Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (79,338)

Search Parameters:
Keywords = Layer-by-Layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6374 KB  
Article
A Study on the Monitoring and Response Mechanism of Highway Subgrade Structures Based on Ultra-Weak FBG Sensing Array
by Qiuming Nan, Suhao Yin, Yinglong Kang, Juncheng Zeng, Sheng Li, Lina Yue and Yan Yang
Appl. Sci. 2025, 15(18), 9930; https://doi.org/10.3390/app15189930 - 10 Sep 2025
Abstract
Conducting structural monitoring of highway subgrades is crucial for investigating damage evolution mechanisms under dynamic load-temperature coupling effects. However, existing sensing technologies struggle to achieve distributed, long-term, and high-precision measurements of subgrade structures. Therefore, this study employs next-generation fiber-optic array sensing technology to [...] Read more.
Conducting structural monitoring of highway subgrades is crucial for investigating damage evolution mechanisms under dynamic load-temperature coupling effects. However, existing sensing technologies struggle to achieve distributed, long-term, and high-precision measurements of subgrade structures. Therefore, this study employs next-generation fiber-optic array sensing technology to construct a distributed monitoring system based on weak reflection grating arrays. A dual-parameter sensing network for strain and temperature was designed and installed during the expansion and renovation of a highway in Fujian Province, enabling high-precision monitoring of the entire continuous strain field and temperature field of the subgrade structure. Through a comprehensive analysis of dynamic loading test data and long-term monitoring records, the system revealed the dynamic response patterns of subgrade structures under the interaction of modulus differences, burial depth effects, temperature gradients, and load parameters. It elucidated the mechanical sensitivity of flexible base layers and the interlayer stress redistribution mechanism. The study validated that grating array sensors not only offer advantages such as easy installation, a high survival rate, and excellent durability but also enable high-capacity, long-distance, and high-precision measurements of subgrade structures. This provides a new technical approach for full lifecycle monitoring of expressways. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring in Civil Engineering)
Show Figures

Figure 1

17 pages, 3115 KB  
Article
High-Strength, Stable, and Energy-Efficient Bacterial Nanocellulose Composite Films for Building-Integrated Photovoltaics Facade System
by Chenguang Wang, Libin Deng and Yanjie Zhou
Coatings 2025, 15(9), 1063; https://doi.org/10.3390/coatings15091063 - 10 Sep 2025
Abstract
Bacterial nanocellulose (BNC) composite films have emerged as promising candidates for sustainable building materials, yet their practical application in building-integrated photovoltaics (BIPV) facade systems is hindered by insufficient mechanical strength, poor environmental stability, and limited energy efficiency. Here, we developed bacterial nanocellulose/zinc oxide–phenolic [...] Read more.
Bacterial nanocellulose (BNC) composite films have emerged as promising candidates for sustainable building materials, yet their practical application in building-integrated photovoltaics (BIPV) facade systems is hindered by insufficient mechanical strength, poor environmental stability, and limited energy efficiency. Here, we developed bacterial nanocellulose/zinc oxide–phenolic resin (BNC/ZnO–PF) composite films with high-strength, stability, and energy efficiency for BIPV facade system through a simple strategy. Specifically, we first prepared BNC films, then in-situ grew ZnO nanoparticles on BNC films via ultrasound assistance, and finally hot-pressed the BNC/ZnO films with PF resin. The BNC/–PF composite films exhibit high mechanical strength (tensile strength of 93.8 MPa), exceptional sturdiness (wet strength of 92.3 MPa), and thermal properties, demonstrating their durability for long-term outdoor applications. Furthermore, the BNC/ZnO–PF composite films show high transparency (86.47%) and haze (82.02%) in the visible light range, enabling effective light propagation and scattering, as well as soft, uniform, and large-area light distribution. Meanwhile, a low thermal conductivity of 21.7 mW·m−1·K−1 can effectively impede the transfer of high outdoor temperatures into the room, significantly reducing the energy consumption demands of heating and cooling systems. Coupled with its ability to en-hance the photovoltaic conversion efficiency of solar cells by 12.9%, this material can serve as the core encapsulation layer for BIPV facades. While enabling build-ing-integrated photovoltaic power generation, through the synergistic effect of light management and thermal insulation, it is expected to reduce comprehensive building energy consumption, providing a new solution for building energy efficiency under carbon neutrality goals. Full article
(This article belongs to the Section Thin Films)
22 pages, 5638 KB  
Article
Effect of CaO in Alkali-Activated Fly Ash Mortar Under Different Curing Temperatures
by David Murillo-Silo, Enrique Fernández-Ledesma, José Ramón Jiménez, José María Fernández-Rodríguez and David Suescum-Morales
Materials 2025, 18(18), 4250; https://doi.org/10.3390/ma18184250 - 10 Sep 2025
Abstract
This work investigates the influence of CaO as a partial substitute for fly ash in alkali-activated fly ash mortars (AAFM), aiming to reduce reliance on conventional thermal curing. Mortars containing 0%, 2%, and 4% CaO were prepared and subjected to two curing regimes: [...] Read more.
This work investigates the influence of CaO as a partial substitute for fly ash in alkali-activated fly ash mortars (AAFM), aiming to reduce reliance on conventional thermal curing. Mortars containing 0%, 2%, and 4% CaO were prepared and subjected to two curing regimes: thermal curing at 70 °C for 24 h and ambient curing at 21 °C for 24 h. The materials were thoroughly characterised by XRD, XRF, TGA/DTA, SEM, and particle size distribution, while compressive and flexural strength, density, and porosity were evaluated at 7, 14, and 28 days. The results demonstrated that CaO addition improved mechanical performance in both curing environments, particularly at a 4% substitution level, where compressive strength increased by up to 13.8% under thermal curing conditions. These improvements were associated with the formation of C-S-H and C-A-S-H gels, especially margarite, which contributed to accelerated setting and earlier demoulding. Nonetheless, while CaO incorporation improved mechanical performance and allowed earlier demoulding, it could not fully replicate the effects of heat curing at the studied percentages. Ambient-cured mortars exhibited higher porosity and less compact microstructures than thermally cured samples, which displayed denser, layered morphologies. The study confirms that CaO can act as a partial substitute or reducer for conventional curing, but is not sufficient to enable in situ applications without heat treatment. Future research should explore higher CaO contents in combination with set retarders, intermediate curing regimes, or alternative strategies to balance mechanical performance with energy efficiency. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 5680 KB  
Article
Experimental Study and Practical Application of Existing Crack Repair in Concrete Dam Tunnels Using MICP and EICP
by Xu Zhang, Yu Zhang, Huiheng Luo, Bo Peng, Yongzhi Zhang, Jiahui Yao and Mateusz Jan Jedrzejko
Buildings 2025, 15(18), 3275; https://doi.org/10.3390/buildings15183275 - 10 Sep 2025
Abstract
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine [...] Read more.
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine cracks in a large hydropower dam tunnel. Laboratory tests and field applications were conducted by injecting urea–calcium solutions with Sporosarcina pasteurii for MICP and soybean-derived urease for EICP, applied twice daily over three days. Both techniques achieved effective sealing, with precipitation efficiencies of 93.75% for MICP and 84.17% for EICP. XRD analysis revealed that MICP produced a mixture of vaterite and calcite, reflecting biologically influenced crystallization, whereas EICP yielded predominantly calcite, the thermodynamically stable phase. SEM confirmed that MICP generated irregular layered clusters shaped by microbial activity, while EICP formed smoother spherical and more uniform deposits under enzyme-driven conditions. The results demonstrate that MICP provides higher efficiency and localized nucleation control, while EICP offers faster kinetics and more uniform deposition. Both methods present eco-friendly and field-applicable alternatives to conventional repair, combining technical performance with environmental sustainability for hydraulic infrastructure maintenance. Full article
16 pages, 3539 KB  
Article
Characteristics of Planting Structures in Public-Type Private Gardens in Urban Areas of South Korea
by Hyunvin Lee and Junghun Yeum
Land 2025, 14(9), 1848; https://doi.org/10.3390/land14091848 - 10 Sep 2025
Abstract
This study analyzed the planting characteristics and spatial patterns of public-type private gardens in urban areas. Five gardens in Daejeon and Ulsan were surveyed using quadrats to record tree locations and sizes and were digitized for layout mapping. Planting and analysis units were [...] Read more.
This study analyzed the planting characteristics and spatial patterns of public-type private gardens in urban areas. Five gardens in Daejeon and Ulsan were surveyed using quadrats to record tree locations and sizes and were digitized for layout mapping. Planting and analysis units were defined, and spatial patterns were examined using degree centrality. The gardens were classified into one site under mixed artificial–natural management and four sites under artificial management with commercial linkage. The mixed site featured both canopy and shrub layers, with spontaneous vegetation surrounding Pinus thunbergii, Pinus densiflora, and Prunus yedoensis. The commercial sites included either canopy-only or canopy-shrub structures. Lagerstroemia indica, P. densiflora, and Euonymus japonicus. were predominant in the temperate central region, while P. densiflora and Diospyros kaki. dominated in the southern region. This study identified the potential of public-type private gardens as planting models and their capacity to contribute to urban environmental improvement. Full article
Show Figures

Figure 1

18 pages, 1659 KB  
Article
Effect of Pack Chromizing on Microstructure and Tribological Properties of GCr15 Bearing Steel
by Dejun Yan, Chunbei Wei, Peng Tang, Shuqi Huang, Songsheng Lin, Qian Shi and Xiaodong Hong
Molecules 2025, 30(18), 3690; https://doi.org/10.3390/molecules30183690 - 10 Sep 2025
Abstract
Chromizing layers are widely employed in industrial applications due to their superior wear resistance and corrosion resistance. In this study, GCr15 bearing steel was chromized by a solid powder pack chromizing method, and the influence of chromizing time on the microstructure and mechanical [...] Read more.
Chromizing layers are widely employed in industrial applications due to their superior wear resistance and corrosion resistance. In this study, GCr15 bearing steel was chromized by a solid powder pack chromizing method, and the influence of chromizing time on the microstructure and mechanical properties of the chromized layers was systematically investigated. The results reveal the presence of fine pores dispersed both on the surface and at the chromized layers/substrate interface. The concentration of the Cr and Fe elements displays a gradient distribution throughout the layers. The chromized layers are primarily composed of (Cr,Fe)23C6 and (Cr,Fe)7C3 phases. With an increase in the chromizing time, the thickness and hardness of the chromized layers are gradually increased. A large number of radial and circumferential cracks are observed both within and around the indentation regions, accompanied by spalling at the edge. The brittleness of the chromized layer is increased, and the spalling phenomenon becomes more pronounced with prolonged chromizing time. The chromizing treatment significantly improves the tribological performance of GCr15 steel, reducing its wear rate to approximately one fifth of that of the untreated substrate. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
28 pages, 4294 KB  
Article
Engineering Poly(L-Lactic Acid)/Hydroxyapatite Scaffolds via Melt-Electrowriting: Enhancement of Osteochondral Cell Response in Human Nasal Chondrocytes
by Valentina Basoli, Vittorio Barbano, Cecilia Bärtschi, Cosimo Loffreda, Matteo Zanocco, Alfredo Rondinella, Alex Lanzutti, Wenliang Zhu, Stefania Specchia, Andrea Barbero, Florian Markus Thieringer, Huaizhong Xu and Elia Marin
Polymers 2025, 17(18), 2455; https://doi.org/10.3390/polym17182455 - 10 Sep 2025
Abstract
Osteochondral repair remains challenging due to cartilage’s limited self-healing capacity and the structural complexity of the osteochondral interface, particularly the hypertrophic layer anchoring cartilage to bone. We fabricated melt electrowritten (MEW) poly(L-lactic acid) (PLLA) scaffolds incorporating 1%, 5%, and 10% hydroxyapatite (HAp) to [...] Read more.
Osteochondral repair remains challenging due to cartilage’s limited self-healing capacity and the structural complexity of the osteochondral interface, particularly the hypertrophic layer anchoring cartilage to bone. We fabricated melt electrowritten (MEW) poly(L-lactic acid) (PLLA) scaffolds incorporating 1%, 5%, and 10% hydroxyapatite (HAp) to provide a precise fiber architecture (~200 μm pores) and bone-mimetic biochemical cues. Human nasal chondrocytes (hNCs), currently in clinical trials for knee cartilage repair, were selected for their phenotypic plasticity and established safety profile, facilitating translational potential. HAp–PLLA scaffolds, especially at higher HAp contents, enhanced hNC adhesion, proliferation, mineralization, and maintenance of cartilage-specific ECM compared to PLLA alone. This work demonstrates the first high-HAp MEW-printed PLLA scaffold for osteochondral repair, integrating architectural precision with bioactivity in a clinically relevant cell–material system. Full article
Show Figures

Figure 1

30 pages, 5137 KB  
Article
High-Resolution Remote Sensing Imagery Water Body Extraction Using a U-Net with Cross-Layer Multi-Scale Attention Fusion
by Chunyan Huang, Mingyang Wang, Zichao Zhu and Yanling Li
Sensors 2025, 25(18), 5655; https://doi.org/10.3390/s25185655 - 10 Sep 2025
Abstract
The accurate extraction of water bodies from remote sensing imagery is crucial for water resource monitoring and flood disaster warning. However, this task faces significant challenges due to complex land cover, large variations in water body morphology and spatial scales, and spectral similarities [...] Read more.
The accurate extraction of water bodies from remote sensing imagery is crucial for water resource monitoring and flood disaster warning. However, this task faces significant challenges due to complex land cover, large variations in water body morphology and spatial scales, and spectral similarities between water and non-water features, leading to misclassification and low accuracy. While deep learning-based methods have become a research hotspot, traditional convolutional neural networks (CNNs) struggle to represent multi-scale features and capture global water body information effectively. To enhance water feature recognition and precisely delineate water boundaries, we propose the AMU-Net model. Initially, an improved residual connection module was embedded into the U-Net backbone to enhance complex feature learning. Subsequently, a multi-scale attention mechanism was introduced, combining grouped channel attention with multi-scale convolutional strategies for lightweight yet precise segmentation. Thereafter, a dual-attention gated modulation module dynamically fusing channel and spatial attention was employed to strengthen boundary localization. Furthermore, a cross-layer geometric attention fusion module, incorporating grouped projection convolution and a triple-level geometric attention mechanism, optimizes segmentation accuracy and boundary quality. Finally, a triple-constraint loss framework synergistically optimized global classification, regional overlap, and background specificity to boost segmentation performance. Evaluated on the GID and WHDLD datasets, AMU-Net achieved remarkable IoU scores of 93.6% and 95.02%, respectively, providing an effective new solution for remote sensing water body extraction. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 4599 KB  
Review
In Vitro Evaluation of Confounders in Brain Optical Monitoring: A Review
by Karina Awad-Pérez, Maria Roldan and Panicos A. Kyriacou
Sensors 2025, 25(18), 5654; https://doi.org/10.3390/s25185654 - 10 Sep 2025
Abstract
Optical brain monitoring techniques, including near-infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS), and photoplethysmography (PPG) have gained attention for their non-invasive, affordable, and portable nature. These methods offer real-time insights into cerebral parameters like cerebral blood flow (CBF), intracranial pressure (ICP), and oxygenation. [...] Read more.
Optical brain monitoring techniques, including near-infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS), and photoplethysmography (PPG) have gained attention for their non-invasive, affordable, and portable nature. These methods offer real-time insights into cerebral parameters like cerebral blood flow (CBF), intracranial pressure (ICP), and oxygenation. However, confounding factors like extracerebral layers, skin pigmentation, skull thickness, and brain-related pathologies may affect measurement accuracy. This review examines the potential impact of confounders, focusing on in vitro studies that use phantoms to simulate human head properties under controlled conditions. A systematic search identified six studies on extracerebral layers, two on skin pigmentation, two on skull thickness, and four on brain pathologies. While variation in phantom designs and optical devices limits comparability, findings suggest that the extracerebral layer and skull thickness influence measurement accuracy, and skin pigmentation introduces bias. Pathologies like oedema and haematomas affect the optical signal, though their influence on parameter estimation remains inconclusive. This review highlights limitations in current research and identifies areas for future investigation, including the need for improved brain phantoms capable of simulating pulsatile signals to assess the impact of confounders on PPG systems, given the growing interest in PPG-based cerebral monitoring. Addressing these challenges will improve the reliability of optical monitoring technologies. Full article
(This article belongs to the Collection Sensors for Globalized Healthy Living and Wellbeing)
Show Figures

Figure 1

21 pages, 29406 KB  
Article
Deep Learning-Based Contrail Segmentation in Thermal Infrared Satellite Cloud Images via Frequency-Domain Enhancement
by Shenhao Shi, Juncheng Wu, Kaixuan Yao and Qingxiang Meng
Remote Sens. 2025, 17(18), 3145; https://doi.org/10.3390/rs17183145 - 10 Sep 2025
Abstract
Aviation contrails significantly impact climate via radiative forcing, but their segmentation in thermal infrared satellite images is challenged by thin-layer structures, blurry edges, and cirrus cloud interference. We propose MFcontrail, a deep learning model integrating multi-axis attention and frequency-domain enhancement for precise contrail [...] Read more.
Aviation contrails significantly impact climate via radiative forcing, but their segmentation in thermal infrared satellite images is challenged by thin-layer structures, blurry edges, and cirrus cloud interference. We propose MFcontrail, a deep learning model integrating multi-axis attention and frequency-domain enhancement for precise contrail segmentation. It uses a MaxViT encoder to capture long-range spatial features, a FreqFusion decoder to preserve high-frequency edge details, and an edge-aware loss to refine boundary accuracy. Evaluations on OpenContrails and Landsat-8 datasets show that MFcontrail outperforms state-of-the-art methods: compared with DeepLabV3+, it achieves a 5.03% higher F1-score and 5.91% higher IoU on OpenContrails, with 3.43% F1-score and 4.07% IoU gains on Landsat-8. Ablation studies confirm the effectiveness of frequency-domain enhancement (contributing 69.4% of IoU improvement) and other key components. This work provides a high-precision tool for aviation climate research, highlighting frequency-domain strategies’ value in satellite cloud image analysis. Full article
19 pages, 7452 KB  
Article
Analysis of the Application of Protective Blocks and Structural Systems for Ultra-Fast Fire Response Accompanied by Overpressure
by Won-Woo Kim, Gyeong-Cheol Choe, Heung-Youl Kim, Seung-Wook Kim and Jae-Heum Moon
Buildings 2025, 15(18), 3271; https://doi.org/10.3390/buildings15183271 - 10 Sep 2025
Abstract
Ultra-fast fire, characterized by rapid heat release and associated overpressure, poses serious challenges to structural safety in industrial facilities. This study presents the design and evaluation of a protective block capable of resisting both the thermal and mechanical effects of ultra-fast fires. The [...] Read more.
Ultra-fast fire, characterized by rapid heat release and associated overpressure, poses serious challenges to structural safety in industrial facilities. This study presents the design and evaluation of a protective block capable of resisting both the thermal and mechanical effects of ultra-fast fires. The study combined material- and component-level fire tests with structural simulations. The fire scenario was defined as reaching 1 MW within 60 s with a peak overpressure of 5 bar, comparable to dust fire conditions. Fire resistance was achieved with a layered system comprising a 1 mm perforated steel plate to prevent coating detachment, a 5 mm fire-resistant coating, a 2 mm front steel plate, 25 mm glass wool, and a 2 mm back steel plate. Structural analysis confirmed that a frame system with 200 mm × 200 mm H-beams (vertical) and 150 mm steel plates (horizontal) limited deflection to about 50 mm under 5 bar overpressure. These results demonstrate the feasibility of integrating material-level fire resistance with structural optimization, providing a practical basis for protective block design in ultra-fast fire scenarios. Full article
Show Figures

Figure 1

22 pages, 6537 KB  
Article
Dynamic Simulation and Seismic Analysis of Hillside RC Buildings Isolated by High-Damping Rubber Bearings
by Abdul Ghafar Wahab, Zhong Tao, Hexiao Li, Ahmad Yamin Rasa, Tabasum Huma and Yuming Liang
Infrastructures 2025, 10(9), 239; https://doi.org/10.3390/infrastructures10090239 - 10 Sep 2025
Abstract
Hillside buildings are particularly vulnerable to earthquakes owing to their structural configuration; however, research addressing this issue remains limited. This study investigates the effectiveness of high-damping rubber bearings (HDRBs) in enhancing the seismic resilience of hillside structures. Five numerical models were analyzed using [...] Read more.
Hillside buildings are particularly vulnerable to earthquakes owing to their structural configuration; however, research addressing this issue remains limited. This study investigates the effectiveness of high-damping rubber bearings (HDRBs) in enhancing the seismic resilience of hillside structures. Five numerical models were analyzed using non-linear time-history (NTH) analysis, including two flat-plane structures (one isolated and one with a fixed base) and three dropped-layer structures on hillside terrain (one with base isolation, one with inter-story isolation, and one with a fixed base). Deformation history integral (DHI) modeling was employed to simulate the HDRBs. Six earthquake ground motions from the PEER database and one scaled from 0.2–0.8 g were used to assess the seismic responses of the buildings. The results indicate that HDRBs significantly improved the seismic performance. The flat-plane isolated system (FIS) model achieved a nearly 90% reduction in peak roof acceleration compared to fixed-base structures. The dropped-layer isolated system (DIS) and dropped-layer inter-story isolated system (DIIS) models exhibited reductions of approximately 80% in the peak roof acceleration. Furthermore, the isolated structures demonstrated up to 78% reduction in the maximum inter-story drift, along with significant decreases in the story shear forces and overturning moments. Compared with non-isolated dropped-layer structures, the DIS and DIIS models showed reductions of 70% and 55% in the base shear force, respectively. The results highlight the efficacy of HDRBs in energy dissipation and their significant role in enhancing the seismic resilience of mountain structures. Full article
Show Figures

Figure 1

22 pages, 4592 KB  
Review
Defect Engineering of ZnIn2S4 Photocatalysts for Enhanced Hydrogen Evolution Reaction
by Fangying Hong, Tong Jing, Sen Wang and Zuoli He
Coatings 2025, 15(9), 1061; https://doi.org/10.3390/coatings15091061 - 10 Sep 2025
Abstract
ZnIn2S4, a visible-light-responsive layered sulfide photocatalyst with a suitable bandgap (~2.4 eV), exhibits considerable potential for the photocatalytic hydrogen evolution reaction (PHER) due to its low toxicity, excellent stability, and appropriate band alignment. Nevertheless, its practical deployment is limited [...] Read more.
ZnIn2S4, a visible-light-responsive layered sulfide photocatalyst with a suitable bandgap (~2.4 eV), exhibits considerable potential for the photocatalytic hydrogen evolution reaction (PHER) due to its low toxicity, excellent stability, and appropriate band alignment. Nevertheless, its practical deployment is limited by inherent issues such as rapid charge carrier recombination, scarce surface-active sites, and slow oxidation kinetics. Defect engineering strategies—including sulfur, zinc, and indium vacancies, as well as heteroatom doping—have been developed to mitigate these shortcomings. This review not only summarizes recent advances in these strategies but also elucidates the fundamental physicochemical mechanisms behind the enhanced photocatalytic performance. A systematic quantitative evaluation is presented, highlighting improvements in critical performance metrics such as hydrogen evolution rate, light absorption range, apparent quantum yield (AQY), and charge separation efficiency. Furthermore, the review offers a critical perspective on the current state of defect-engineered ZnIn2S4 systems. Promising future research pathways are outlined, with emphasis on atomic-precision synthesis and operando characterization techniques. Finally, we discuss persistent challenges in the field, including reproducibility in synthesis, long-term operational stability, and scalability toward industrial hydrogen production. Full article
Show Figures

Figure 1

29 pages, 4805 KB  
Article
Research on the Design of an Omnidirectional Leveling System and Adaptive Sliding Mode Control for Tracked Agricultural Chassis in Hilly and Mountainous Terrain
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei, Anze Li, Ruochen Wang and Zhongyang Guo
Agriculture 2025, 15(18), 1920; https://doi.org/10.3390/agriculture15181920 - 10 Sep 2025
Abstract
To address the suboptimal leveling performance and insufficient slope stability of existing agricultural machinery chassis in hilly and mountainous regions, this study proposes an innovative omnidirectional leveling system based on a “double-layer frame” crawler-type agricultural chassis. The system employs servo-electric cylinders as its [...] Read more.
To address the suboptimal leveling performance and insufficient slope stability of existing agricultural machinery chassis in hilly and mountainous regions, this study proposes an innovative omnidirectional leveling system based on a “double-layer frame” crawler-type agricultural chassis. The system employs servo-electric cylinders as its actuation components. A control model for the servo-electric cylinders has been established, accompanied by the design of an adaptive sliding mode controller (ASMC). A co-simulation platform was developed utilizing Matlab/Simulink and Adams to evaluate system performance. Comparative simulations were conducted between the ASMC and a conventional PID controller, followed by comprehensive machine testing. Experimental results demonstrate that the proposed double-layer frame crawler chassis achieves longitudinal leveling adjustments of up to 25° and lateral adjustments of 20°. Through structural optimization and the application of ASMC (in contrast to PID), both longitudinal and lateral leveling response times were reduced by 1.12 s and 0.95 s, respectively. Furthermore, leveling velocities increased by a factor of 1.5 in the longitudinal direction and by a factor of 1.3 in the lateral direction, while longitudinal and lateral angular accelerations decreased by 15.8% and 17.1%, respectively. Field tests confirm the system’s capability for adaptive leveling on inclined terrain, thereby validating the enhanced performance of the proposed omnidirectional leveling system. Full article
(This article belongs to the Section Agricultural Technology)
20 pages, 5775 KB  
Article
Variational Bayesian Innovation Saturation Kalman Filter for Micro-Electro-Mechanical System–Inertial Navigation System/Polarization Compass Integrated Navigation
by Yu Sun, Xiaojie Liu, Xiaochen Liu, Huijun Zhao, Chenguang Wang, Huiliang Cao and Chong Shen
Micromachines 2025, 16(9), 1036; https://doi.org/10.3390/mi16091036 - 10 Sep 2025
Abstract
Aiming at the issue of time-varying measurement noise with heavy-tailed characteristics and outliers generated by the polarization compass (PC) in the micro-electro-mechanical system–inertial navigation system (MEMS-INS) and PC-integrated navigation system when it is subject to internal and external disturbances, an improved Variational Bayesian [...] Read more.
Aiming at the issue of time-varying measurement noise with heavy-tailed characteristics and outliers generated by the polarization compass (PC) in the micro-electro-mechanical system–inertial navigation system (MEMS-INS) and PC-integrated navigation system when it is subject to internal and external disturbances, an improved Variational Bayesian Innovation Saturation Robust Adaptive Kalman filter (VISKF) algorithm is proposed. This algorithm utilizes the variational Bayesian (VB) method based on Student’s t-distribution (STD) to approximately calculate the statistical characteristics of the time-varying measurement noise of the PC, thereby obtaining more accurate measurement noise statistical parameters. Additionally, the algorithm introduces an innovation saturation function and proposes an adaptive update strategy for the saturation boundary. It mitigates the problem of innovation value divergence in PC caused by outliers through a two-layer structure that can track the changes in the innovation value to adaptively adjust the saturation boundary. To verify the effectiveness of the algorithm, static and dynamic experiments were conducted on an unmanned vehicle. The experimental results show that compared with adaptive Kalman filter (AKF), variational Bayesian robust adaptive Kalman filter (VBRAKF), and innovation saturate robust adaptive Kalman filter (ISRAKF), the proposed algorithm improves the dynamic orientation accuracy by 76.89%, 67.23%, and 84.45%, respectively. Moreover, compared with other similar target algorithms, the proposed algorithm also has obvious advantages. Therefore, this method can significantly improve the navigation accuracy and robustness of the INS/PC integrated navigation system in complex environments. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 2nd Edition)
Back to TopTop