Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = LTCC technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6959 KB  
Article
Impact of AlF3-CaB4O7 Doping on Terahertz Dielectric Properties and Feasibility of Low/Ultra-Low Temperature Co-Fired Ceramics
by Beata Synkiewicz-Musialska and Dorota Szwagierczak
Materials 2025, 18(18), 4272; https://doi.org/10.3390/ma18184272 - 12 Sep 2025
Viewed by 223
Abstract
Modification of the composition by doping is an effective way to develop new substrate materials for 5G/6G communication systems. This paper aims to study the impact of AlF3-CaB4O7 doping on dielectric properties at very high frequencies, sintering temperature, [...] Read more.
Modification of the composition by doping is an effective way to develop new substrate materials for 5G/6G communication systems. This paper aims to study the impact of AlF3-CaB4O7 doping on dielectric properties at very high frequencies, sintering temperature, microstructure, and feasibility in LTCC/ULTCC (low/ultra-low temperature cofired ceramics) technology of four low dielectric permittivity materials based on CuB2O4, Zn2SiO4, LiBO2, and Li2WO4. Sintering behavior, microstructure, elemental and phase composition, and dielectric properties in the terahertz range were characterized using a heating microscope, SEM, EDS, XRD methods, and time domain spectroscopy. The developed ceramics exhibit excellent dielectric behavior at terahertz frequencies and are feasible in ULTCC or LTCC technology. These properties make them good candidates for substrates in 5G/6G communication systems. Full article
Show Figures

Figure 1

29 pages, 9470 KB  
Review
Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends
by Yutao Yang, Minmin Mao, Junran Xu, Huan Liu, Jianhua Wang and Kaixin Song
Sensors 2025, 25(17), 5424; https://doi.org/10.3390/s25175424 - 2 Sep 2025
Viewed by 1159
Abstract
With the rapid evolution of 5G wireless communications, millimeter-wave (mmWave) technology has become a crucial enabler for high-speed, low-latency, and large-scale connectivity. As the critical interface for signal transmission, mmWave antennas directly affect system performance, reliability, and application scope. This paper reviews the [...] Read more.
With the rapid evolution of 5G wireless communications, millimeter-wave (mmWave) technology has become a crucial enabler for high-speed, low-latency, and large-scale connectivity. As the critical interface for signal transmission, mmWave antennas directly affect system performance, reliability, and application scope. This paper reviews the current state of mmWave antenna technologies in 5G systems, focusing on antenna types, design considerations, and integration strategies. We discuss how the multiple-input multiple-output (MIMO) architectures and advanced beamforming techniques enhance system capacity and link robustness. State-of-the-art integration methods, such as antenna-in-package (AiP) and chip-level integration, are examined for their importance in achieving compact and high-performance mmWave systems. Material selection and fabrication technologies—including low-loss substrates like polytetrafluoroethylene (PTFE), hydrocarbon-based materials, liquid crystal polymer (LCP), and microwave dielectric ceramics, as well as emerging processes such as low-temperature co-fired ceramics (LTCC), 3D printing, and micro-electro-mechanical systems (MEMS)—are also analyzed. Key challenges include propagation path limitations, power consumption and thermal management in highly integrated systems, cost–performance trade-offs for mass production, and interoperability standardization across vendors. Finally, we outline future research directions, including intelligent beam management, reconfigurable antennas, AI-driven designs, and hybrid mmWave–sub-6 GHz systems, highlighting the vital role of mmWave antennas in shaping next-generation wireless networks. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

17 pages, 3277 KB  
Article
Design and Evaluation of Micromixers Fabricated with Alternative Technologies and Materials for Microanalytical Applications In Situ
by Rosa M. Camarillo-Escobedo, Jorge L. Flores, Juana M. Camarillo-Escobedo, Elizabeth Hernandez-Campos and Luis H. Garcia-Muñoz
Chemosensors 2025, 13(5), 191; https://doi.org/10.3390/chemosensors13050191 - 21 May 2025
Cited by 1 | Viewed by 734
Abstract
Micromixing is a crucial process in microfluidic systems. In biochemical and chemical analysis, the sample is usually tested with reagents. These solutions must be well mixed for the reaction to be possible, generally using micromixers manufactured with sophisticated and expensive technology. The present [...] Read more.
Micromixing is a crucial process in microfluidic systems. In biochemical and chemical analysis, the sample is usually tested with reagents. These solutions must be well mixed for the reaction to be possible, generally using micromixers manufactured with sophisticated and expensive technology. The present work shows the design and evaluation of micromixers fabricated with LTCC (low-temperature co-fired ceramics) and FDM (fused deposition modeling) technologies for the development of functional and complex geometries. Two-dimensional planar serpentine and 3D chaotic convection serpentine micromixers were manufactured and implemented in an automated microanalytical system using photometric methods. To evaluate the performance of the micromixers, flow, mixing and absorbance measurements were carried out. Green tape and PP materials were used and showed good resistance to the acidic chemical solutions. The devices presented achieved mixing times in seconds, a reduced dispersion due to their aspect ratio, high sensitivity, and precision in photometric measurement. The optical sensing cells stored sample volumes in a range of 10 to 600 µL, which allowed the reduction of reagent consumption and waste generation. These are ideal characteristics for in situ measurement, portable, and low-cost applications focused on green chemistry and biochemistry. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

17 pages, 10237 KB  
Review
Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures
by Xiaolei Bi, Xuemin Li, Bin Li and Xueli Cheng
Micromachines 2025, 16(5), 518; https://doi.org/10.3390/mi16050518 - 28 Apr 2025
Cited by 1 | Viewed by 803
Abstract
Terahertz metal rectangular cavity structures are widely used in terahertz devices due to their performance advantages, and various microfabrication techniques have been applied to the manufacturing of their high performance. In this paper, several typical application fields of terahertz technology and the reasons [...] Read more.
Terahertz metal rectangular cavity structures are widely used in terahertz devices due to their performance advantages, and various microfabrication techniques have been applied to the manufacturing of their high performance. In this paper, several typical application fields of terahertz technology and the reasons for its application in these fields are elaborated in detail. Several typical terahertz devices with terahertz metal rectangular cavity structures are introduced in detail. The research progress of various micromachining techniques for manufacturing terahertz rectangular cavity structures, such as DRIE, UV-LIGA, micro-milling, LTCC, 3D printing, and electrochemical micromachining, is discussed in detail. Finally, the advantages and disadvantages of various micromachining techniques for manufacturing terahertz micro-rectangular cavity structures are discussed, and the results show that electrochemical micromachining technology and micro-nano 3D printing technology are relatively promising methods for the manufacturing of high-frequency terahertz rectangular cavity structures. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 4498 KB  
Article
BaCo0.06Bi0.94O3-Doped NiZn Ferrites for High Frequency Low Loss Current Sensors: LTCC Sintering and Magnetic Properties
by Shao-Pu Jiang, Chang-Lai Yuan, Wei Liu, Lin Li, Huan Li and Jing-Tai Zhao
Sensors 2025, 25(9), 2731; https://doi.org/10.3390/s25092731 - 25 Apr 2025
Cited by 1 | Viewed by 717
Abstract
In order to meet the demand for high-frequency current sensors in 5G communication and new energy fields, there is an urgent need to develop high-performance nickel-zinc ferrite-based co-fired ceramic magnetic cores. In this study, a nickel-zinc ferrite core based on low temperature co-fired [...] Read more.
In order to meet the demand for high-frequency current sensors in 5G communication and new energy fields, there is an urgent need to develop high-performance nickel-zinc ferrite-based co-fired ceramic magnetic cores. In this study, a nickel-zinc ferrite core based on low temperature co-fired ceramic (LTCC) technology was developed. The regulation mechanism of BaCo0.06Bi0.94O3 doping on the low-temperature sintering characteristics of NiZn ferrites was systematically investigated. The results show that the introduction of BaCo0.06Bi0.94O3 reduces the sintering temperature to 900 °C and significantly improves the density and grain uniformity of ceramics. When the doping amount is 0.75 wt%, the sample exhibits the lowest coercivity of 35.61 Oe and the following optimal soft magnetic properties: initial permeability of 73.74 (at a frequency of 1 MHz) and quality factor of 19.64 (at a frequency of 1 MHz). The highest saturation magnetization reaches 66.07 emu/g at 1 wt% doping. The results show that BaCo0.06Bi0.94O3 doping can regulate the grain boundary liquid phase distribution and modulate the magnetocrystalline anisotropy, which provides an experimental basis and optimization strategy for the application of LTCC technology in high-frequency current sensors. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

15 pages, 8617 KB  
Article
Integrated Sensors Based on Low-Temperature Co-Fired Ceramic Technology for the Inside Pressure and Temperature Monitoring of Lithium-Ion Batteries
by Wanjia Han, Mingsheng Ma, Yitong Guo, Zexi Yang, Zeyan Liu, Feng Liu, Jingjing Feng, Faqiang Zhang, Yingchun Lyu, Shigang Lu, Yongxiang Li, Jianjiang Bian and Zhifu Liu
Sensors 2025, 25(7), 2095; https://doi.org/10.3390/s25072095 - 27 Mar 2025
Cited by 1 | Viewed by 3103
Abstract
Monitoring internal pressure and temperature in lithium-ion batteries is essential for investigating internal chemical reactions, failure mechanisms, and providing early warnings of thermal runaway. The existing sensors face challenges in withstanding the high temperatures and corrosive electrolytes inside lithium-ion batteries. This work develops [...] Read more.
Monitoring internal pressure and temperature in lithium-ion batteries is essential for investigating internal chemical reactions, failure mechanisms, and providing early warnings of thermal runaway. The existing sensors face challenges in withstanding the high temperatures and corrosive electrolytes inside lithium-ion batteries. This work develops an integrated sensor with high robustness using low-temperature co-fired ceramic (LTCC) technology, which incorporates a multilayer ceramic circuit board, a digital pulse temperature sensor, a MEMS pressure sensor, and a microcontroller. It offers the real-time monitoring of pressure and temperature with digital output and calibrated accuracy, achieving a pressure resolution of 1 kPa with 0.085% F.S. accuracy and a temperature resolution of 0.1 °C with deviations under 0.5 °C. The pressure and temperature signals are independently output with drift below 0.067 kPa/°C. The integrated sensors were implanted into a pouch and prototype lithium-ion battery, respectively, for charge–discharge cycle monitoring. The results demonstrated that the integrated sensors could detect cyclic variations in pressure and temperature during charging and discharging until battery failure. Furthermore, the integrated sensors showed high stability after being immersed 60 days in the corrosive electrolyte, suggesting their potential as a novel method for monitoring the internal pressure and temperature of lithium-ion batteries. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

17 pages, 23179 KB  
Article
Impact of Bonding Pressure on the Reactive Bonding of LTCC Substrates
by Erik Wiss, Nesrine Jaziri, Jens Müller and Steffen Wiese
Micromachines 2025, 16(3), 321; https://doi.org/10.3390/mi16030321 - 11 Mar 2025
Cited by 3 | Viewed by 854
Abstract
Reactive bonding can overcome the issues associated with conventional soldering processes, such as potential damage to heat-sensitive components and the creation of thermomechanical stress due to differing coefficients of thermal expansion. The risk of such damage can be reduced by using localized heat [...] Read more.
Reactive bonding can overcome the issues associated with conventional soldering processes, such as potential damage to heat-sensitive components and the creation of thermomechanical stress due to differing coefficients of thermal expansion. The risk of such damage can be reduced by using localized heat sources like reactive multilayer systems (RMS), which is already a well-established option in the field of silicon or metal bonding. Adapting this process to other materials, such as low temperature co-fired ceramics (LTCC), is difficult due to their differing properties, but it would open new technological possibilities. One aspect that significantly affects the quality of the bonding joints is the pressure applied during the bonding process. To investigate its influence more closely, various LTCC samples were manufactured, and cross-sections were prepared. The microscopical analysis reveals that there is an optimum range for the bonding pressure. While too little pressure results in the formation of lots of voids and gaps, most likely in poor mechanical and electrical properties, too high pressure seems to cause a detachment of the metallization from the base material. Full article
Show Figures

Figure 1

13 pages, 4920 KB  
Article
Multilayered Manufacturing Method for Microfluidic Systems Using Low-Cost, Resin-Based Three-Dimensional Printing
by Victor Edi Manqueros-Avilés, Hesner Coto-Fuentes, Karla Victoria Guevara-Amatón, Francisco Valdés-Perezgasga and Julian Alonso-Chamarro
Sensors 2025, 25(3), 694; https://doi.org/10.3390/s25030694 - 24 Jan 2025
Viewed by 2983
Abstract
This work presents a multilamination method for fabricating microfluidic devices or analytical microsystems using commercial 3D printers and photocurable resins as primary components. The developed method was validated by fabricating devices for the colorimetric measurement of copper ions in aqueous solutions, achieving results [...] Read more.
This work presents a multilamination method for fabricating microfluidic devices or analytical microsystems using commercial 3D printers and photocurable resins as primary components. The developed method was validated by fabricating devices for the colorimetric measurement of copper ions in aqueous solutions, achieving results comparable to traditional cyclic olefin copolymer (COC) systems. The microfluidic platforms demonstrated stability and functionality over a twelve-week testing period. Channels with minimum dimensions of 0.4 mm × 0.4 mm were fabricated, and the feasibility of using resin modules for optical applications was demonstrated. This study highlights the potential of combining 3D printing with multilamination procedures as a versatile alternative, offering flexibility through the selection of a variety of available resins and commercial printers, as well as the ease of design development. This method offers significant reductions in cost, time, and manufacturing complexity by eliminating the need for equipment such as CNC machines, presses, and ovens, which are typically required in other multilamination technologies like LTCC and COC. Full article
(This article belongs to the Collection Microfluidic Sensors)
Show Figures

Figure 1

11 pages, 6207 KB  
Article
A Generalized Design of On-Chip LTCC Balanced Filters Using Novel Hybrid Resonators with Intrinsic Ultra-Wideband Suppression for 5G Applications
by Wei Zhao, Yongle Wu, Zuoyu Xu and Weimin Wang
Electronics 2025, 14(1), 17; https://doi.org/10.3390/electronics14010017 - 24 Dec 2024
Viewed by 1187
Abstract
In this paper, we examine an ultra-compact on-chip balanced filter based on novel hybrid resonators (NHRs) comprising short transmission line sections (STLSs) and series LC blocks using low-temperature co-fired ceramic (LTCC) technology. Based on a rigorous theoretical analysis, the proposed NHR demonstrates the [...] Read more.
In this paper, we examine an ultra-compact on-chip balanced filter based on novel hybrid resonators (NHRs) comprising short transmission line sections (STLSs) and series LC blocks using low-temperature co-fired ceramic (LTCC) technology. Based on a rigorous theoretical analysis, the proposed NHR demonstrates the potential for intrinsic ultra-wideband differential-mode (DM) and common-mode (CM) suppression without any additional suppressing structures. Furthermore, the resonance of NHRs was determined by four degrees of freedom, providing flexibility for miniaturization. Theoretical extensions of the Nth-order topology can be easily achieved by the simple coupling schemes that occur exclusively between STLSs. For verification, a balanced filter covering the 5G band n78 with an area of 0.065λg × 0.072λg was designed using the proposed optimization-based design procedure. An ultra-low insertion loss of 0.8 dB was obtained. The quasi-full CM stopband with a 20 dB rejection level ranged from 0 to 12.9 GHz. And the ultra-wide upper DM stopband with a 20 dB rejection level ranged from 4.4 to 11.5 GHz. Good agreement between the theoretical, simulated, and measured results indicate the validity of the proposed design principle. Full article
Show Figures

Figure 1

13 pages, 13370 KB  
Article
Low-Temperature Sintering and Microwave Dielectric Properties of CuxZn1−xTi0.2Zr0.8Nb2O8 Ceramics with the Aid of LiF
by Xing-Hua Ma, Qi Qu, Haitao Wu, Zhenlu Zhang and Xingyi Ma
Materials 2024, 17(24), 6251; https://doi.org/10.3390/ma17246251 - 20 Dec 2024
Cited by 1 | Viewed by 1055
Abstract
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) [...] Read more.
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) and high quality factor (Q × f). Although ZnTi0.2Zr0.8Nb2O8 ceramic exhibits impressive microwave dielectric properties, including an εr of 29.75, a Q × f of 107,303 GHz, and a τf of −24.41 ppm/°C, its sintering temperature of 1150 °C remains a significant barrier for integration into low-temperature co-fired ceramic (LTCC) technologies. To overcome this limitation, a strategy involving the partial substitution of Zn2+ with Cu2+ and the addition of LiF as a sintering aid was devised for ZnTi0.2Zr0.8Nb2O8. The dual impact of Cu2+ partial substitution and LiF as a sintering enhancer facilitated the successful sintering of Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramics at a reduced temperature of 950 °C using the conventional solid-state reaction method. These ceramics exhibited excellent microwave dielectric properties. Notably, Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramic with 40 mol% LiF addition demonstrated optimal microwave dielectric properties without any reaction with a silver electrode at a sintering temperature of 950 °C, yielding εr = 32, Q × f = 45,543 GHz, and τf = −43.5 ppm/°C. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

11 pages, 16323 KB  
Article
A D-Band Dual-Polarized High-Gain LTCC-Based Reflectarray Antenna Using SIW Magnetoelectric-Dipole Elements
by Zhuo-Wei Miao
Micromachines 2024, 15(12), 1511; https://doi.org/10.3390/mi15121511 - 20 Dec 2024
Cited by 1 | Viewed by 1250
Abstract
This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating [...] Read more.
This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating (R/R) principle. The coverage of phase shifts for both orthogonal polarizations is set to be greater than 360 degrees by varying the length of the phase-delay structure. For verification, a D-band 1296-element RA prototype using the proposed unit cell is fabricated and measured in a THz chamber. The measured results show that the proposed RA achieves a peak gain of 32.25 and 33.03 dBi for the two orthogonal polarizations. The measured 3 dB gain bandwidths for the two orthogonal polarizations are 122–149 GHz (20%) and 123–149 GHz (19.3%), respectively. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

30 pages, 22835 KB  
Review
Ceramics for Microelectromechanical Systems Applications: A Review
by Ehsan Fallah Nia and Ammar Kouki
Micromachines 2024, 15(10), 1244; https://doi.org/10.3390/mi15101244 - 9 Oct 2024
Cited by 2 | Viewed by 5513
Abstract
A comprehensive review of the application of different ceramics for MEMS devices is presented. Main ceramics materials used for MEMS systems and devices including alumina, zirconia, aluminum Nitride, Silicon Nitride, and LTCC are introduced. Conventional and new methods of fabricating each material are [...] Read more.
A comprehensive review of the application of different ceramics for MEMS devices is presented. Main ceramics materials used for MEMS systems and devices including alumina, zirconia, aluminum Nitride, Silicon Nitride, and LTCC are introduced. Conventional and new methods of fabricating each material are explained based on the literature, along with the advantages of the new approaches, mainly additive manufacturing, i.e., 3D-printing technologies. Various manufacturing processes with relevant sub-techniques are detailed and the ones that are more suitable to have an application for MEMS devices are highlighted with their properties. In the main body of this paper, each material with its application for MEMS is categorized and explained. The majority of works are within three main classifications, including the following: (i) using ceramics as a substrate for MEMS devices to be mounted or fabricated on top of it; (ii) ceramics are a part of the materials used for an MEMS device or a monolithic fabrication of MEMS and ceramics; and finally, (iii) using ceramics as packaging solution for MEMS devices. We elaborate on how ceramics may be superior substitutes over other materials when delicate MEMS-based systems need to be assembled or packaged by a simpler fabrication process as well as their advantages when they need to operate in harsh environments. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

18 pages, 3659 KB  
Article
Application of an Automated Top Coal Caving Control System: The Case of Wangjialing Coal Mine
by Yuming Huo, Dangwei Zhao, Defu Zhu and Zhonglun Wang
Sustainability 2024, 16(10), 4261; https://doi.org/10.3390/su16104261 - 18 May 2024
Cited by 1 | Viewed by 1544
Abstract
China has made notable advancements in the intelligent construction of coal mines. However, for longwall top coal caving (LTCC) mining faces, a key obstacle impeding the intelligent transition of the coal-cutting process is automated control. This paper focuses on the aforementioned issue and [...] Read more.
China has made notable advancements in the intelligent construction of coal mines. However, for longwall top coal caving (LTCC) mining faces, a key obstacle impeding the intelligent transition of the coal-cutting process is automated control. This paper focuses on the aforementioned issue and comprehensively considers the pre-, intra-, and post-coal-caving stages. In this work, diverse detection and monitoring technologies are integrated at various stages through a computer platform, facilitating the construction of an automated coal caving control system with self-perception, self-learning, self-decision-making, and self-execution capabilities. Key technologies include ground-penetrating radar-based top coal thickness detection, inertial navigation-based shearer positioning, tail beam vibration-based identification of coal and gangue, and magnetostrictive sensor-based monitoring of the tail beam and insert plate attitude. In this study, the 12309 working face of the Wangjialing Coal Mine was experimentally validated, and the efficacy of the aforementioned key technologies was assessed. The results demonstrated that the control requirements for automated coal caving are satisfied by the maximum errors. Automatic regulation of coal caving was realized through the implementation of this system, thereby facilitating initiation and cessation and yielding promising experimental outcomes. Overall, this system offers practical insights for intelligent construction in current LTCC mining faces and the sustainable development of coal resources. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

2 pages, 348 KB  
Abstract
A New Active Antenna Unit for Portable Microwave Bio-Dosimeters
by Andrey Simakov, Igor Vodokhlebov and Yuriy Voronov
Proceedings 2024, 97(1), 205; https://doi.org/10.3390/proceedings2024097205 - 24 Apr 2024
Viewed by 1012
Abstract
Today, the growing ecological contamination by microwave irradiation requires new devices and information systems to monitor dangerous situations, especially in big cities, and provide safety for the population. This work is focused on the design of anew antenna unit for advanced portable personal [...] Read more.
Today, the growing ecological contamination by microwave irradiation requires new devices and information systems to monitor dangerous situations, especially in big cities, and provide safety for the population. This work is focused on the design of anew antenna unit for advanced portable personal microwave dosimeters and irradiation monitoring systems. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

12 pages, 4154 KB  
Article
Effect of Bi2O3–CuO Flux on the Microstructure, Soft Magnetic Properties, and Gyromagnetic Properties of NiCuZn Ferrites for LTCC Devices
by Xiaoling Lu and Lei Zhang
Micromachines 2024, 15(2), 215; https://doi.org/10.3390/mi15020215 - 31 Jan 2024
Cited by 7 | Viewed by 1450
Abstract
In this work, the electromagnetic properties of Ni0.22Cu0.31Zn0.47Fe2O4 (NiCuZn) ferrites doped with 0.3 wt% Bi2O3 + xCuO flux (x = 0.2, 0.4, 0.6, and 0.8 wt%) were studied. Doping [...] Read more.
In this work, the electromagnetic properties of Ni0.22Cu0.31Zn0.47Fe2O4 (NiCuZn) ferrites doped with 0.3 wt% Bi2O3 + xCuO flux (x = 0.2, 0.4, 0.6, and 0.8 wt%) were studied. Doping resulted in a reduction in the sintering temperature to 900 °C. The doped ferrites were synthesized via the solid-state method. XRD patterns revealed that the prepared ferrites had a cubic spinel structure; thus, a moderate addition of flux did not change the crystal structure. The SEM images, as well as the density and grain size distribution of the samples, showed that the NiCuZn ferrites had densified, homogenized, and contained fully grown grains for x = 0.6 wt%. The sample exhibited good soft magnetic properties, with μ′ reaching the maximum value of 245.4 for x = 0.6 wt% and ε′, Ms, and Hc reaching the maximum values of 23.1, 28.06 emu/g, and 45.86 Oe for x = 0.8 wt%, respectively. Furthermore, the ferrites exhibited good gyromagnetic properties, with 4πMs reaching the maximum value of 1744 Gauss for x = 0.8 wt% and ΔH reaching the minimum value of 228 Oe for x = 0.6 wt%. NiCuZn ferrites were successfully sintered at a lower temperature (900 °C) by adding Bi2O3–CuO flux through LTCC technology and exhibited good soft magnetic properties and gyromagnetic properties. We envisage that these ferrites could be used in multilayer devices. Full article
Show Figures

Figure 1

Back to TopTop