applsci-logo

Journal Browser

Journal Browser

Advances in Structural Health Monitoring in Civil Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 681

Special Issue Editor


E-Mail Website
Guest Editor
Department of Civil Engineering, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan
Interests: non-destructive techniques; tomography; system identification

Special Issue Information

Dear Colleagues,

The degradation of infrastructure is one of the most severe problems in the field of civil engineering. Structural health monitoring plays an important role in maintaining the safety and serviceability of degrading infrastructures. Techniques related to structural health monitoring have been actively studied in recent years. Although many methods have been proposed for structural health monitoring in these studies, there remains a wide range of possibilities.

This Special Issue aims to collect papers related to advanced studies in the field of structural health monitoring. The methodology is not limited only to the techniques that are extended from conventional ones. Papers proposing new and original ideas are very welcome.

Prof. Dr. Yoshikazu Kobayashi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • non-destructive testing
  • structural health monitoring
  • system identification
  • tomography
  • elastic wave
  • X-ray
  • unmanned system
  • artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 5284 KiB  
Article
A Study on the Feasibility of Natural Frequency-Based Crack Detection
by Xutao Sun, Sinniah Ilanko, Yusuke Mochida and Rachael C. Tighe
Appl. Sci. 2024, 14(24), 11712; https://doi.org/10.3390/app142411712 - 16 Dec 2024
Viewed by 332
Abstract
Owing to the long-standing statement that natural frequency-based crack detection is not sensitive enough to localised damage to identify small cracks, many natural frequency-based crack detection methods are validated by detecting cracks of moderate size. However, a direct comparison between the crack severity [...] Read more.
Owing to the long-standing statement that natural frequency-based crack detection is not sensitive enough to localised damage to identify small cracks, many natural frequency-based crack detection methods are validated by detecting cracks of moderate size. However, a direct comparison between the crack severity causing a measurable natural frequency change and the crack severity reaching the initiation of crack propagation or leading to brittle fracture is constantly ignored. Without this understanding, it is debatable whether the presented crack detection methods are feasible in practical situations. Through natural frequency calculation and linear elastic fracture mechanics, this study is dedicated to filling the above gap in knowledge. To directly utilize the solution of stress intensity factor, common fracture toughness test specimens featuring a single-edge crack are used. These specimens are essentially cracked rectangular plates under uniform uniaxial tension. Considering the stress resultants obtained via the extended finite element method, the natural frequency of the loaded cracked plates is calculated using the Rayleigh–Ritz method incorporating corner functions. In addition, assuming the specimens as structural components under remote uniform tension, the development of critical load versus crack length is derived based on the solution of the stress intensity factor. Thus, critical crack lengths corresponding to a series of safety factors are obtained by equating service load with critical load. After obtaining natural frequencies of the cracked plates with critical crack lengths, the natural frequency drop caused by a critical crack can be computed. Hence, the critical crack length can be compared with the crack length when the frequency drop is measurable. It is found that the brittleness of the employed metals plays a vital role in the feasibility of natural frequency-based crack detection. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring in Civil Engineering)
Show Figures

Figure 1

Back to TopTop