Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = MQCL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2429 KB  
Article
Experimental Investigation on Cutting Forces in Sustainable Hard Milling of Hardox 500 Steel Under Al2O3/MoS2 Hybrid Nanofluid MQCL Environment
by Tran The Long
Lubricants 2025, 13(6), 240; https://doi.org/10.3390/lubricants13060240 - 26 May 2025
Cited by 1 | Viewed by 560
Abstract
Hardox 500 is a special low-alloy, martensitic steel possessing extraordinary wear resistance, high hardness, and high ductility; thus, it has been widely used in many industrial applications. Nevertheless, this type of steel has a low machinability and is grouped among the difficult-to-machine materials. [...] Read more.
Hardox 500 is a special low-alloy, martensitic steel possessing extraordinary wear resistance, high hardness, and high ductility; thus, it has been widely used in many industrial applications. Nevertheless, this type of steel has a low machinability and is grouped among the difficult-to-machine materials. Hence, this paper’s objective was to study its hard milling performance under minimum quantity cooling lubrication (MQCL) conditions using an Al2O3/MoS2 hybrid nano cutting oil. The Box–Behnken response surface methodology was used to investigate the effects of the nanoparticle concentration (NC), cutting speed (v), and feed rate (f) on the total cutting force F and cutting force coefficient Fy/Fz. The obtained results indicate that the cutting efficiency of Hardox 500 steel was improved thanks to the enhancement in cooling lubrication from the MQCL using the Al2O3/MoS2 hybrid nano cutting oil. The applicability of vegetable oil and coated carbide inserts is thus extended to the hard milling of difficult-to-cut materials. Moreover, the provision of the appropriate ranges and optimal set of investigated variables obtained in this paper will be useful guides for technologists and further studies. Concretely, NC = 0.5–0.7%, v = 110–115 m/min, and f = 0.08–0.10 mm/tooth are the optimal set for the total cutting force F, while NC = 0.5%, v = 138–140 m/min, and f = 0.08–0.09 mm/tooth are suggested for the cutting force coefficient Fy/Fz. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

15 pages, 9052 KB  
Article
Effects of Machining Parameters of C45 Steel Applying Vegetable Lubricant with Minimum Quantity Cooling Lubrication (MQCL)
by Mayur A. Makhesana, Prashant J. Bagga, Kaushik M. Patel and Jose J. Taha-Tijerina
Lubricants 2023, 11(8), 332; https://doi.org/10.3390/lubricants11080332 - 5 Aug 2023
Cited by 7 | Viewed by 3090
Abstract
One of the most significant performance indicators for measuring the machinability of materials is tool wear and surface roughness. Choosing the best combination of cutting parameters can help reduce production costs, which is what the manufacturing industry is interested in. At the same [...] Read more.
One of the most significant performance indicators for measuring the machinability of materials is tool wear and surface roughness. Choosing the best combination of cutting parameters can help reduce production costs, which is what the manufacturing industry is interested in. At the same time, industries are always looking for an alternative to conventional flood cooling since its use creates an environmental burden and health concerns for the operators. Therefore, vegetable oil-based minimum quantity cooling lubrication (MQCL) is considered a cutting environment. Sunflower oil is utilized as base fluid in MQCL and applied to the cutting zone through a nozzle. The turning experiments are conducted on C45 material which is widely used in various industrial applications, including numerous automotive components. Since flood cooling is widely utilized in machining C45, it is the present-day need to assess alternative cooling and lubricating approaches to avoid the adverse effects of flood cooling. The Taguchi method was used in the present work to minimize surface roughness and tool wear. L9 orthogonal array was constructed, and experiments were performed on C45 steel using coated carbide cutting tools. The statistical approach is utilized to evaluate the effect of cutting parameters on output responses. The optimal cutting settings for cutting speed, feed, and depth of cut to minimize surface roughness are 100 m/min, 0.18 mm/rev, 0.150 mm, and 80 m/min, 0.18 mm/rev, and 0.150 mm for tool wear. According to the findings, cutting speed, feed rate, and depth of cut varied surface roughness by 1.9%, 78.3%, and 14.04%, and tool wear by around 43.8%, 37.9%, and 6.3%, respectively. The outcomes can be useful to metal-cutting industries to identify the combination of machining parameters with vegetable oil-based MQCL. Full article
Show Figures

Graphical abstract

23 pages, 8973 KB  
Article
Implementation of Sustainable Vegetable-Oil-Based Minimum Quantity Cooling Lubrication (MQCL) Machining of Titanium Alloy with Coated Tools
by Salman Pervaiz, Naveed Ahmad, Kashif Ishfaq, Sarmad Khan, Ibrahim Deiab and Sathish Kannan
Lubricants 2022, 10(10), 235; https://doi.org/10.3390/lubricants10100235 - 24 Sep 2022
Cited by 16 | Viewed by 3184
Abstract
The lubrication capacity and penetration ability of the minimum quantity cooling lubrication-based strategy is linked with lubrication specific parameters (oil flow rates and air pressure), cutting conditions, and chip formation. It points out the complex selection involved in the MQCL-assisted strategy to attain [...] Read more.
The lubrication capacity and penetration ability of the minimum quantity cooling lubrication-based strategy is linked with lubrication specific parameters (oil flow rates and air pressure), cutting conditions, and chip formation. It points out the complex selection involved in the MQCL-assisted strategy to attain optimal machining performance. Lubrication during metal cutting operations is a complex phenomenon, as it is a strong function of the cutting conditions. In addition, it also depends on the physical properties of the lubricant and chemical interactions. Minimum Quantity Lubrication (MQL) has been criticized due to the absence of cooling parts; MQCL is a modified version where a cooling part in the form of sub-zero temperatures is provided. The aim of this paper was to investigate the influence of different lubrication flow parameters under minimum quantity cooling lubrication (MQCL) when machining aeronautic titanium alloy (Ti6Al4V) using Titanium Aluminum Nitride—Physical Vapor Deposition (TiAlN-PVD) coated cutting inserts. The machining experiments on the MQCL system were performed with different levels of oil flow rates (70, 90, and 100 mL/h) and the performance was compared with the conventional dry cutting and flood cooling settings. A generic trend was observed that increasing the oil flow rate from 70—mL/h to 100 h/h improved the surface finish and reduced thermal softening at a low feed of 0.1 mm/rev. The results revealed that many tool-wear mechanisms such as adhesion, micro-abrasion, edge chipping, notch wear, built-up edge (BUE), and built-up layer (BUL) existed. Full article
(This article belongs to the Special Issue Biolubricants in Machining)
Show Figures

Figure 1

14 pages, 1687 KB  
Article
Investigation of Machining Performance of MQL and MQCL Hard Turning Using Nano Cutting Fluids
by Ngo Minh Tuan, Tran Minh Duc, Tran The Long, Vu Lai Hoang and Tran Bao Ngoc
Fluids 2022, 7(5), 143; https://doi.org/10.3390/fluids7050143 - 19 Apr 2022
Cited by 26 | Viewed by 7429
Abstract
Cutting fluids used in the metal machining industry have exerted serious impacts on the environment and human health. In addition, the very high cutting heat and forces in machining-hardened steels have been a growing concern in the metal cutting field. Hence, new, eco-friendly [...] Read more.
Cutting fluids used in the metal machining industry have exerted serious impacts on the environment and human health. In addition, the very high cutting heat and forces in machining-hardened steels have been a growing concern in the metal cutting field. Hence, new, eco-friendly cooling and lubricating techniques are necessary to study and develop. Minimum quantity lubrication (MQL) and minimum quantity cooling lubrication (MQCL) using nano cutting fluids have been proven as alternative solutions for machining difficult-to cut materials while retaining an environmentally friendly characteristic. Accordingly, this paper aims to analyze and evaluate the hard turning efficiency of 90CrSi (60 ÷ 62 HRC) steel using MQL and MQCL conditions, using Al2O3 and MoS2 nano cutting fluids. The 2k-p experimental design and analysis of variance (ANOVA) were used to study the influence of input parameters including fluid type, lubrication method, nanoparticle type, nanoparticle concentration, cutting speed and feed rate on surface roughness. The obtained results showed that the machinability of CNMG120404 TM T9125 carbide tools was improved and the highest machinable hardness was increased from 35 HRC to 60 ÷ 62 HRC (rising by approximately 71.4 ÷ 77.1%) by using the nanofluid MQL and MQCL methods. Furthermore, MQCL gives better performance than MQL, and the Al2O3 nanofluid exhibits the better result in terms of surface roughness values than the MoS2 nanofluid. Feed rate displays the strongest influence on surface roughness, while fluid type, nanoparticle concentration and cutting speed show low impacts. From these results, technical guidance will be provided for further studies using Al2O3 and MoS2 nano cutting fluids for MQL and MQCL methods, as well as their application in machining practice. Full article
(This article belongs to the Special Issue Fluid Flows at the Nanoscale)
Show Figures

Graphical abstract

13 pages, 4455 KB  
Article
Novel Uses of Al2O3/Mos2 Hybrid Nanofluid in MQCL Hard Milling of Hardox 500 Steel
by Tran Minh Duc, Tran The Long and Ngo Minh Tuan
Lubricants 2021, 9(4), 45; https://doi.org/10.3390/lubricants9040045 - 16 Apr 2021
Cited by 27 | Viewed by 3556
Abstract
In recent years, the application of environmentally friendly cutting fluids in the metal cutting industry has been a growing concern in all over the world. In this study, the minimum quantity cooling lubrication (MQCL) technique, which uses very small amount of cutting oil, [...] Read more.
In recent years, the application of environmentally friendly cutting fluids in the metal cutting industry has been a growing concern in all over the world. In this study, the minimum quantity cooling lubrication (MQCL) technique, which uses very small amount of cutting oil, is motivated to apply to the hard milling process of Hardox 500 steel. Further, rice bran oil, a natural biodegradable oil, is used as the base fluid of Al2O3/MoS2 hybrid nanofluid. ANOVA analysis is used to study the influences of nanoparticle concentration, cutting speed, and feed rate on surface roughness. The obtained results indicate that good surface quality is achieved and the cutting speed is significantly increased to 140 m/min (about 2.55–2.80 times higher than the recommended values) due to the better cooling and lubricating effects from MQCL system and Al2O3/MoS2 hybrid nanofluid. Moreover, the microstructure of the machined surface proves the formation of MoS2 tribo film by using Al2O3/MoS2 hybrid nanofluid, indicating that the effectiveness of each type of nanoparticle in hybrid nanofluid has been promoted. Furthermore, the important technical guides for machining Hardox 500 steel are provided. Full article
Show Figures

Figure 1

16 pages, 7152 KB  
Article
Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets
by Pham Quang Dong, Tran Minh Duc, Ngo Minh Tuan, Tran The Long, Dang Van Thanh and Nguyen Van Truong
Lubricants 2020, 8(6), 62; https://doi.org/10.3390/lubricants8060062 - 5 Jun 2020
Cited by 9 | Viewed by 3948
Abstract
The present work shows the process for MoS2 nanosheet production by liquid N2-queched bulk, a novel method having highly efficient, green, and facile operation. The produced MoS2 nanoparticles are suspended in minimum quantity cooling lubrication (MQCL)-based fluid to form [...] Read more.
The present work shows the process for MoS2 nanosheet production by liquid N2-queched bulk, a novel method having highly efficient, green, and facile operation. The produced MoS2 nanoparticles are suspended in minimum quantity cooling lubrication (MQCL)-based fluid to form nanofluid used for the hard milling of AISI D2 steel. The study aims to improve the hard-milling performance assisted by the MQCL technique using MoS2 nanofluid. ANOVA analysis is used to evaluate the effects of three input machining variables, including nanoparticle concentration, cutting speed, and material hardness on cutting forces. The results indicate that the better cooling effect from the principle of the Ranque–Hilsch vortex tube of the MQCL device combined with the better lubricating performance from MoS2 nanofluid brings out the sustainable alternative solution for machining difficult-to-cut material. Moreover, the experimental results provide the technical guides for the selection of proper values of nanoparticle concentration and cutting speed while ensuring the technological, economic, and environmental characteristics. Full article
(This article belongs to the Special Issue Tribology of Smart Materials)
Show Figures

Graphical abstract

16 pages, 5336 KB  
Article
Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid
by Pham Quang Dong, Tran Minh Duc and Tran The Long
Metals 2019, 9(6), 658; https://doi.org/10.3390/met9060658 - 5 Jun 2019
Cited by 41 | Viewed by 4575
Abstract
The present work shows an experimental investigation on the effect of minimum quantity cooling lubrication (MQCL) during hard milling of SKD 11 tool steel (52–60HRC). The novelty here lies on the use of MQCL technique, which comprises the cooling strategy based on the [...] Read more.
The present work shows an experimental investigation on the effect of minimum quantity cooling lubrication (MQCL) during hard milling of SKD 11 tool steel (52–60HRC). The novelty here lies on the use of MQCL technique, which comprises the cooling strategy based on the principle of Ranque-Hilsch vortex tube and MQL method. Moreover, MoS2 nanoparticles are suspended in MQCL based fluid to improve the lubricating character. The response parameters, including surface roughness, surface microstructure, and surface profile are studied. The obtained results show that MQCL using nanofluid gives out better surface quality compared to dry, MQL, and MQCL with pure fluid. Also, the different concentrations of MoS2 nanoparticles are investigated to find out the optimized value as well as the interaction effect on machined surface. Full article
Show Figures

Figure 1

15 pages, 5067 KB  
Article
Experimental Study on the Effects of Coolants on Surface Quality and Mechanical Properties of Micromilled Thin-Walled Elgiloy
by Da Qu, Peng Zhang, Jiadai Xue, Yun Fan, Zuhui Chen and Bo Wang
Materials 2018, 11(9), 1497; https://doi.org/10.3390/ma11091497 - 22 Aug 2018
Cited by 11 | Viewed by 3332
Abstract
In this study, minimum quantity coolant/lubrication (MQCL) is found to have significant impact on the surface quality and mechanical properties of the micromilled thin-walled work piece that is the core component of an aeroaccelerometer. Three kinds of coolants were used in the micromilling [...] Read more.
In this study, minimum quantity coolant/lubrication (MQCL) is found to have significant impact on the surface quality and mechanical properties of the micromilled thin-walled work piece that is the core component of an aeroaccelerometer. Three kinds of coolants were used in the micromilling process to analyze their effects on surface quality and mechanical properties of the component. The experiment results show that an appropriate dynamic viscosity of coolant helps to improve surface roughness. The high evaporation rate of the coolants can enhance the cooling performance. Comparing with the dry machining case, MQCL has better performance on improving tool wear, surface quality, and mechanical properties of the micromilled work piece. It yielded up to 1.4–10.4% lower surface roughness compared with the dry machining case in this experiment. The machined work piece with the best mechanical properties and the one with the worst mechanical properties appeared in the ethyl alcohol and the dry machining case, respectively. The reasons for deteriorating surface quality and mechanical properties in dry machining cases are also analyzed. For improving the micromilling process, the penetration and cooling effect of the coolants are more important. This paper gives references to obtain better service performance of the component by improving the micromilling process. Full article
Show Figures

Figure 1

Back to TopTop