation time by an average of 8.89%, 16.98%, 1.72%, 3.85%, and 1.23% across various scenarios. The results demonstrate the method’s effectiveness in achieving optimal LID configurations under variable rainfall intensities, highlighting its practical applicability for urban flood management. This research contributes to advancing urban sponge city initiatives by providing a scalable, efficient, and scientifically grounded solution for sustainable urban water management. The proposed framework is expected to support decision-makers in designing cost-effective and resilient stormwater management systems, paving the way for more sustainable urban development. Full article
Show Figures

Figure 1

24 pages, 3811 KB  
Article
Optimization Study of Drainage Network Systems Based on the SWMM for the Wujin District, Changzhou City, Jiangsu Province, China
by Yi Pan and Xungui Li
Appl. Sci. 2025, 15(3), 1276; https://doi.org/10.3390/app15031276 - 26 Jan 2025
Viewed by 1278
Abstract
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic [...] Read more.
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic data, the model was refined through genetic algorithm-based optimization to enhance drainage efficiency. Key results indicate a substantial reduction in the average duration of waterlogging from 7.43 h to 3.12 h and a decrease in average floodwater depth from 21.27 cm to 8.65 cm. Improvements in the drainage network layout, such as the construction of new stormwater mains, branch drains, and rainwater storage facilities, combined with LID interventions like permeable pavements and rain gardens, have led to a 56.82% increase in drainage efficiency and a 63.88% reduction in system failure rates. The implementation effectively minimized peak flood flow by 25.38%, reduced runoff, and improved groundwater recharge and rainwater utilization. The proposed solutions offer a replicable, sustainable framework for mitigating flooding in urban environments, enhancing ecological resilience, and ensuring the safety and quality of urban life in densely populated areas. Full article
Show Figures

Figure 1

19 pages, 4714 KB  
Article
Optimization Research of Heterogeneous 2D-Parallel Lattice Boltzmann Method Based on Deep Computing Unit
by Shunan Tao, Qiang Li, Quan Zhou, Zhaobing Han and Lu Lu
Appl. Sci. 2024, 14(14), 6078; https://doi.org/10.3390/app14146078 - 12 Jul 2024
Viewed by 1471
Abstract
Currently, research on the lattice Boltzmann method mainly focuses on its numerical simulation and applications, and there is an increasing demand for large-scale simulations in practical scenarios. In response to this situation, this study successfully implemented a large-scale heterogeneous parallel algorithm for the [...] Read more.
Currently, research on the lattice Boltzmann method mainly focuses on its numerical simulation and applications, and there is an increasing demand for large-scale simulations in practical scenarios. In response to this situation, this study successfully implemented a large-scale heterogeneous parallel algorithm for the lattice Boltzmann method using OpenMP, MPI, Pthread, and OpenCL parallel technologies on the “Dongfang” supercomputer system. The accuracy and effectiveness of this algorithm were verified through the lid-driven cavity flow simulation. The paper focused on optimizing the algorithm in four aspects: Firstly, non-blocking communication was employed to overlap communication and computation, thereby improving parallel efficiency. Secondly, high-speed shared memory was utilized to enhance memory access performance and reduce latency. Thirdly, a balanced computation between the central processing unit and the accelerator was achieved through proper task partitioning and load-balancing strategies. Lastly, memory access efficiency was improved by adjusting the memory layout. Performance testing demonstrated that the optimized algorithm exhibited improved parallel efficiency and scalability, with computational performance that is 4 times greater than before optimization and 20 times that of a 32-core CPU. Full article
(This article belongs to the Special Issue Parallel Computing and Grid Computing: Technologies and Applications)
Show Figures

Figure 1

28 pages, 15828 KB  
Article
Identifying the Optimal Layout of Low-Impact Development Measures at an Urban Watershed Scale Using a Multi-Objective Decision-Making Framework
by Xianpeng Xie, Qi Chu, Zefeng Qiu, Guangqi Liu and Shuhui Jia
Water 2024, 16(14), 1969; https://doi.org/10.3390/w16141969 - 11 Jul 2024
Cited by 4 | Viewed by 1425
Abstract
This study introduces a spatial layout framework for the multi-objective optimization of low-impact development (LID) measures at an urban watershed scale, targeting the mitigation of urban flooding and water pollution exacerbated by urbanization. The framework, tailored for the Dahongmen area within Beijing’s Liangshui [...] Read more.
This study introduces a spatial layout framework for the multi-objective optimization of low-impact development (LID) measures at an urban watershed scale, targeting the mitigation of urban flooding and water pollution exacerbated by urbanization. The framework, tailored for the Dahongmen area within Beijing’s Liangshui River Watershed, integrates the storm water management model (SWMM) with the nondominated sorting genetic algorithm II (NSGA-II). It optimizes LID deployment by balancing annual costs, volume capture ratio of rainfall, runoff pollution control rate, and the reduction in heat island potential (HIPR). High-resolution comprehensive runoff and land use data calibrate the model, ensuring the realism of the optimization approach. The selection of optimal solutions from the Pareto front is guided by weights determined through both the entropy weight method and subjective weight method, employing the TOPSIS method. The research highlights the positive, nonlinear correlation between cost and environmental benefits, particularly in reducing heat island effects, offering vital decision-making insights. It also identifies a critical weight range in specific decision-making scenarios, providing a scientific basis for rational weight assignment in practical engineering. This study exemplifies the benefits of comprehensive multi-objective optimization, with expectations of markedly improving the efficacy of large-scale LID implementations. Full article
(This article belongs to the Special Issue Urban Flood Mitigation and Sustainable Stormwater Management)
Show Figures

Figure 1

18 pages, 6034 KB  
Article
Optimization of LID Strategies for Urban CSO Reduction and Cost Efficiency: A Beijing Case Study
by Hao Wang, Pengfei Zeng, Zilong Liu, Wentao Li and Jinjun Zhou
Water 2024, 16(7), 965; https://doi.org/10.3390/w16070965 - 27 Mar 2024
Cited by 9 | Viewed by 2155
Abstract
Combined sewer overflow (CSO) can lead to serious urban water environment pollution and health risks to residents. Low Impact Development (LID) facilities are one of the important measures to alleviate CSO and have been widely applied. The rational selection of LID facility types, [...] Read more.
Combined sewer overflow (CSO) can lead to serious urban water environment pollution and health risks to residents. Low Impact Development (LID) facilities are one of the important measures to alleviate CSO and have been widely applied. The rational selection of LID facility types, locations, and scales is the most important task, which can effectively improve resource utilization efficiency. Based on the NSGA-II multi-objective optimization algorithm and coupled with the SWMM sewer network hydraulic model, this study takes the combined sewer overflows and the construction cost of LID facilities as optimization objectives and optimizes the types and scales of LID layout in the study area, including eight different return periods. By using the Pareto frontier and visualizing the results of the model, the effects of different rainfall return periods on the CSO control and investment cost of LID layout schemes are compared. The results show the following: (1) the optimization model can demonstrate the relationship between CSO control volume and LID construction cost under different LID layout schemes through the Pareto frontier, showing three different trends, indicating that the relationship between overflow volume and investment cost is nonlinear; (2) with the increase in rainfall intensity, higher requirements are proposed for LID schemes to meet CSO control targets, leading to a decrease in the number of Pareto frontier solution sets. Under larger rainfall intensities, it is difficult to achieve the same overflow control effect by increasing the scale of LID construction. Therefore, considering constraining the LID construction cost between RMB 5.3 and 5.38 million is helpful to determine the most suitable solution; (3) in the optimal layout schemes under different return periods, 87.3% of the locations where LID is deployed have similar scales. Based on these locations with a relatively large proportion of deployment, it can be determined that special attention should be paid to spatial positions in LID planning and construction. This study provides valuable insights for solving combined sewer overflow problems and optimizing urban drainage management and provides guidance for future planning and decision-making processes. Full article
(This article belongs to the Special Issue Urban Flood Mitigation and Sustainable Stormwater Management)
Show Figures

Figure 1

17 pages, 10437 KB  
Article
Comparative Analysis of Flood Prevention and Control at LID Facilities with Runoff and Flooding as Control Objectives Based on InfoWorks ICM
by Xinyue Cheng, Hao Wang, Bin Chen, Zhi Li and Jinjun Zhou
Water 2024, 16(3), 374; https://doi.org/10.3390/w16030374 - 23 Jan 2024
Cited by 8 | Viewed by 2277
Abstract
Climate change and urbanization have led to an increase in the amount of water flowing into traditional drainage systems, which results in frequent urban flooding. Low–Impact Development (LID) facilities, with their distributed feature, are one of the important means to mitigate flooding and [...] Read more.
Climate change and urbanization have led to an increase in the amount of water flowing into traditional drainage systems, which results in frequent urban flooding. Low–Impact Development (LID) facilities, with their distributed feature, are one of the important means to mitigate flooding and have been widely used. In this paper, based on integrated catchment management (ICM), we compare the abatement of runoff, flooding, and ponding under two durations of rainfall and eight different return periods with runoff as the control objective (RACO) and flooding as the control objective (FACO) for the deployment of LID facilities. The waterlogged area of FACO is higher by a range of 92.462 m2 to 24,124.39 m2 compared to RACO. Both percentage reduction of overflow volume and runoff volume tend to decrease gradually with the increase in the return period. For the percentage reduction of runoff volume per unit area, sometimes RACO is greater than FACO, and sometimes vice versa, while for the percentage reduction of overflow volume per unit area, the range where FACO exceeds RACO is between 0.29 to 10.95 (%/ha). The cost of FACO has decreased by 4.94% to 46.20% compared to RACO. This shows that FACO’s LID deployment method can fully utilize the capacity of LID facilities to mitigate inundation, reducing the cost of LID facilities to a certain extent. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

19 pages, 4883 KB  
Article
The Multi-Objective Optimization of Low-Impact Development Facilities in Shallow Mountainous Areas Using Genetic Algorithms
by Huiyi Sun, Yuxiang Dong, Yue Lai, Xuanyin Li, Xiaoyu Ge and Chensong Lin
Water 2022, 14(19), 2986; https://doi.org/10.3390/w14192986 - 23 Sep 2022
Cited by 10 | Viewed by 3932
Abstract
From the perspective of whole-area sponge city construction, it is important to scientifically determine the layout plan of LID facilities for controlling urban rainfall and flooding problems, given the topographical features and rainfall runoff characteristics of shallow urban mountainous areas. Current research on [...] Read more.
From the perspective of whole-area sponge city construction, it is important to scientifically determine the layout plan of LID facilities for controlling urban rainfall and flooding problems, given the topographical features and rainfall runoff characteristics of shallow urban mountainous areas. Current research on the optimization of low-impact development facilities is limited to the central urban area level, with insufficient research on shallow urban mountainous areas, and there is great uncertainty in the layout of LID facilities when multiple objectives are considered. Therefore, this paper applied a genetic algorithm (NSGA-II) to optimize the layout scheme of LID facilities. Multiple objectives of the peak runoff abatement rate, cost, and land area were selected as the optimization objectives, and the optimized results were ranked using the EWM-TOPSIS and VCWM-TOPSIS methods. The 2nd Hebei Provincial Garden Flower Expo (Qinhuangdao) Park was used as the research object for the optimization design. The results showed that, under the premise of water safety, the lowest cost priority was given to the LID facility with a 15.49% share, 99.43% peak runoff reduction rate, and a cost of CNY 1.215 × 107; the lowest area priority was given to the LID facility with a 15.25% share, 99.42% peak runoff reduction rate, and a cost of CNY 1.267 × 107. The EWM-TOPSIS method was also used to obtain the best optimized solution with 16.18% LID facilities, 99.64% peak runoff abatement rate, and a cost of CNY 1.26 × 107, and the worst optimized solution with 12.55% LID facilities, 97.91% peak runoff abatement rate, and a cost of CNY 1.061 × 107. The decision results under different decision-maker preferences were obtained by the VCWM-TOPSIS method. This study showed that the combination of a genetic algorithm and TOPSIS can optimize the layout of LID facilities in shallow mountainous areas more scientifically and efficiently compared to the actual construction plan for building a sponge city. Full article
(This article belongs to the Special Issue Urban Hydrology and Sustainable Drainage System)
Show Figures

Figure 1

15 pages, 5565 KB  
Review
A Systematic Bibliometric Review of Low Impact Development Research Articles
by Jin You, Xiang Chen, Liang Chen, Jianghai Chen, Beibei Chai, Aiqing Kang, Xiaohui Lei and Shuqian Wang
Water 2022, 14(17), 2675; https://doi.org/10.3390/w14172675 - 29 Aug 2022
Cited by 13 | Viewed by 3581
Abstract
The concept of low impact development (LID) plays a crucial role in rainstorm management and non-point source pollution prevention and control. Sorting and summarizing related research through the knowledge map can objectively present the disciplinary structure, research focus, and research hotspots of the [...] Read more.
The concept of low impact development (LID) plays a crucial role in rainstorm management and non-point source pollution prevention and control. Sorting and summarizing related research through the knowledge map can objectively present the disciplinary structure, research focus, and research hotspots of the LID research. Based on 2103 LID pieces of literature in Chinese and English included in the web of science (WOS) database and China’s integrated knowledge resources system (CNKI) database from 2004 to 2021, this paper aims to perform statistical analysis from three aspects: bibliometrics, keyword hotspot co-occurrence and clustering, and literature co-citation clustering. The obtained results reveal that research on LID-based issues maintains a high degree of enthusiasm in China and abroad, but their corresponding focuses are dissimilar. Foreign research essentially focuses on the environmental field with frequent interdisciplinary phenomena, combining the triple goals of water quality improvement, runoff reduction, and multi-functional expansion, and is committed to solving the impact of uncertain factors on urban stormwater management in extreme climates. Chinese research is mostly aimed at unlocking practical engineering problems, which also leads to the majority of research works in the field of building science and engineering. This is mainly due to a series of water-related problems caused by the change in land use types in China. The researchers have determined the type, quantity, location, and combination of the optimal LID measures by establishing appropriate models, using optimization algorithms, and developing multi-level analysis methods. Although the multi-dimensional results of LID in recent years have greatly expanded the framework paradigm, most of the conducted research works are still biased towards the micro-scale. The present hotspot research considers how to make a macroscopic overall layout and efficiently cooperate with the pipelines network, rivers, and lakes systems to unlock the problems pertinent to urban rainwater and non-point source pollution. Full article
(This article belongs to the Topic Sustainable Environmental Technologies)
Show Figures

Figure 1

12 pages, 1912 KB  
Article
A Multiobjective Spatial Optimization Model of LID Based on Catchment Landuse Type
by Kaiyuan Zheng and Yuntao Guan
Water 2022, 14(12), 1944; https://doi.org/10.3390/w14121944 - 17 Jun 2022
Cited by 3 | Viewed by 2364
Abstract
Aiming to solve the problem of the low efficiency and single objective of low impact development (LID) layout, the objectives of stormwater control, water quality purification, and economic cost are selected to present the performance of LID practices. A novel method of evaluating [...] Read more.
Aiming to solve the problem of the low efficiency and single objective of low impact development (LID) layout, the objectives of stormwater control, water quality purification, and economic cost are selected to present the performance of LID practices. A novel method of evaluating urban runoff and pollutant concentration is put forward based on the land-use type of each catchment. Shenzhen City is selected as the study area, and three LID scenarios are designed and contrasted for an ideal solution according to their land-use type. The results show that the multiobjective optimization model based on runoff evaluation, pollutant simulation, and investment calculation can be more efficient and can be applied in other areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

14 pages, 3386 KB  
Article
Numerical Comparison of the Hydrological Response of Different Permeable Pavements in Urban Area
by Diego Ciriminna, Giovanni Battista Ferreri, Leonardo Valerio Noto and Clara Celauro
Sustainability 2022, 14(9), 5704; https://doi.org/10.3390/su14095704 - 9 May 2022
Cited by 10 | Viewed by 3619
Abstract
Floods are becoming more frequent, especially in urban environments where most of the surface is waterproofed. Permeable pavement (PP) can be applied as low impact development (LID) systems for runoff mitigation in urban areas. Their effectiveness can be assessed, case by case, by [...] Read more.
Floods are becoming more frequent, especially in urban environments where most of the surface is waterproofed. Permeable pavement (PP) can be applied as low impact development (LID) systems for runoff mitigation in urban areas. Their effectiveness can be assessed, case by case, by numerical simulations. In this study, the effectiveness of mitigating runoff of different permeable pavements has been evaluated. In particular, porous asphalt (PA), pervious concrete (PC), permeable interlocking concrete pavement (PICP) and grid pavement (GP) have been investigated using EPA Storm Water Management Model (SWMM) software. To this aim, a car parking area located in the University Campus of Palermo (Italy) has been taken as a case study, considering several scenarios, each having a different percentage and planimetric layout of a PP type combined with an impermeable pavement. All the scenarios were tested assuming four synthetic rainfall events, referring to return periods of 5, 10, 50 and 100 years, and a real high return period event that occurred in Palermo in 2020. The results showed that amongst the different PPs considered, only the PA, bounded at the bottom by an impermeable layer, was practically ineffective. The other three PPs, proved to be effective in a noticeable way and furthermore for each scenario studied, they proved to bear almost the same mitigated runoff. The results proved appreciable differences in runoff as a function of the location of the PP over the study area. Full article
(This article belongs to the Special Issue Sustainable Management of Transportation Infrastructure Projects)
Show Figures

Figure 1

21 pages, 4640 KB  
Article
A Strong-Form Off-Lattice Boltzmann Method for Irregular Point Clouds
by Ivan Pribec, Thomas Becker and Ehsan Fattahi
Symmetry 2021, 13(10), 1802; https://doi.org/10.3390/sym13101802 - 28 Sep 2021
Cited by 2 | Viewed by 2966
Abstract
Radial basis function generated finite differences (RBF-FD) represent the latest discretization approach for solving partial differential equations. Their benefits include high geometric flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to other meshfree methods, typically based upon moving least squares (MLS), [...] Read more.
Radial basis function generated finite differences (RBF-FD) represent the latest discretization approach for solving partial differential equations. Their benefits include high geometric flexibility, simple implementation, and opportunity for large-scale parallel computing. Compared to other meshfree methods, typically based upon moving least squares (MLS), the RBF-FD method is able to recover a high order of algebraic accuracy while remaining better conditioned. These features make RBF-FD a promising candidate for kinetic-based fluid simulations such as lattice Boltzmann methods (LB). Pursuant to this approach, we propose a characteristic-based off-lattice Boltzmann method (OLBM) using the strong form of the discrete Boltzmann equation and radial basis function generated finite differences (RBF-FD) for the approximation of spatial derivatives. Decoupling the discretizations of momentum and space enables the use of irregular point cloud, local refinement, and various symmetric velocity sets with higher order isotropy. The accuracy and computational efficiency of the proposed method are studied using the test cases of Taylor–Green vortex flow, lid-driven cavity, and periodic flow over a square array of cylinders. For scattered grids, we find the polyharmonic spline + poly RBF-FD method provides better accuracy compared to MLS. For Cartesian node layouts, the results are the opposite, with MLS offering better accuracy. Altogether, our results suggest that the RBF-FD paradigm can be applied successfully also for kinetic-based fluid simulation with lattice Boltzmann methods. Full article
Show Figures

Figure 1

18 pages, 21243 KB  
Article
Effectiveness of Floating Breakwater in Special Configurations for Protecting Nearshore Infrastructures
by Chi Zhang and Allan R. Magee
J. Mar. Sci. Eng. 2021, 9(7), 785; https://doi.org/10.3390/jmse9070785 - 20 Jul 2021
Cited by 11 | Viewed by 6129
Abstract
This paper investigates the effectiveness of floating breakwaters consisting of two barges (L-shape), three barges (U-shape), four barges (barge frame), and conventional single floating breakwater. The floating breakwaters of different spatial layouts have sheltered internal gaps/moonpools when compared to their conventional counterparts. The [...] Read more.
This paper investigates the effectiveness of floating breakwaters consisting of two barges (L-shape), three barges (U-shape), four barges (barge frame), and conventional single floating breakwater. The floating breakwaters of different spatial layouts have sheltered internal gaps/moonpools when compared to their conventional counterparts. The motions of these floating breakwaters and their effectiveness in wave transmission and motion reduction of the protected floating bodies are evaluated. The study is conducted based on a subsystem of a floating hydrocarbon storage facility that combines a floating breakwater with two floating tanks, studied previously. Numerical models based on linear potential flow theory are built for these floating breakwaters with and without the floating tanks. The numerical models of the barge frame are validated through laboratory experiments, and the dipole damping lids to reduce the resonant fluid motions in the gaps/moonpools are calibrated with experimental results. The L-shape floating breakwater is found effective in reducing wave transmissions without the presence of the floating tanks, while the barge frame is the most effective in the motion reduction of the floating tanks. In addition, significant fluid resonant motions are identified for all investigated floating breakwaters, including the conventional one. Orienting the structure obliquely can improve the performance of the floating breakwaters of special configurations, especially the barge frame. The results and findings show the importance of considering the protected floating structures in the analysis when designing floating breakwaters for many types of marine structures, including floating fish farms and floating cities in coastal waters. Full article
(This article belongs to the Special Issue Recent Advances in Floating Structures)
Show Figures

Figure 1

Back to TopTop